
Eur. Phys. J. B 13, 613–624 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We develop a Non-Crossing Approximation (NCA) for the effective cluster problem of the re-
cently developed Dynamical Cluster Approximation (DCA). The DCA technique includes short-ranged
correlations by mapping the lattice problem onto a self-consistently embedded periodic cluster of size Nc.
It is a fully causal and systematic approximation to the full lattice problem, with corrections O(1/Nc) in two
dimensions. The NCA we develop is a systematic approximation with corrections O(1/N3

c ). The method
will be discussed in detail and results for the one-particle properties of the Hubbard model are shown. Near
half filling, the spectra display pronounced features including a pseudogap and non-Fermi-liquid behavior
due to short-ranged antiferromagnetic correlations.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 75.20.Hr Local moment in compounds and alloys; Kondo effect, valence
fluctuations, heavy fermions

1 Introduction

One of the most challenging tasks in theoretical con-
densed matter physics is the description of strongly cor-
related electron systems. The Coulomb interaction be-
tween electrons plays a dominant role in these systems
and usually strongly influences the electronic properties
and the physics of the ground-state phase. The discovery
of heavy Fermion systems in the late seventies [1] and
high-Tc super-conductors ten years later [2] has stimu-
lated strong experimental and theoretical interest in this
field. However, despite a multitude of attempts to describe
such strongly correlated electron systems theoretically, a
complete understanding of the observed rich physics has
not yet been accomplished. Even the simplest model for
strongly correlated electron systems, the Hubbard model
(HM), must be considered unsolved in more than one di-
mension [3] after almost forty years of intensive study.
Exact diagonalization or quantum Monte-Carlo studies
for two or three dimensions are restricted to small lattice
sizes and predictions for the thermodynamic limit may be
problematic [4].

However, in the limit of infinite dimensions D = ∞,
correlated lattice models undergo a significant simplifica-
tion. Their dynamics become purely local and therefore
the lattice problem can be mapped onto a generalized sin-
gle impurity Anderson model coupled to a host, which has
to be determined self-consistently [5–8]. The dynamical
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mean field approximation used in the context of real ma-
terials thus assumes that only local dynamics are present.
Despite the neglect of nonlocal correlations, this method
has been shown to capture several important features of
e.g. the Hubbard model [7,9,10]. Nevertheless it has some
significant shortcomings due to the mapping onto a purely
local model. For instance, it does not include the effect of
nonlocal correlations like antiferromagnetic spin fluctua-
tions on the one-particle properties, and is not capable of
describing nonlocal order parameters. However, both ef-
fects are believed to be especially important for a descrip-
tion of the high-Tc materials. Here the one-particle spectra
have shadow bands due to short-ranged antiferromagnetic
fluctuations, preformed pseudogaps due to superconduct-
ing or spin fluctuations [11–15], and the superconducting
order parameter is of nonlocal (d) character.

In order to include these types of nonlocal dynamics
into the theory there have been several efforts to add so-
called 1

D corrections to the DMFA [16–18]. However, these
methods either experience causality problems [16,17] (be-
cause of the necessary inclusion of nonlocal Green func-
tions in self-energy diagrams which do not have a negative
semidefinite imaginary part), or are restricted to the cal-
culation of a few moments of the spectral function [19].

These shortcomings do not apply to the dynamical
cluster approximation (DCA). This method systemati-
cally includes nonlocal short-ranged correlations while
preserving causality [20,21]. The DCA is a scheme which
maps the lattice problem onto a self-consistently embed-
ded effective finite-size cluster model. Due to the finite
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size of the cluster, nonlocal corrections to the local dy-
namics can be systematically included as the cluster size
increases. The basic idea of the DCA is to take into ac-
count nonlocal physics by calculating the self energy at
selected points K in the Brillouin zone and consider the
self energy at these points to represent the self-energy in
the surrounding of these points K+k′: Σ(K) ≈ Σ(K+k′).
The theory then maps the lattice problem onto an effective
finite-size system with periodic boundary conditions cou-
pled to an external bath and the resulting system is solved
self-consistently. The DCA has two well-defined limits: It
recovers the DMFA as the cluster size goes to 1 and be-
comes the exact solution for the model under considera-
tion as the cluster size goes to infinity.

The use of the DCA as an approximation can be jus-
tified as long as the momentum dependence of the self-
energy of the real system is weak. This is obviously re-
alized in high spatial dimensions where a coarse grid of
K-points should capture all the basically short-ranged dy-
namics. In two- or three-dimensional systems the approx-
imation is more crude, but can be motivated by the ob-
servation that the dominant structures in the one-particle
dynamics are generated by local renormalizations, while
nonlocal effects only lead to minor renormalizations of
these structures. Note that this assumption automatically
inhibits studies very close to phase transitions since there
strong, long-ranged fluctuations must be expected. How-
ever, sufficiently away from phase boundaries correlated
systems indeed show only mild momentum dependence of
the one-particle self energy as compared to its frequency
dependence.

So far only quantum Monte-Carlo simulations and ex-
act enumeration have been used to solve this problem of
a cluster in an external bath [20,21]. In the DMFA the
NCA has successfully been applied to the effective single
impurity problem [22–26]. In this paper we introduce an
extended version of the NCA to solve the effective periodic
cluster model of the DCA.

The paper is organized as follows. First a short review
of the DMFA is given, which is reproduced by the DCA for
a single site cluster. Then we provide a microscopic defini-
tion of the DCA in terms of its Laue function, and rederive
the DCA algorithm using Baym’s Φ functional formalism.
We then define the effective cluster model onto which the
lattice system is mapped by the DCA. An extended ver-
sion of the NCA applicable to an impurity cluster of arbi-
trary size is discussed in detail and finally results for the
one-particle properties of the Hubbard model are shown
and compared to corresponding results of the DMFA.

2 Dynamical mean field approximation

In this paper we consider the single-band Hubbard model
described by the Hamiltonian

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (1)

where c†iσ (ciσ) creates (destroys) an electron at site i with
spin σ and niσ are the corresponding number operators.

Fig. 1. The Laue function (3) leads to a collapse of the momen-
tum dependence of the DMFA Baym-Kadanoff ΦDMFA func-
tional, illustrated for a second order contribution.

Lattice models of this kind simplify significantly in infi-
nite dimensions, while retaining their full local dynamics.
Metzner and Vollhardt [27] showed that the necessary
rescaling of the kinetic energy as 1/

√
D leads to a col-

lapse of all nonlocal diagrams in a skeleton expansion for
the self-energy. Consequently the corresponding Baym-
Kadanoff Φ functional can be expressed in terms of local
quantities only.

Müller-Hartmann [28] was able to deduce the same
result by inspecting the momentum dependence of vertices
in diagrammatic approaches as D→∞. For Hubbard-like
models, the momentum dependence of each vertex in a
diagrammatic expansion of the functional Φ is completely
characterized by the Laue function

∆(k1,k2,k3,k4) =
∑

r

ei(k1−k2+k3−k4), (2)

where k1 and k3 (k2 and k4) are the momenta enter-
ing (leaving) the vertex. In a conventional diagrammatic
approach ∆(k1,k2,k3,k4) = Nδk1+k3,k2+k4 , which ex-
presses momentum conservation on the vertex. However
as D →∞ Müller-Hartmann showed that the Laue func-
tion reduces to

∆D→∞(k1,k2,k3,k4) = 1 +O(1/D). (3)

The DMFA assumes the same Laue function (3) even
in the context of finite dimensions. Therefore both the
infinite-dimensional theory and the DMFA neglect mo-
mentum conservation at the internal vertices of irreducible
diagrams and the momenta in the corresponding ΦDMFA

functional may be freely summed over the whole Brillouin
zone. This leads to a collapse of the momentum depen-
dent contributions to the functional ΦDMFA and only local
terms remain. This is illustrated in Figure 1 for a second
order diagram.

The self-energy (a functional derivative of the func-
tional ΦDMFA with respect to a Green function leg) also
becomes a functional of local propagators only and there-
fore becomes a constant in momentum space. Conse-
quently the lattice problem can be mapped onto an ef-
fective impurity problem.

The DMFA has proven to capture the key features of
strongly correlated electron systems and to provide insight
in the complicated dynamics mediated by correlations. De-
spite its great success in the description of correlated elec-
tron systems the DMFA has some significant shortcomings
due to the neglect of non-local dynamics.
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Fig. 2. The cluster momenta K (filled circles) and coarse
graining cells (different fill patterns) for a Nc = 4 cluster in
the Brillouin zone of a two dimensional lattice. The cells adja-
cent to the Brillouin zone boundary extend periodically to the
opposite site.

3 Dynamical cluster approximation

The DCA extends the DMFA through the inclusion of
short-ranged dynamical correlations. The DCA was intro-
duced and discussed in detail in [20,21]. In this paper we
will rederive the DCA algorithm with an argument which
is complementary to that used by Müller-Hartmann [28]
to describe the DMFA.

The basic idea of the DCA is to partially restore the
momentum conservation relinquished by the DMFA. To
this end the Brillouin-zone is divided into Nc = LD cells
of size (2π/L)D (see Fig. 2). Each cell is represented by
a cluster momentum K in the center of the cell. We re-
quire that momentum conservation is (partially) observed
for momentum transfers between cells, i.e. for momentum
transfers larger than ∆k = 2π/L, but neglected for mo-
mentum transfers within a cell, i.e. less than ∆k. This
requirement can be established by using the Laue func-
tion [21]

∆DCA = NcδM(k1)+M(k3),M(k2)+M(k4), (4)

where M(k) is a function which maps k onto the cluster
momentum K of the cell containing k. With this choice
of the Laue function the momenta of each internal leg in
the corresponding functional ΦDCA may be freely summed
over the cell and each leg is replaced by the coarse grained
average

Ḡ(K) =
Nc

N

∑
k̃

G(K + k̃). (5)

This is schematically illustrated in Figure 3. The coarse
grained Green function Ḡ(K) and corresponding self-
energy Σ̄(K)

Σ̄(K) =
Nc

N

∑
k̃

Σ(K + k̃) (6)

Fig. 3. The DCA choice of the Laue function (4) leads to
the replacement of the lattice propagators G(k1), G(k2), ... by
coarse grained propagators Ḡ(K), Ḡ(K′), ... (Eq. (5)) in the
internal legs of ΦDCA, illustrated for a second order diagram.

are functions of the cluster momenta K only. The k̃ sum-
mation in (5, 6) runs over the N/Nc momenta of the cell
about the cluster momentum K and G (Σ) is the full lat-
tice propagator (self-energy).

With this definition of ∆DCA, the DCA estimate of the
Baym-Kadanoff functional ΦDCA becomes [21]

ΦDCA(Ḡ) =
∑
l

1
2l

tr
[
Σ̄(l)Ḡ

]
(7)

where Σ̄(l) is the set of irreducible, coarse grained self-
energy diagrams of lth order in the interaction U and
the trace indicates summation over frequency, cluster mo-
menta and spin. The DCA result for the free energy of the
lattice is

ΩDCA = −kBT (ΦDCA − trΣG− tr ln[−G]). (8)

ΩDCA is stationary with respect to the lattice Green func-
tion G

δΩDCA

δG
= kBT [−Σ̄ +Σ] = 0, (9)

if Σ̄ is taken as an approximation for the self-energy Σ of
the full lattice Green function G (the left hand side of (9)
follows from δḠK/δGk = δK,M(k) and δΦDCA/δḠ = Σ̄).
We have shown previously that Σ = Σ̄ +O(1/Nc) in two
dimensions and includes dynamical intersite correlations
of range π/∆k = L/2 [21].

The coarse grained Green function (5) then takes the
form

Ḡ(K, z) =
Nc

N

∑
k̃

1
z − εK+k̃ + µ− Σ̄(K, z)

, (10)

where the self-energy at momentum k = K + k̃, Σ(k)
is replaced by its coarse grained average Σ̄(K) and z =
ω + iδ. Note that the choice of the coarse grained Green
function (10) has two well-defined limits with respect to
the cluster size Nc. For Nc = 1 the k̃ summation runs
over the entire first Brillouin-zone, Ḡ is the local Green
function, thus the DMFA algorithm is recovered. When
Nc =∞, the k̃ summation vanishes and the DCA becomes
equivalent to the exact solution of the Hubbard model.

In order to apply the NCA to solve the effective clus-
ter problem it is convenient to write the coarse grained
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Green function (10) in a more suitable form. We use the
independence of the self-energy Σ̄(K) on the integration
variable k̃ to write Ḡ in the form

Ḡ(K, z) =
1

z − ε̄K + µ− Σ̄(K, z)− Γ (K, z)
, (11)

where ImΓ (K) < 0 (see Appendix A). This is just the
Green function of an effective cluster model with peri-
odic boundary conditions coupled to a Fermionic bath de-
scribed by the host function Γ (K). Hence we can obtain
the coarse grained self energies Σ̄(K) by solving a gener-
alized cluster model.

The DCA cluster problem may then be solved by iter-
ation. The iteration loop starts with a guess for the initial
cluster self-energy. By computing the coarse grained lat-
tice Green function (10) we get the input quantities for
the effective cluster model. The effective dispersion ε̄K is
given by the average

ε̄K =
Nc

N

∑
k̃

εK+k̃ (12)

and the cluster electrons are coupled to the host func-
tion Γ (K). This will be described in more detail in
Sections 4 and 5. Given the effective dispersion ε̄K and
the host Γ (K) the interacting Green function Gc(K) of
the effective cluster model can be calculated by some suit-
able method. The cluster self energy is then obtained via
Σc(K, z) = z− ε̄K+µ−Γ (K, z)−G−1

c (K, z) and the itera-
tion closes by calculating a new Ḡ(K) with equation (10).
This procedure is repeated until Gc(K) = Ḡ(K) within
the desired accuracy.

4 Effective cluster model

To solve the cluster problem with the NCA, we must first
define a Hamiltonian for the cluster. The parameters of
the Hamiltonian are given by the Green function (11).
The corresponding cluster Hamiltonian

Hcluster = Hloc +Hmed (13)

is most conveniently constructed in momentum space. Its
local part is given by

Hloc =
∑
Kσ

ε̄Kf
†
KσfKσ +

U

Nc

∑
K,K′
Q

f†K+Q↑fK↑f
†
K′−Q↓fK′↓,

(14)

where f †Kσ (fKσ) creates (destroys) an electron with mo-
mentum K and spin σ. U is the local Coulomb repulsion
for two electrons residing on the same cluster site. Since
this interaction is local, it is unchanged by the coarse-
graining procedure [21]. Note that the effective dispersion
ε̄K of the cluster states is given by the average bare dis-
persion in the cell (12). The coupling of the local cluster

states with the host has the form

Hmed =
1√
N

∑
K,k′σ

VK,k′(f
†
KσcK+k′σ + h.c.)

+
∑
kσ

εkc
†
kσckσ, (15)

where c†K+k′ (cK+k′) describe the effective medium in
terms of free fermions with a dispersion εk. Note that
in contrast to the single impurity model, the local states
given by f †Kσ couple only to fermions with momenta
k = K + k′ within the cell about the cluster momentum
K. Therefore the corresponding hybridization function

Γ ′(K, z) =
1
N

∑
k′

|VK,k′ |2
z − εK+k′

(16)

becomes K-dependent and the interacting cluster Green
function finally reads

Gc(K, z) =
1

z − ε̄K + µ−Σc(K, z)− Γ ′(K, z)
· (17)

Σc(K, z) denotes the proper one-particle self energy ef-
fects due to the local Coulomb repulsion between the
f -electrons.

Comparing this result with the coarse-grained Green
function of the lattice (11) one finds identical structures
provided that the cluster self-energy Σc(K) equals that of
the lattice Σ̄(K), and that

Γ ′(K) = Γ (K). (18)

The latter substitution ensures that the solution of the
effective cluster model is also the solution of the coarse-
grained lattice problem discussed in the last section.

5 Extended version of the non-crossing
approximation

In the following we show how to solve the effective cluster
model with an extended version of the NCA. The effec-
tive cluster model is defined by the Hamiltonian (13) with
the effective medium fixed by equation (18). The NCA
is a perturbational expansion around the molecular limit,
i.e. it starts with the eigenstates of the local part Hloc of
the cluster Hamiltonian (13). The expansion is performed
with respect to the coupling to the effective medium Hmed,
where the quasi-free fermions are described by the host
function Γ (K), see equation (18). The Fermionic opera-
tors defined on the cluster are expanded in terms of the
Hubbard operators Xmn = |m〉 〈n|, e.g.

fKσ =
∑
m,n

FKσ
mnXmn, (19)

where {|m〉} are the eigenstates of the local Hamiltonian

Hloc =
∑
m

EmXmm (20)
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Γ Γ

Fig. 4. NCA self-energy of the resolvent R̂ due to the coupling
of the local cluster states to the host Γ (K).

with eigenenergies Em and FKσ
mn = 〈m|fKσ|n〉. The hy-

bridization term (15) becomes

Hmed =
1√
N

∑
K,k′σ

∑
m,n

VK,k′(c
†
K+k′F

Kσ
mnXmn + h.c.)

+
∑
kσ

εkc
†
kσckσ. (21)

Since the Hubbard-operators do not obey standard Ferm-
ionic or Bosonic commutation relations, the conventional
Feynman diagram technique cannot be used for a per-
turbation expansion and the concept of resolvents must
be introduced instead [29]. Their matrix-elements in the
space of the local eigenstates have the form

[R̂−1]mn(z) = (z −Em)δmn − Σ̂mn(z). (22)

In general non-diagonal elements R̂mn of the resolvent ex-
ist, but our calculations show that their effect on the one-
particle spectra is negligible. Therefore we refrain from
taking them into account considering the higher numerical
complexity, entailed by an inclusion of non-diagonal ele-
ments. Σ̂ describes self-energy effects due to the hybridiza-
tion with the effective medium. Note that Σ̂ collects the
renormalizations of the individual local states {|m〉} and
must not be confused with the proper one-particle self en-
ergy of the cluster, Σ̄(K, z).

In the NCA the self-energy matrix Σ̂ is obtained by
calculating the two diagrams illustrated in Figure 4, which
correspond to

Σ̂(z)=−1
π

∑
Kσ

+∞∫
−∞

dεf(ε)ImΓ (K, ε)F̂KσR̂(z+ε)(F̂Kσ)†

+

+∞∫
−∞

dεf(−ε)ImΓ (K, ε)(F̂Kσ)†R̂(z − ε)F̂Kσ

 .
(23)

The coupled singular integral equations (22, 23) have to
be solved self-consistently.

Higher order corrections to these equations come in the
form of vertex corrections or crossing diagrams. For the
orbitally non-degenerate single impurity Anderson model
it is well-known that to obtain the correct value for the
low-energy scale one has to sum all diagrams up to fourth
order in the coupling V [30]. For a cluster of size Nc ≥
1 and finite value for U , this requirement would mean
that one must include vertex corrections. From our former

Γ Γ

Fig. 5. Leading order crossing diagram is of order O(1/N3
c ),

since it involves five quantities of order O(1/Nc) but only two
sums over the cluster momenta K.

experience with vertex corrections for the single impurity
case (Nc = 1) we expect a strong renormalization of low-
energy scales. However, for high energy features in the
spectra or high temperature properties like magnetism the
vertex corrections yield only negligible effects. They also
do not affect general local properties like universality or
scaling [31].

In the present context, the hybridization strength is
not an adjustable parameter, so it does not make sense
to use it to classify the higher-order corrections. In fact,
both the effective hybridization strength between the clus-
ter and its host, and the degeneracy and magnitude of
the cluster states depend upon Nc. Therefore, a far more
important expansion parameter is the inverse cluster size
1/Nc. Since the eigenenergies Em of the cluster scale as
Nc, the resolvent behaves like R̂ ∼ O(1/Nc). Taken to-
gether the sum over the cluster momenta K and the re-
solvent in (23) are of order one. Thus the Nc-dependence
of the NCA-self energy matrix Σ̂ is determined by the Nc-
dependence of Γ . We show in Appendix B that the host
function Γ is of order O(1/Nc). Therefore for Nc → ∞
the NCA-self energies vanish – as expected since the cou-
pling to the host vanishes – and the cluster problem is
solved exactly by the eigenstates {|m〉}. In the form (23)
the NCA equations are exact up to the second order in
the coupling (15), i.e. first order in Γ ∼ O(1/Nc).

To estimate the role of vertex corrections we show
in Figure 5 one of the leading order corrections to the
NCA-self energy (23). This crossing diagram involves two
Γ -lines and three resolvents R̂, but only two sums over
the cluster momenta K, therefore this diagram is of order
O(1/N3

c ). In fact all crossing diagrams are of this order or
higher. Hence for Nc → ∞ the NCA algorithm becomes
exact with corrections O(1/N3

c ). We are thus confident
that at least the qualitative aspects of our results will be
unaffected by higher order diagrams. Since on the other
hand an inclusion of vertex corrections is associated with a
tremendous numerical effort, we refrain from taking them
into account for the time being. With the expansion (19)
the cluster Green function Gc = 〈〈fKσ; f†Kσ〉〉 can be
written in terms of the Hubbard operators as

Gc(K, z) =
∑
mn
m′n′

FKσ
mnF

Kσ
n′m′〈〈Xmn;Xm′n′〉〉z. (24)
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Within the NCA, the correlation function on the right-
hand side of (24) can be written as

〈〈Xmn;Xm′n′〉〉ω =
1
Z̄

+∞∫
−∞

dεe−βε(ρn′m(ε)R̂nm′(ε+ ω)

− ρnm′(ε)R̂?n′m(ε− ω)). (25)

Here ρnm is the spectral density of the resolvents, ρnm =

− 1
π Im R̂nm(ω) and Z̄ = Tr

∞∫
−∞

dεe−βερ̂(ε) is the cluster

partition function.

6 Results

The DCA enables us to include short-ranged nonlocal dy-
namical correlations neglected in the DMFA. The main
goal of this section will be to show that this is indeed
the case and to present some systematics on how these
nonlocal correlations evolve and in what way their in-
fluence depends on system parameters like filling and
band structure. To this end we present results for the
Hubbard model (1) on a square lattice in two dimen-
sions. For nearest-neighbor hopping the dispersion is εk =
−2t(coskx + cos ky), i.e. the bandwidth of the noninter-
acting system W = 8t. Calculations were performed for
a 1× 1 cluster (Nc = 1), which is equivalent to a DMFA
calculation, and for a 2 × 2 cluster (Nc = 4). A compar-
ison of the results for both cluster sizes is used to study
the effect of nonlocal correlations present in the Nc = 4,
but neglected in the Nc = 1 calculation.

The total number of cluster eigenstates scales with
the cluster size Nc like 4Nc. The large number of eigen-
states (256) for the 2 × 2 cluster results in an expensive
numerical calculation. The complexity of the problem can
be reduced by taking into account the symmetries of the
cluster Hamiltonian (13). Since our studies are restricted
to the paramagnetic phase we can drop the spin index due
to the SU(2) symmetry of the cluster Hamiltonian (13). A
further reduction in complexity can be achieved by using
the point-group symmetry of the cluster. However, this
depends strongly on the choice of the cluster momenta K
within the first Brillouin zone. A priori, there is no re-
striction in the choice of the cluster momenta K within
the first Brillouin-zone, since in the derivation of the DCA
algorithm no special assertion about the cluster K points
was made. One e.g. could choose all K momenta to lie on
the Fermi surface. However, to identify eigenstates which
are degenerate due to the geometric symmetry, one has
to classify the eigenstates according to the cluster mo-
menta K. Since the cluster Hamiltonian (13) conserves
the cluster momentum, its many-particle eigenstates can
be classified according to their total momentum, which is
just the sum of the momenta of the participating one par-
ticle states. This approach restricts the freedom in choos-
ing the cluster momenta K to exactly one possibility. The
only set of cluster momenta K which form a group under
addition is Kαl = lπ, where l = 0, 1 and α = x or y. This

set corresponds to periodic boundary conditions for the
cluster in real space. With this choice of the cluster mo-
menta we are able to classify the eigenstates according to
their total particle number, total momentum, total spin
and their z-component of the spin. The degeneracy in the
cluster momentum points (0, π) and (π, 0) and the spin
symmetry finally lead to an effective number of 123 non-
degenerate eigenstates which have to be considered. Then
effectively only resolvents with different energies occur in
our calculations.

The remaining numerical task of calculating the cou-
pled equations (22, 23) self-consistently becomes formi-
dable as the cluster size increases. Although the study of
larger cluster sizes is in-principle possible [33], presently
this restricts our calculations to a cluster size of Nc = 4.
Also the evaluation of two-particle correlation functions
is formally possible, but the associated numerical effort
scales much worse with the cluster size Nc than calcula-
tions on the one particle level. Hence our calculations are
currently limited to one-particle Green functions.

We will present results for local single-particle spectra
as well as for the bandstructure. Since within the DCA
we calculate the self-energy at the selected momenta K
only, we need to perform a bilinear interpolation of the
self energy between the cluster momenta K to calculate
nonlocal spectra. We also show results for the self-energy
at the Fermi-surface. The shape of the Fermi-surface is
not a priori clear. In order to evaluate the Fermi surface
we take the bilinear interpolated self-energy and calculate
the occupation n(k) in momentum space along various
directions in the Brillouin zone. The maximum value of
|dn(k)/dk| along these directions then marks the Fermi-
surface and we get the self-energy at the Fermi surface
from the interpolated form.

In the following we will concentrate at first on a generic
set of values for the temperature T and Coulomb param-
eter U , namely T = W/15 and U = W/2. These values
for U and W assure that for the half filled case the sys-
tem is metallic and far from the Mott-Hubbard transition,
which is expected to occur at values U ≈ W . This choice
allows us to directly compare the properties of the ex-
pected metallic phases at and off half filling. The equally
interesting question, of how the Mott-Hubbard transition
at half filling will be affected by nonlocal correlations is
left out for the time being and will be the subject of a
forthcoming publication.

Figure 6 shows the density of states for both the 1× 1
and 2× 2 clusters for a doping of δ = 15%. Both spectra
display qualitatively similar features, namely the typical
Hubbard bands and an enhanced density of states at the
Fermi level ω = 0. For both cluster sizes the imaginary
part of the corresponding self energies shows a parabolic
minimum at the Fermi level as expected for a Fermi liq-
uid, where −ImΣ(ω)|ω→0 ∝ ω2 + πT 2. In the case of
the 2× 2 cluster the self energy at the Fermi wave vector
Σ̄(kF, ω) is obtained from the above mentioned bilinear
interpolation. Here kF lies along the diagonal from (0, 0)
to (π, π); however, for this set of parameters the self en-
ergy on the Fermi surface is almost isotropic and does
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Fig. 6. Local density of states for the 15% doped 1×1 (Nc = 1)
and 2×2 (Nc = 4) cluster at fixed temperature T = W/15 and
interaction U = 0.5W . Inset: Imaginary part of the correspond-
ing self energies in a narrow region around ω = 0.

not change its qualitative behavior as a function of the
wave vector on the Fermi surface. The influence of non-
local short-ranged dynamical correlations is visible in the
2× 2 cluster calculation only in a slightly enhanced scat-
tering rate at the Fermi level and therefore in a slightly
reduced density of states as compared to the 1× 1 result.
The additional structures on top of the Hubbard bands
can be traced back to the complex multiplet structure of
the cluster. However, the qualitative physics remains un-
changed by increasing the cluster size. This observation is
consistent with the fact that at such strong doping anti-
ferromagnetic fluctuations have practically died out and
should thus show no significant influence on the physics
of the system. The appearance of the quasi-particle res-
onance at low enough temperatures is well-known in the
case of the 1 × 1 cluster (DMFA): There it was shown
that the evolution of this quasi-particle resonance with de-
creasing temperature is accompanied by a reduction of the
effective local magnetic moment [9,32]. This interplay of
both effects is a fingerprint of the Kondo effect occurring
in the single impurity Anderson model, which underlies
the DMFA. Our results thus suggest that for the lattice
system the physics is quite similar and the quasi-particle
resonance at the Fermi level reflects Kondo like physics. It
is important to note that this means that the Kondo like
behavior in the Hubbard model is, at least for moderately
to strongly doped systems, a real feature of the model and
not an artifact of the limit of large dimensions.

For weakly doped or half filled systems, short-ranged
antiferromagnetic spin fluctuations will be present and
strong even at temperatures well above a magnetic tran-
sition. One thus expects that physics of the system
will be strongly influenced and may even develop non-
Fermi-liquid-like behavior. Since these fluctuations will be
strongest in the extreme case of half filling, we will con-
sider this case next. Figure 7 shows the results for both
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Fig. 7. Local density of states for the 1 × 1 (Nc = 1) and
2× 2 (Nc = 4) cluster at fixed temperature T = W/15, inter-
action U = 0.5W and half filling. Inset: Imaginary part of the
corresponding self energies in a narrow region around ω = 0.

cluster sizes with the same parameters as in Figure 6 but
at half filling. Whereas the 1×1 cluster result displays the
same features as in the doped case – enhanced density of
states at the Fermi level accompanied by a parabolic min-
imum in the imaginary part of the self energy – the spec-
trum of the 2×2 cluster calculation is completely different
from the doped case: Instead of forming a quasi-particle
resonance as in the DMFA, the density of states devel-
ops a pseudogap at zero frequency and the corresponding
imaginary part of the self energy which is again almost
isotropic displays a strongly enhanced scattering rate at
the Fermi energy. This surprising and interesting behav-
ior has two possible explanations. The first and physically
most appealing one is that short-ranged antiferromagnetic
fluctuations do indeed drive the system from a Fermi liq-
uid into a non Fermi liquid at temperatures high compared
to the Néel temperature. Note that the underlying mech-
anism is very similar to the interpretation of the pseudo-
gaps observed in the high-Tc compounds well above Tc.
The second interpretation is that the nonlocal corrections
yield a reduction in the critical value Uc at which the
Mott-Hubbard metal-insulator transition occurs.

A contour-plot of the spectral density A(k, ω) ob-
tained with the bilinear interpolation scheme discussed
earlier along the main symmetry directions in the Bril-
louin zone is shown in Figure 8. The dark shading marks
regions with high spectral density. The open symbols in
Figure 8 represent the positions of the most pronounced
local maxima of A(k, ω) and can be viewed as effective
band structure of the 2D Hubbard model for the set of
parameters under consideration. Compared to the band-
structure of the noninteracting system (illustrated by the
solid line) the interactions have various effects on the spec-
trum. The band of the noninteracting system splits into
two separated bands above and below the Fermi-energy.
Note that the spectral density corresponding to the nearly
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Fig. 8. Contour-plot of the spectral density for the 2×2 cluster
calculation along the main symmetry directions as indicated in
the inset for the same parameters as in Figure 7. The dark color
marks regions with high spectral density. The open symbols
indicate the maxima of the spectral function. The solid line
marks the dispersion for the noninteracting system.
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Fig. 9. Spectral density at the points Γ and M for the same pa-
rameters as in Figures 7 and 8. Note the occurrence of shadow
structures with small spectral weight in addition to the main
structures.

dispersionless features of the two bands is very low and
comparatively broad in the regions without states of the
noninteracting system. We again notice the opening of
the pseudogap at the Fermi-energy which is most pro-
nounced at the X-point (π/2, π/2). But in addition to
these effects we now can resolve additional incoherent
background structures at the points Γ at E(k) ≈ 1 and
M at E(k) ≈ −1. These additional states are just shifted
by the wave vector Q = (π, π) with respect to the main
bandstructure. In order to better resolve these structures
we show the corresponding spectral density at the points
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Fig. 10. Local density of states for the 2×2 (Nc = 4) cluster at
fixed temperature T = W/15, interaction U = 0.5W and half
filling for various values of the next nearest neighbor hopping
integral t′.

Γ and M in Figure 9. In addition to the main structure
at ω < 0 for the point Γ (ω > 0 for M) we notice satel-
lites at ω > 0 for Γ (ω < 0 for M) with small spectral
weight. These new states are absent in the non-interacting
system as well as in the DMFA and result from the nonlo-
cal antiferromagnetic correlations. Even in the paramag-
netic phase the short-ranged antiferromagnetic spin fluc-
tuations are sufficient to produce this indication of the
ordered phase. Such a precursor effect of the antiferro-
magnetic long range order can for example be seen in the
cuprates [11] in Fermi-surface measurements. The obser-
vation of these spin-fluctuation-induced shadow states ac-
companied by an opening of a pseudogap strongly sup-
ports the first suggested scenario of the antiferromagnetic
spin fluctuations driving the system to a non Fermi liquid.

To gain more insight in the nature of the pseudogap
and elucidate the physics of the observed non Fermi liq-
uid behavior we added a next nearest neighbor hopping
t′ to the hopping integrals tij in the Hamiltonian (1).
The dispersion then becomes εk = −2t(cos kx + cos ky) +
4t′ cos kx cos ky and the Fermi surface is no longer nested
because εk+Q 6= −εk for the nesting vector Q = (π, π). By
including t′ we can thus frustrate the lattice and gradually
suppress antiferromagnetic spin fluctuations. On the other
hand, since we keep the non-interacting bandwidth W and
therefore the ratio U/W fixed when including the t′, we do
not expect this change to affect the Mott-Hubbard tran-
sition very drastically. Therefore, if the pseudogap is a
precursor of the Mott-Hubbard transition we do not ex-
pect it to be influenced dramatically when we increase t′.
Figure 10 shows the behavior of the local density of states
as the next nearest neighbor hopping t′ and therefore the
lattice frustration increases. First note that we lose par-
ticle hole symmetry for t′ 6= 0 because the bare density
of states is no longer particle hole symmetric. Obviously,
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Fig. 11. Coarse grained spectral function of the cells around
K = (0, 0) and (π, 0) for Nc = 4 and a doping concentration
δ = 10%, temperature T = W/30 and hopping integrals t =
0.25 and t′ = −0.35t. The inset shows the Fermi surface of the
corresponding non-interacting system (solid line), the nested
k-points (dot-dashed line) and the boundaries of the coarse
graining cells (dashed lines).

as t′ increases, the pronounced pseudogap for t′ = 0 gets
gradually reduced. However, even for the maximum value
|t′| = |t| we still see a small dip at zero frequency, which
possibly can be attributed to the fact that even for a
completely frustrated system extreme short-ranged fluc-
tuations will be present, which are however strongly re-
duced in magnitude as compared to the nested situation.
We thus conclude that indeed the nonlocal, short-ranged
antiferromagnetic spin correlations are responsible for the
development of the pseudogap at the Fermi energy in the
Hubbard model with t′ = 0 at half filling, which in fact
must be viewed as precursor of an antiferromagnetically
ordered state at much lower temperatures. One highly in-
teresting question to be addressed in our future work will
be of what precise nature this non Fermi liquid state is
and how it might be related to several phenomenologi-
cal scenarios proposed for the two-dimensional Hubbard
model.

As a further illustration of the ability of the DCA to
include nonlocal correlations, we show results for a larger
interaction strength U = 1.3W and lower temperature
T = W/30. For the hopping integrals we chose t = 0.25
and t′ = −0.35t to imitate the measured Fermi sur-
face of underdoped cuprates in the non-interacting system
[12,34]. Since we expect the spectra to display sharp fea-
tures at this low temperature, we refrain from perform-
ing a bilinear interpolation of the self-energy and show
results for the coarse grained spectra only. Figure 11
shows the coarse grained spectral functions Ā(K, ω) =
−1/πImḠ(K, ω) at K = (0, 0) and K = (π, 0) for a
doping δ = 10% and temperature T = W/30 in a nar-
row region around the Fermi energy. First we notice a
strong anisotropy in the coarse grained functions. For the

states located in the cell around K = (0, 0) the spectrum
is peaked at the Fermi-energy and only slightly broad-
ened due to the finite temperature as characteristic for
a Fermi liquid. The situation is completely different in
the cell around the point (π, 0). All the spectral weight
is transfered to broad features at higher energies, which
represents the incoherent part of the spectrum. Therefore
a pseudogap opens at the Fermi-energy.

Our results are qualitatively in agreement with cal-
culations [34] for the spin fluctuation model, in which the
magnetic interaction between the quasiparticles is held re-
sponsible for the anomalous normal state properties of the
cuprates. This method provides a direct explanation for
the anisotropic behavior of the spectral density. Within
this approach the electron-electron interaction is medi-
ated by an empirically determined dynamical spin sus-
ceptibility. Since this susceptibility is strongly peaked at
the antiferromagnetic wave vector Q = (π, π), one has
to distinguish two different regions of the Fermi surface:
Quasiparticles in regions of the Fermi surface which can be
connected by the wave vector Q are called hot quasiparti-
cles because they feel the full effects of the spin fluctuation
induced interaction because of nesting. This is illustrated
in the inset of Figure 11, which displays the corresponding
non-interacting Fermi surface for the chosen parameters.
One can notice that the hot quasiparticles are located in
the cell around (π, 0) and therefore represented by the
coarse grained spectral function at K = (π, 0). On the
other hand the cold quasiparticles located along the diag-
onal couple only weakly to the spin excitations, since the
Fermi surface in this region is not nested. This part of the
Fermi surface falls in the cell around K = (0, 0) and there-
fore the spectrum in this cell displays Fermi-liquid like be-
havior. The spectrum around (π, 0) on the other hand gets
strongly renormalized due to the strong coupling to the
spin excitations. This phenomenological picture provides
a direct explanation of our results qualitatively consistent
with the calculations for the spin fluctuation model.

Calculations for larger doping (δ = 20%) (not shown
here) show that this effect of the anisotropic behavior of
the spectrum and the opening of the pseudogap in the
hot regions disappears. This observation can also be un-
derstood within the picture of the spin fluctuation induced
correlations, since the antiferromagnetic spin fluctuations
become strongly suppressed upon doping.

7 Conclusion

We motivated the recently introduced dynamical cluster
approximation (DCA) by its microscopic definition based
on a choice for the Laue function. It partially restores the
momentum conservation at the internal vertices which was
relinquished in the dynamical mean field approximation
(DMFA). The resulting theory maps the lattice problem
onto a self-consistently embedded periodic cluster of size
Nc. The DCA is a fully causal and systematic approxima-
tion to the full lattice problem with corrections O(1/Nc)
in two dimensions. We develop a Non Crossing Approxi-
mation (NCA) to solve the effective cluster problem which
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is a systematic Φ-derivable approximation to the cluster
problem with corrections O(1/N3

c ).
We applied our DCA-NCA formalism to the Hubbard

model on a square lattice and calculated the single-particle
properties when Nc = 1 and Nc = 4. For a highly doped
system, with δ = 15% and a Hubbard U of half the bare
bandwidth, nonlocal correlations present when Nc = 4
turned out to be unimportant and both cluster sizes yield
qualitatively similar results with an enhanced density of
states and a minimum in the scattering rate at the Fermi
energy. Thus, independent of the cluster size, the highly
doped system showed Fermi liquid character. However,
as the doping decreases, the non-local correlations be-
come far more important, and the half-filled system dis-
plays strikingly different results for the two cluster sizes.
Whereas the Nc = 1 cluster result still displays Fermi liq-
uid like behavior, the Nc = 4 cluster calculation shows the
opening of a pseudogap in the density of states and there-
fore non Fermi liquid character. Calculations with a next
nearest neighbor hopping t′ show evidence that this pseu-
dogap is due to antiferromagnetic spin correlations and
therefore a single particle precursor of the antiferromag-
netic phase transition. The pseudogap persists upon weak
doping in qualitative agreement with the spin fluctuation
model for the cuprates.

Hence our calculations have shown that for the weakly
doped system, nonlocal correlations play an important
role on the single particle properties and change the char-
acter of the system from a Fermi liquid to a non Fermi
liquid. These non-local features are missing in the DMFA
spectra, but appear in the DCA spectra as soon as the
cluster size exceeds one.
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Appendix A: On the analyticity of Γ (K, z)

The following proof of the analyticity of Γ (K, z) is based
on the derivation of an analytic expression for the cluster
Green’s function

Ḡ(K, z) =
Nc

N

∑
k′

1
z + µ− εK+k′ −Σc(K, z)

·

The self-energy function Σc(K, z) is assumed to be an-
alytic in the upper and lower half of the complex plane
with sign (ImΣc(K, z)) = −sign Im(z). Our proof employs
standard methods of projection technique [35,36]. To this
end we abbreviate ξK = z+µ−Σc(K, z), Im(ξK) > 0 and
introduce a N/Nc dimensional set of linearly independent
vectors |k′〉 and a linear Hermitian operatorHK satisfying

HK|k′〉 = εK+k′ |k′〉 and
∑
k′
|k′〉〈k′| = 1. There obviously

exists another vector |f0〉 with 〈k′|f0〉 =
√
Nc/N for all

k′. With these conventions we may write

Ḡ(K, z) = 〈f0|
1

ξK −HK
|f0〉.

The resolvent operator may be trivially rewritten as

1
ξK −HK

=
1
ξK

+
1
ξK
HK

1
ξK −HK

and thus

〈f0|
1

ξK −HK
|f0〉 =

1
ξK

+
1
ξK
〈f0|HK

1
ξK −HK

|f0〉,

where we made use of 〈f0|f0〉 = 1. We now define two
projection operators P = |f0〉〈f0| and Q = 1 − P and
insert 1 = P +Q after HK in the second term, leading to

〈f0|
1

ξK−HK
|f0〉=

1
ξK

+
1
ξK
〈f0|HK|f0〉〈f0|

1
ξK−HK

|f0〉

+
1
ξK
〈f0|HKQ

1
ξK −HK

|f0〉.

Since furthermore

1
ξK −HK

=
1

ξK −HKQ−HKP
=

1
ξK −HKQ

+
1

ξK −HKQ
HKP

1
ξK −HK

and due to Q|f0〉 = 0

Q
1

ξK −HKQ
|f0〉 = 0

we finally obtain

〈f0|
1

ξK −HK
|f0〉 =

1
ξK

+
1
ξK
〈f0|HK|f0〉〈f0|

1
ξK −HK

|f0〉

+
1
ξK
〈f0|HKQ

1
ξK −HKQ

HK|f0〉〈f0|
1

ξK −HK
|f0〉.

With Q2 = Q we may rewrite

HKQ
1

ξK −HKQ
HK = HKQ

1
ξK −QHKQ

QHK.

With the abbreviations

Γ (K, z) = 〈f0|HKQ
1

ξK −QHKQ
QHK|f0〉

and
ε̄K = 〈f0|HK|f0〉 =

Nc

N

∑
k′

εK+k′

the final result is

Ḡ(K, z) =
1

ξK − ε̄K − Γ (K, z)
· (A.1)
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Note however that the averaging procedure replaces the
kinetic energy of the lattice εk by a quantity coarse grained
onto the cluster.

We are now left with the proof that sign Im(Γ (K, z)) =
−sign Im(z) is fulfilled. This however can easily be done
by repeating the above step for the new vector |f1〉 =
QHK|f0〉 = HK|f0〉 − ε̄K|f0〉, 〈f0|f1〉 = 0, appearing in
the definition of Γ (K, z). Note that this is simply the first
step in a Gram-Schmidt process to generate an orthogonal
set of vectors. With H̃K = QHKQ it follows

Γ (K, z) =
b20

ξK − a1 − Γ̄ (K, z)
, (A.2)

where

b20 =
〈f1|f1〉
〈f0|f0〉

≥ 0

a1 =
〈f1|HK|f1〉
〈f1|f1〉

Γ̄ (K, z) =
1

〈f1|f1〉
〈f1|H̃KQ̃

1
ξK − Q̃H̃KQ̃

Q̃H̃K|f1〉,

where Q̃ now projects onto the subspace orthogonal to
|f0〉 and |f1〉. It is clear from the above result that this
procedure can be repeated, leading to a sequence of mu-
tually orthogonal vectors |fn〉 = HK|fn−1〉−an−1|fn−1〉−
b2n−2|fn−2〉 and a continued fraction representation of
Ḡ(K, z) with coefficients

b2n−1 =
〈fn|fn〉

〈fn−1|fn−1〉
≥ 0

an =
〈fn|HK|fn〉
〈fn|fn〉

for n ≥ 1. It is important to emphasize that the re-
sulting coefficients b2n−1 are non-negative by construction.
This however immediately leads to the desired relation
sign Imm(Γ (K, z)) = −sign Imm(z) and hence to the
causality of Γ (K, z).

Appendix B: Proof of Γ (K) ∼ O(1/Nc)

The following proof is based on the definitions (10, 11)
of the coarse grained Green function Ḡ. With g−1(K) =
ω − ε̄K − Σ̄(K) we can rewrite Ḡ in the form

Ḡ(K) =
Nc

N

∑
k̃

G(K + k̃)

=
1

g−1(K)− Γ (K)
, (B.1)

where we dropped the frequency argument for conve-
nience. By defining

tK+k̃ = εK+k̃ − ε̄K, (B.2)

such that Nc/N
∑

k̃ tK+k̃ = 0 we can make use of the
exact relation

G(K + k̃) = g(K) + g(K)tK+k̃G(K + k̃). (B.3)

By inserting (B.3) in (B.1) it is straightforward to show
that Γ (K) is given by

Γ (K) =

Nc

N

∑
k̃

t2
K+k̃

G(K + k̃)

1 +
Nc

N

∑
k̃

tK+k̃G(K + k̃)
· (B.4)

By performing a Taylor series expansion of tK+k̃ around
the cluster points K it can be seen that tK+k̃ is of or-

der O(∆k), where ∆k = 2π/N1/D
c . Therefore we see from

equation (B.4) that Γ (K) is of order O((∆k)2) and for
two dimensions we finally get the result

Γ (K) ∼ O(1/Nc). (B.5)
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