
Europhys. Lett., 56 (4), pp. 563–569 (2001)

EUROPHYSICS LETTERS 15 November 2001

Phase diagram of the Hubbard model:
Beyond the dynamical mean field
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PACS. 71.10.-w – Theories and models of many-electron systems.
PACS. 71.10.Hf – Non-Fermi liquid ground states, electron phase diagrams and phase transi-

tions in model systems.
PACS. 74.20.-z – Theories and models of superconducting state.

Abstract. – The Dynamical Cluster Approximation (DCA) is used to study non-local cor-
rections to the dynamical mean-field phase diagram of the two-dimensional Hubbard model.
Regions of antiferromagnetic, d-wave superconducting, pseudo-gapped non-Fermi liquid, and
Fermi liquid behaviors are found, in rough agreement with the generic phase diagram of the
cuprates. The non-local fluctuations beyond the mean field both suppress the antiferromag-
netism and mediate the superconductivity.

Introduction. – The rich phenomenology of high-Tc superconductors [1] has stimulated
strong experimental and theoretical interest in the field of strongly correlated electron systems.
Common to all high-Tc systems is the presence of antiferromagnetic ordering in undoped
samples in proximity to a superconducting phase with a d-wave order parameter and the
normal state pseudogap dominating the physics in underdoped samples. A successful theory
must describe all these fundamental features at the same time.

The 2D Hubbard model in the intermediate coupling regime or closely related models
like the t-J model are believed to capture the essential physics of the high-Tc cuprates [2].
The antiferromagnetic phase of the cuprates is well understood. In the strong-coupling limit
U � W , where U is the Coulomb repulsion and W the bare bandwidth, the undoped Hub-
bard model reduces to the Heisenberg model, which has been proven to describe the low-
energy spin fluctuations of the cuprate parent compounds. However, off half-filling there is no
complete understanding of the superconducting phase or the normal-state pseudogap in the
intermediate-coupling 2D Hubbard model.

Finite-size quantum Monte Carlo (QMC) calculations for the doped 2D Hubbard model
in the intermediate coupling regime with U ∼ W support the idea of a spin fluctuation driven
interaction mediating d-wave superconductivity [3]. However, the fermion sign problem and
the fact that the number of degrees of freedom grows rapidly with the lattice size limit these
c© EDP Sciences
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calculations to temperatures too high to study a possible transition [3]. These calculations
are also restricted to relatively small system sizes, making statements for the thermodynamic
limit problematic, and inhibiting studies of the low-energy physics.

These shortcomings do not apply to the Dynamical Mean Field Approximation (DMFA),
which is by construction in the thermodynamic limit. Unfortunately, the lack of non-local
dynamics in the DMFA inhibits a possible transition to a state with a non-local (d-wave)
order parameter.

However, it is well known within phenomenological theories that short-ranged antiferro-
magnetic spin fluctuations mediate pairing with d-wave symmetry and cause a pseudogap
in underdoped samples [3–5]. There is experimental evidence that the correlation length of
dynamical spin fluctuations in the optimally doped cuprates is very small [6]. Therefore, mi-
croscopic studies, which account for short-ranged dynamical correlations in addition to the
local correlations of the DMFA, are relevant and might succeed in describing the physics of
the cuprates.

The recently developed Dynamical Cluster Approximation (DCA) [7–9] is a fully causal
approach which systematically incorporates these non-local corrections to the DMFA by map-
ping the lattice problem onto an embedded periodic cluster of size Nc. For Nc = 1 the DCA is
equivalent to the DMFA and by increasing Nc the dynamic correlation length can be gradually
increased while the calculation remains in the thermodynamic limit. Previous DCA calcula-
tions have indicated the presence of an extended d-wave superconducting phase at moderate
doping [8–10].

In this manuscript we present calculations of the full phase diagram of the 2D Hubbard
model studied with the DCA. To solve the cluster problem we use QMC. We choose Nc = 4,
the smallest cluster that includes non-local corrections while preserving the full translational
and point group symmetries of the lattice. The results are compared to DMFA calculations,
Nc = 1, to illustrate the effect of the initial non-local corrections.

Formalism. – A detailed discussion of the DCA formalism was given in previous publi-
cations [7–9, 11]. The compact part of the free energy is coarse-grained in reciprocal space,
projecting it onto a finite-sized cluster of Nc points embedded in a self-consistently determined
host. The cluster problem is solved using the Hirsch-Fye impurity algorithm [12] modified
to simulate an embedded cluster [11], and the spectra are analytically continued with the
maximum entropy method [13]. Once the cluster problem has been solved, lattice suscepti-
bilities may be calculated [7]. All calculations are done in the normal, paramagnetic state.
We search for continuous phase transitions indicated by the divergence of the corresponding
susceptibilities.

The Hubbard model is characterized by a near-neighbor hopping t and a one-site repulsion
U . We choose t = 1/4 to establish a unit of energy and choose U = W = 2 which is
sufficiently large that for Nc ≥ 4, a Mott gap is present in the half-filled model. The phase
diagram of the Hubbard model, calculated with DMFA, displays a range of behaviors including
Mott insulating, antiferromagnetic and Fermi-liquid regimes [14]. The inclusion of non-local
corrections yields significant changes to the phase diagram, including the enhancement of the
Mott phase at half-filling [15], the suppression of antiferromagnetism, the introduction of a
d-wave superconducting phase and non-Fermi-liquid behavior. These different regimes are
delineated by calculating the antiferromagnetic (fig. 1), bulk magnetic (fig. 2) and d-wave
superconducting (fig. 4) susceptibilities, and the single-particle self-energy (fig. 3).

Antiferromagnetism. – In fig. 1, the inverse antiferromagnetic susceptibility is plotted vs.
temperature for dopings δ = 0 and 0.05 and Nc = 4 and 1. We plot the inverse susceptibility
to show that, in contrast to finite-sized system calculations, the susceptibility diverges for



M. Jarrell et al.: Phase diagram of the Hubbard model etc. 565

Fig. 1 – Inverse antiferromagnetic susceptibility vs. temperature for U = 2. The lines are fits to the
function 1/χAF(T ) = b(T − TN )γ . For Nc = 1, γ ≈ 1, the mean-field value. For Nc = 4 non-local
fluctuations suppress the transition, so that γ increases and TN decreases (see inset).

low doping at T = TN . This indicates a transition to an antiferromagnetic phase. In the
DMFA for the 2D model, or as we found previously for the infinite-dimensional model [14],
the antiferromagnetism persists to relatively high temperatures and dopings. The non-local
dynamical fluctuations, included in the DCA for Nc > 1, strongly suppress the antiferromag-
netism. Their effect becomes pronounced for low temperatures and dopings. For example,
when δ = 0, the Nc = 1 and Nc = 4 AF susceptibilities are identical at high temperatures
due to the lack of non-local correlations, but separate as the temperature is lowered. The
Nc = 1 susceptibility diverges with mean-field exponent of about one whereas the Nc = 4
result diverges at a much lower temperature with a larger exponent. Consistent with the
Mermin Wagner theorem, TN continues to fall for large values of Nc (not shown).

The pseudogap and non-Fermi-liquid behavior. – The bulk (k = 0) magnetic susceptibil-
ity and single-particle density of states (DOS) display evidence of a pseudogap for low doping
δ < 0.2. We show the bulk magnetic susceptibility in the inset to fig. 2 for three different
dopings. For low to intermediate doping, it develops a peak at low temperatures, defining a
temperature T ∗. T ∗ ∼ TN (Nc = 1), the mean-field transition temperature (see figs. 5 and 1).
For Nc > 1, it defines the temperature where short-ranged spin correlations first emerge. The
underdoped bulk susceptibility data, δ ∼ 0.075, may be scaled onto one curve by plotting vs.
T/T ∗ (not shown). A similar peak or downturn and scaling is seen in the Knight-shift data
of the cuprates [1]. The downturn of the susceptibility is accompanied by a loss of states near
the Fermi energy. For temperatures T < T ∗, a pseudogap begins to develop in the DOS, as
shown in fig. 2. The pseudogap is widest, measured from peak to peak, at low doping, and
vanishes for δ >∼ 0.2. The depth of the pseudogap is greatest when δ ≈ 0.05, and it vanishes
as δ → 0, where it is replaced by a Mott gap of width ≈ U .

The slow fall of T ∗ with doping indicates that the short-ranged spin correlations diminish
slowly upon doping. Thus, even in the region T ∗ > T > TN the antiferromagnetic correlations
still have a significant effect. This is supported by the behavior of the self-energy for temper-
atures T < T ∗. Once the DCA algorithm is converged, the lattice self-energy is calculated
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Fig. 2 – The single-particle density of states N(ω) for U = 2, T = 0.023 and Nc = 4. The inset
shows the bulk susceptibility as a function of temperature. For δ < 0.2 a peak develops at T = T ∗

accompanied by the evolution of a pseudogap in the DOS for T < T ∗.

by interpolating the cluster result on to the full lattice Brillouin zone. Thus the lattice self-
energy at any k is dominated by the cluster self-energy at the nearest cluster momentum. For
a Fermi liquid, the self-energy Σ(k, ω) ∼ (1 − 1/Z)ω − ibω2, where b > 0 and 1/Z > 1. Our
results show that, near half-filling, the self-energy displays non-Fermi-liquid behavior. This is
illustrated in fig. 3, where we plot the low-frequency self-energy at the DCA cluster momenta
for δ = 0.05 and T = 0.023. For momentum points near k = (π, 0), the imaginary part of
the self-energy crosses the Fermi energy almost linearly. Concomitant with this behavior is
a pseudogap of width ≈ |J | ≈ 4t2/U in the single-particle spectra A(k, ω) for momenta near
k = (π, 0) (not shown).

The pseudogap and the anomalies in the self-energy vanish when T ∗ falls to zero. Here,

Fig. 3 – The imaginary part of the single-particle self-energies at the DCA cluster momenta, plotted
vs. frequency ω for U = 2, T = 0.023, Nc = 4 and δ = 0.05 (left) and δ = 0.25 (right). The self-energy
at (π, 0) changes from non-Fermi-liquid–like at doping δ = 0.05 to Fermi-liquid–like at δ = 0.25. The
dashed lines indicate the zero axes.
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Fig. 4 – The s-wave, extended s-wave, and d-wave even-frequency and the odd-frequency s-wave q = 0
susceptibilities vs. temperature for U = 2.0, δ = 0.05, and Nc = 4. Pairing is found only in the even-
frequency q = 0 d-wave channel. In the inset the inverse d-wave pair-field susceptibility is plotted
vs. temperature for two different dopings and cluster sizes. The line is a fit to 1/Pd(T ) = b(T − Tc)

γ

with Tc = 0.021 and γ = 0.72.

as shown on the right of fig. 3, the self-energy becomes Fermi-liquid–like with quasiparticle
weight Z ≈ 1/2. A systematic study of the evolution of the single-particle spectra and the
Fermi surface will be presented elsewhere.

It is important to stress that the pseudogap, the downturn of the bulk magnetic suscep-
tibility and the non-Fermi-liquid behavior in the self-energy are absent when Nc = 1 due to
the lack of non-local fluctuations.

Superconductivity. – We searched for many different types of superconductivity, including
s, extended-s, p and d waves, of both odd and even frequency and we looked for pairing at
both the zone center and corner. Of these, only the odd-frequency s-wave and even-frequency
d-wave pair-field susceptibilities at the zone center were strongly enhanced, and only the d-
wave susceptibility diverged. This is illustrated in fig. 4 where the odd-frequency s-wave and
the even-frequency d-wave q = 0 susceptibilities are plotted vs. temperature for U = 2 and
δ = 0.05. The s-wave and extended s-wave q = 0 even-frequency susceptibilities are also
plotted for comparison.

The behavior of the d-wave pair-field susceptibility as a function of temperature for Nc = 1
and 4 and δ = 0 and 0.05 is shown in the inset to fig. 4. For Nc = 1 there is no tendency
towards pairing. For the DMFA there is no pairing with symmetries lower than the lattice
symmetry (i.e., p-, d-wave, etc.) [16].

d-wave pairing is strongly enhanced for Nc = 4 over the corresponding DMFA results.
However, for δ = 0 the inverse susceptibility rises abruptly as the temperature is lowered and
the Mott gap opens in the DOS. The Mott gap becomes more pronounced as Nc increases [15],
so that for larger clusters the gap prevents superconductivity even for U < W . If charge
excitations are gapped, then pairing is suppressed. At half-filling, for U = 2 the gap is of
order U , and is much larger than the magnetic exchange energy |J | ∼ 4t2/U = 0.125, so that
the opening of the Mott gap will suppress any magnetically mediated pairing. Away from
half-filling the width of the pseudogap in the charge excitation spectrum is much smaller, on
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.
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Conclusion. – We have used QMC and DCA to study the effect of the initial non-local
corrections on the phase diagram of the 2D Hubbard model at intermediate coupling U = W .
The corrections make significant changes, including a strong suppression of the antiferromag-
netism, the emergence of non-Fermi-liquid (pseudogap) and d-wave superconducting regimes.
The critical exponent of the pair-field susceptibility is smaller than one, whereas the antifer-
romagnetic susceptibility diverges with a critical exponent larger than one. This indicates
that the same fluctuations that suppress antiferromagnetism upon doping mediate pairing.
At half-filling the formation of the Mott gap of width � J suppresses pairing.
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