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Magnetic susceptibility of the double-exchange model
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A unified treatment is provided for the local-moment, electronic, and cross terms in the magnetic suscepti-
bility x of the double-exchange model within the dynamical mean-field theory. All contributions diverge at the
same critical temperatureTC , which may be calculated analytically for largeJHS and a semi-circular density-
of-states. Close toTC , the Curie constant deviates significantly from the result expected for a local-moment
system.
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Over the past decade, itinerant theories of magnetism
the double-exchange~DE! models have become increasing
important to address the complex behavior of oxide mat
als. One of the most powerful tools for studying itinera
models is dynamical mean-field theory~DMFT!,1 which may
be considered as the generalization of conventional me
field theory for itinerant rather than local-moment system
Yet despite the great success of DMFT in explaining
physics of the DE model,2–4, a complete theory for the mag
netic susceptibility is lacking. While theories of th
local-moment5 and electronic6 contributions to the suscept
bility have recently been used to evaluate the Curie temp
ture TC, no such theory exists for the cross terms and
total susceptibilityx has never been explicitly evaluated.
this paper, we place all of the contributions to the susce
bility on an equal footing and calculatex within a matrix
formulation. For a highly-correlated system with larg
Hund’s coupling, the Curie constant deviates from the re
expected for a local-moment system.

The Hamiltonian of the DE model is

H52t(
^ i , j &

~cia
† cj a1cj a

† cia!22JH(
i

si•Si , ~1!

wherecia
† andcia are the creation and destruction operat

for an electron with spina at sitei, si5(1/2)cia
† sW abcib is the

electronic spin,Si5Sm̂i is the spin of the local moment, an
JH is the Hund’s coupling between the local and electro
spins. As is customary, the local moments are treated cla
cally. However, we shall delay taking the limit of largeJHS
or specializing to a particular case for the noninteract
density-of-states~DOS! r0(e) so that our general results ap
ply to both hypercubic~Gaussian DOS! and Bethe~semicir-
cular DOS! lattices.

Within the DE model, the local moments interact throu
the hopping of electrons between neighboring sites. Du
the close connection between electron conduction and m
netic order, the double-exchange model qualitatively
plains the metal-insulator transition observed in mangan
like La12xSrxMnO3 when x'0.3.3 When JHS exceeds a
critical value proportional to the band widthW,7 the interact-
ing DOS contains two bands: a lower band where the sp
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of the electrons and local-moments at each site are par
and an upper band where they are antiparallel. So the sys
is an insulator when the band fillingp512x ~number of
electrons per site! equals 1 and the lower band is complete
full.

In imaginary time, the full magnetic susceptibility of th
DE model is given by

x~q,ivm!ab5E
0

b

dteivmt(
i

e2 iq•(Ri2R1)

3^TtStot,i
a ~t!Stot,1

b ~0!&, ~2!

where vm52mpT, Tt is the time-ordering operator, an
Stot,i5Si1si is the total spin at sitei. The isotropy of the
susceptibilityx(q,ivm)ab5x(q,ivm)dab aboveTC is used
to seta5b5z. It is apparent thatx(q,ivm) contains three
sets of terms: the local-moment susceptibility, the electro
susceptibility, and the cross terms. Of course, our goal is
evaluate the elastic susceptibilityx5 limq→0,v→0x(q,ivm
→v1 i«).

Since the electronic susceptibility contains two Fermi
sums, the cross terms one sum, and the local-moment
no sum, their contributions to the full susceptibility may b
written as

xss~q,ivm!5E
0

b

dteivmt(
i

e2 iq•(Ri2R1)^Ttsi
z~t!s1

z~0!&

5(
l ,n

x ln
ss~q,ivm!, ~3!

xSs~q,ivm!5E
0

b

dteivmt(
i

e2 iq•(Ri2R1)^TtSi
z~t!s1

z~0!&

5(
l

x l
Ss~q,ivm!, ~4!
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xsS~q,ivm!5E
0

b

dteivmt(
i

e2 iq•(Ri2R1)^Ttsi
z~t!S1

z~0!&

5(
l

x l
sS~q,ivm!, ~5!

xSS~q,ivm!5E
0

b

dteivmt(
i

e2 iq•(Ri2R1)^TtSi
z~t!S1

z~0!&,

~6!

where, for example,x ln
ss(q,ivm) is a matrix with indicesl

and n denoting the internal Fermi Matsubara frequenc
n l ,n5(2nl ,n11)pT. Because the local moments are clas
cal quantities which commute withH, Si

z(t)5Si
z and

xSs(q,ivm)5xsS(q,ivm). The full susceptibilityx(q,ivm)
may be evaluated by summing over all matrix elements

x~q,ivm!5S xSS~q,ivm! xSs~q,ivm!

xsS~q,ivm! xss~q,ivm! D . ~7!

If the Fermi frequencies are restricted to valuesun l ,nu
<(2nx21)pT, thenxss is a 2nx32nx matrix, xSs andxsS

are 2nx-dimensional row and column vectors, respective
and the full susceptibility matrixx has dimensions (2nx

11)3(2nx11). We shall take the limitnx→` before pre-
senting our final results.

For a fixed vm , x(q,ivm) obeys the Bethe-Salpete
equation8

x~q,ivm!5x (0)~q,ivm!1x (0)~q,ivm!G~ ivm!x~q,ivm!,
~8!

whereG( ivm) is the vertex function andx (0)(q,ivm) is the
bare susceptibility. Within DMFT, momentum conservati
at the internal vertices of irreducible graphs is disregarded
that internal Green’s functions are replaced by their lo
values. Consequently,G( ivm) is independent of moment
and may be evaluated from an identical Bethe-Salpeter e
tion wherex(q,ivm) andx (0)(q,ivm) are replaced bylocal
susceptibilities at site 1, obtained from theq-dependent
susceptibilities by summing over allq. In other words,
G ( ivm ) 5 x (0)21 ( q,ivm)2x21 (q,ivm) 5 x loc(0)21 ( ivm)
2x loc21( ivm). Like the full susceptibility matrixx, G also
has dimensions (2nx11)3(2nx11). Because we are inter
ested only in the elastic susceptibility, we shall hencefo
takevm50 andq50.

To calculate the bare terms in the susceptibility, the el
tron Green’s function and local moments are explicitly d
coupled. Sincê Si&50, it follows that xsS(0)5xSs(0)50.
Using the relation̂ (Si

z)2&5S2/3, we easily obtain the loca
susceptibility matrices

x loc(0)5S S2/3T 0

0 xssloc(0)D , ~9!

x loc5S S2/3T Sg/3

SgT/3 xsslocD , ~10!
10040
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wherexSsloc5(S/3)( lgl or

gl52
3

2SE0

b

dtein lt^Ttc1b~t!c1a
† ~0!S1

z&sab
z . ~11!

With the additional definitionsk512TgTxssloc21g/3 and
d l5T(ngnxnl

ssloc21 , it is straightforward to show that the
vertex function has matrix elementsGSS5(3T/S2)(1
21/k), G l

Ss5G l
sS5d l /Sk, and G ln

ss5x ln
ssloc(0)212x ln

ssloc21

2d ldn/3Tk.
Fermion lines in the bare,q50 susceptibility do not con-

nect local moments on different sites so that

x (0)~q50!5S S2/3T 0

0 xss(0)~q50!D . ~12!

Consequently, the inverse of the full,q50 susceptibility ma-
trix is

x21~q50!5S 3T/kS2 2d/Sk

2dT/Sk xel21~q50!1d d/3Tk D ,

~13!

where

xel21~q50!5xss(0)21~q50!2xssloc(0)211xssloc21

~14!

is the inverse of theq50 electronic susceptibility matrix
evaluated from itsown Bethe-Salpeter equation.6

The condition thatx→` at TC is equivalent to the con-
dition Det„x21(q50)…→0. Using Eq.~13! for x21(q50),
we derive

Det„x21~q50!…5
3T

kS2
Det„xel21~q50!…. ~15!

Since each matrix element ofx(q50) is inversely propor-
tional to Det„x21(q50)…, all contributions to the suscepti
bility diverge at the same critical temperature. It also follow
that the electronic susceptibility drives the divergences of
local-moment and cross terms in the full susceptibility!

To make this analysis more concrete, we now specia
to a Bethe lattice with noninteracting DOS given by t
semicircular form r0(e)5(8/pW2)AW2/42e2, where W
54tAz is the full band width. We also take the limitsJHS
@W and JHS@T so that the upper and lower bands in t
interacting DOS are well separated and the mobile carr
are restricted to one of those two bands. Whenun l u!JHS, it
is easy to show thatgl→sp / f l , wheresp5sgn(p21) de-
pends on whetherp is greater or less than 1 andf l5zl

1Azl
22W2/8 with zl5 in l1dm anddm5m2spJHS. Using

the local Green’s functions first derived by Furukawa2,3 for a
fixed directionm̂i of the Mn moment, the local electroni
susceptibility involves the average of two local Green’s fun
tions with respect tom̂i . It can then be shown that6

x ln
ssloc215

3

T H 2d ln f l
21

f l f n

2nx21J . ~16!
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Hence,k521/(2nx21), d l53 f lsp /(2nx21), and the to-
tal susceptibility is given by

x5
1

3T

Se f f~T!2

12F1~T!
1

8T

W2
F1~T!, ~17!

Se f f~T!5S1
1

2
2

1

2
up21u1spF2~T!. ~18!

Here,F1(T) andF2(T) are defined by the Fermion sums

F1~T!5(
l

Rl
2

Rl
223W2/32

, ~19!

F2~T!5T(
l

Rl
2

~Rl
223W2/32! f l

, ~20!

whereRl5 f l /22zl and the restriction on the Fermi freque
ciesn l has been lifted. SincexSS}S2, xsS}S, andxss}S0, it
is simple to separate the contributions of the local mome
cross terms, and electrons to the full susceptibility.

Each of these contributions diverges asF1(T)→1, soTC
is solved from the condition

(
l

Rl
2

Rl
223W2/32

51. ~21!

Also in the limit of largeJHS, the band filling is

p511
sp

2
12T(

l
ReH 1

f l
J . ~22!

These results correct an error by Furukawa9 but agree in the
limit TC!W with Auslender and Kogan.5 The resultingTC is
symmetric aboutp50.5 andp51, and peaks atp50.5 with
TC'0.022W, and vanishes atp50 andp51. Whenp51,
TC vanishes because electrons are unable to hop to neigh
ing sites without incurring an enormous cost in Hund’s e
ergy. The final term in Eq.~17! for x is part of the electronic
susceptibility that does not diverge atTC. For a given tem-
perature, 8TF1(T)/W2'8TC/W2 peaks atp50.5 or 1.5,
when the number of mobile carriers is largest. Hence,
term is nothing but the Pauli susceptibility of the electrons
the limit of largeJHS.

Based on the mean-field~MF! theory10 of local moments
with spin S0, the expected Curie-Weiss~CW! result for the
magnetic susceptibility isx5C/(T2TC) with Curie con-
stantC5S0

2/3. Our result forx in Eq. ~17! deviates from the
MF prediction in two ways: both the effective spinSe f f(T)
and the denominatorT@12F1(T)# provide nontrivial correc-
tions to the Curie constant. We shall first discuss these
rections for generalS.

As implied by Eq.~18!, the effective spin of the couple
electronic and local-moment system equalsSe f f(T)5S0
1spF2(T) whereS05S11/22up21u/2 is the11 expected re-
sult for strong Hund’s coupling:S05S whenp50 and 2~no
electrons per site or two electrons with opposite spins
each site! andS05S11/2 for p51 or one electron per site
10040
s,

or-
-

is

r-

n

with spin parallel to that of the local moment. The differen
S02S is plotted versusp in the dashed lines of the inset t
Fig. 1. Evidently,spF2(T) provides a correction to the effec
tive spin due to strong electronic correlations. Evaluated
TC, F2(TC) vanishes whenp50 or 1 and also forp51/2. It
is negative for 0<p<1/2 or dm,0 and positive for 1/2
<p<1 ordm.0, reaching maximum or minimum values o
60.03 for p'0.85 or 0.15. The effective spinSe f f(TC) at
TC, given by the solid curve in the inset to Fig. 1, is slight
smaller thanS0 for 1/2,p,1 and slightly larger for 0,p
,1/2. AsT/W→`, F2(T)→0 andSe f f(T)→S0 so that the
expected value for the effective spin is restored. BothS0 and
Se f f(T) are symmetric aboutp51.

The susceptibility deviates from the MF result in anoth
respect. Linearized nearTC, the inverse local-moment sus
ceptibility may be written in the CW form: 1/xSS53T(1
2F1(T))/S2'3(T2TC)/aS2 with Curie constant C
5aS2/3. Of course, the MF theory of local-moment system
givesa51. But in the DE model, the interactions betwe
the local moments are mediated by highly-correlated e
trons and this identity fails. We have evaluateda by linear-
izing TF1(T) about TC. As shown in Fig. 1 for 0<p
<1/2, a<1 and approaches 1 only asp→0. The renormal-
ization factora deviates from unity by as much as 2.8
when p'0.13. So even in the limit of largeS, x differs
appreciably from the MF prediction for a local-moment sy
tem. However, the expected value for the Curie constan
recovered asT/W→` and xSS→S2/3T, the appropriate
limit for noninteracting spins. Also note that in the oppos
limit T!W assumed by Auslender and Kogan,5 the tempera-
ture dependence ofTF1(T) disappears anda→1.

These predictions are probably best applied to the man
nite La12xSrxMnO3 with x'1/3, which has a high Curie
temperature of 350 K and is believed to be well described
the simple DE model.3 In the temperature rangeTC<T
!W, our result for x21 may be linearized as 1/x'(T

FIG. 1. The renormalization factora versus band fillingp be-
tween 0 and 1/2. Symmetric results are obtained for 1/2<p<1.
Inset is the effective spinSe f f(T) evaluated atTC ~solid! or at high
temperaturesT@W ~dashed! versus band fillingp. Both sets of
results are for a semicircular DOS with largeJHS.
3-3
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2TC)/C, whereC5r CS0
2/3 andr C5a@Se f f(TC)/S0#2 renor-

malizes the Curie constant. Specializing to the caseS53/2,
r C is plotted versusp in Fig. 2. After an initial increase for
small p, r C falls below one with a minimum value of abou
0.941 whenp50.85. RewritingC5SC

2 /3 defines the Curie
spin SC5AaSe f f(TC)5Ar CS0, which is also plotted in Fig.
2 and is a monotonically increasing function of the electro
filling p. For a manganite withx51/3 or p52/3, the Curie
constant and Curie spin are, respectively, about 4.5%
2.4% smaller than predicted by MF theory for a loca
moment system with spinS051.833. Keep in mind, how-
ever, that our analysis neglects the quantum corrections
sociated with the finite size ofS.

FIG. 2. The renormalization factorr C ~left axis! and Curie spin
SC ~right axis!, which parametrize the linearized inverse susce
bility, for a system withS53/2. Also plotted in the dashed line i
S0 ~right axis!.
h,

.

10040
c
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Unfortunately, the most extensive susceptibility measu
ments are for the manganite La12xCaxMnO3 with x51/3,
which has a lower Curie temperature of 250 K and is not
well-described by the simple DE model. The measu
susceptibility12 betweenTC and 2.3TC is much more com-
plex than predicted, with a bulge just aboveTC and a ‘‘high-
temperature’’ limit ~above about 1.8TC) close to 3(T
2Q)/S0

2, whereQ'1.25TC. Our model cannot explain the
behavior in the critical regime very close toTC because
DMFT does not support long-range correlations. Moreov
magnetic polarons have a strong effect on the susceptib
up to about 1.8TC. Nonetheless, it would be interesting
quantitatively compare the predictions of our model with t
measured slope of 1/x in the linear regime between 1.8TC
and 2.3TC, which still falls within the low-temperatureT
!W range of our model.

To summarize, we have developed a unified treatmen
all terms in the magnetic susceptibility of the DE model. A
expected, the local-moment, electronic, and cross terms
diverge at the same critical temperature. For the case
Bethe lattice with largeJHS, we have evaluated the susce
tibility analytically and shown that the Curie constant is a
tered by electronic correlations close toTC. Our work has
also demonstrated that DMFT can be used to evaluate
contributions to the magnetic susceptibility of itinerant sy
tems in a systematic and compact fashion.
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