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Maximum entropy method of obtaining thermodynamic properties
from quantum Monte Carlo simulations

Carey Huscroft, Richard Gass, and Mark Jarrell
Physics Department, University of Cincinnati, Cincinnati, Ohio 45221-0011

~Received 10 June 1999!

We describe a method of obtaining thermodynamic properties of quantum systems using Bayesian inference
maximum entropy techniques. The method is applicable to energy values sampled at a discrete set of tempera-
tures from quantum Monte Carlo simulations. The internal energy and the specific heat of the system are easily
obtained as are errorbars on these quantities. The entropy and the free energy are also obtainable. No assump-
tions as to the specific functional form of the energy are made. The use ofa priori information, such as a sum
rule on the entropy, is built into the method. As a nontrivial example of the method, we obtain the specific heat
of the three-dimensional periodic Anderson model.
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I. INTRODUCTION

The problem of obtaining thermodynamic properties fro
quantum Monte Carlo~QMC! simulations is one of long-
standing interest.1 Although the internal energy, i.e., the e
pectation value of the Hamiltonian, is one of the easi
quantities to obtain via QMC, the free energy is almost i
possible to obtain directly in a simulation. Likewise, the sp
cific heat, i.e., the temperature derivative of the internal
ergy, is very difficult to obtain directly. Hence, one must tu
to indirect methods.

Several methods to obtain the thermodynamic proper
of model systems via QMC have been proposed, but all
fer from limitations of one sort or another. To a large exte
these stem from the use of a specific functional form to
the internal energy of the system. We propose a metho
obtain the internal energy, the specific heat, the entropy,
the free energy as a function of temperature via QMC wh
does not impose any functional form on these quantities
alleviates several other problems in the current methods.
technique relies on probability theory and maximum entro
to obtain themost probablethermodynamic functions con
sistent with the QMC data and prior knowledge, such a
sum rule on the system’s entropy.

In the remainder of this paper, Sec. II reviews curren
used techniques to obtain thermodynamic properties f
QMC, their limitations, and the desirable features of a te
nique. Sec. III contains a brief overview of our method
obtain thermodynamic quantities from QMC data. In S
IV, we review the theoretical underpinnings of the metho
maximum entropy. Section V sets forth the algorithmic d
tails of our method. In order to test our method, we apply
to a nontrivial problem—the three-dimensional~3D! periodic
Anderson model—in Sec. VI. Our summary is given in S
VII.

II. BACKGROUND

The free energy and its derivatives, including the spec
heat, provide experimentally relevant insight into a system
temperature evolution and phase transitions. Unfortunat
both direct and indirect QMC measurements of such qua
PRB 610163-1829/2000/61~14!/9300~7!/$15.00
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ties are notoriously difficult to make. To understand why,
discuss two methods for obtaining thermodynamic quanti
in this section.

Typically, one tries to obtain the thermodynamic prope
ties of a system by performing QMC simulations at vario
discrete temperatures, then fitting the resultant energy da
a functional form. Generally, this functional form is no
known, so a physically motivated form must be chosen. T
recipe is to fit the internal energyE(T) to a functional form,
which may then be differentiated explicitly to obtain the sp
cific heat

C~T!5
]E~T!

]T
. ~1!

From the specific heat, the entropyS(T) may be calculated
by integrating

S~T!5E
0

T

dT8
C~T8!

T8
. ~2!

Then, the free energyF may be obtained from the relation

F~T!5E~T!2TS~T!. ~3!

While apparently sound in principle, this prescription c
manifest several serious problems. For one, the derivativ
Eq. ~1! enhances the statistical uncertainty in the fit. At lo
temperatures the procedure is further complicated by the
vision by T in Eq. ~2!. Similar problems emerge at lowT
when the specific heat is evaluated directlyC5(^E2&
2^E&2)/T2. Thus, there is no guarantee that the total entro
obtained by this method

S`5E
0

`

dT
C~T!

T
~4!

will equal the total infinite-temperature entropy of the sy
tem. If not, then both the specific heatC(T) and the free-
energyF(T) may be unreliable.

One technique using this prescription is to fit QMC inte
nal energy data to a pair of functional forms, one for lo
temperature data and another for high-temperature da2
9300 ©2000 The American Physical Society
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PRB 61 9301MAXIMUM ENTROPY METHOD OF OBTAINING . . .
This method has been successfully applied, but it does h
several important drawbacks. First, separate functional fo
in the nature of polynomials are used for the low- and
high-temperature regions. These are chosen after viewing
data, based on the shape of theE(T) curve. Presumably, car
must be taken to avoid spurious features in the deriva
C(T) of the internal energyE(T) at the point where the two
polynomials are joined. While an analytic function such a
polynomial expansion is a reasonable choice for an inte
energy function on a finite-dimensional lattice, there is
guarantee that sufficient terms have been chosen for
polynomial and the most reliable test is a goodness of
Consequently, this technique requires a great deal of co
QMC data, especially in the neighborhood of a phase tra
tion, in order to insure that a reasonable goodness of fi
obtained.

Another recently proposed method to obtain thermo
namic properties from QMC data is to fit the internal ener
E(T) to a physically motivated functional form.3,4 In this
method, appropriate for a lattice simulation, the internal
ergy is fit to a sum of exponentials

E~T!5E01(
n

cne2nD/T. ~5!

The specific heat and the entropy are then obtained accor
to Eqs.~1! and ~2!, respectively.

One way to view the exponential functional form of th
method is to note that physically, one may expect differ
energy scales to become important as the temperatureT is
varied. At those energy scales, contributions to the inte
energyE(T) are effectively switched on. This is manifest
the fitting parameterD; at each temperature corresponding
the energy scalenD for each of then terms in the expansion
another term in the expansion contributes to the energy.
amplitude of this contribution is set by the related coefficie
cn .

This technique has been successfully applied. It ha
least one major advantage over the polynomial method
that it does not splice together two functions for differe
temperature regimes. Nevertheless, it also relies on a g
ness of fit test to determine whether a reasonable numbe
fitting parameters have been chosen. Since it uses a ga
form for the internal energy, it is not suitable for systems
the thermodynamic limit, as may be studied using dynam
mean field techniques. Furthermore, both the polynomial
the exponential fitting schemes are inaccurate when the n
ber of fitting parameters is small and become ill posed as
number of fitting parameters become large. Thus it is di
cult to determine how many coefficients to use.

We now present a method that overcomes these dr
backs and possible pitfalls. Our method incorporates a
tional a priori information that the energyE(T) increases
monotonically with the temperatureT so that the specific
heat is positive definite,C(T)>0, and in the form of the
infinite temperature entropyS` . Thus it requires less QMC
data than either of the functional fitting methods. It perfor
a search for the most probable energyE(T) given the data
and prior information, and therefore removes the question
determining the number of fitting parameters appearing w
ve
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using the other methods. It is applicable to both fini
dimensional lattice QMC as well as QMC from nongapp
systems.

III. OVERVIEW OF THE TECHNIQUE

We start with the observation that given the appropri
distribution functionK(b,v) relating the energyv to the
inverse temperatureb51/T, one can write the internal en
ergy as a weighted integral with a positive-definite weig
r(v)

E~T!52E
2`

`

dvvK~b,v!r~v!. ~6!

The specific heat is obtained by differentiating

C~T!5
]E~T!

]T
52E

2`

`

dvv
]K~b,v!

]T
r~v!. ~7!

One may then use Eqs.~2! and~3! to obtain the entropy and
the free energy, respectively.

The entire problem of obtaining the thermodynamic pro
erties of the system then reduces to that of numerically
verting the integral equation Eq.~6! for the weightr(v)
given noisy QMC data for the internal energyE(T). This is
a well-known problem for which there exists a we
developed, powerful technique, the maximum entro
method~MEM!.5 ~The MEM is discussed in the next se
tion.! The kernelK(b,v) corresponds to a blurring functio
which acts on a spectrumr(v). Typical blurring functions
for a quantum system are the Bose-Einstein and the Fe
distribution functions, as discussed in detail in Sec. IV.6

To understand the fundamental difference between o
methods and our MEM technique, it is important to und
stand the questions which the two methods answer.
other methods rely on fitting noisy data to a functional for
They start with a physically motivated functional form fo
E(T) and seek to find the most likely curve of the infinite
many curves which optimize some likelihood function su
as x2. In reality, the functional form of the energy is no
known. What is known is that finite temperatures spread
excitation spectrum of a quantum system. The question
might like to ask, ‘‘what is the curve that fits the data’’
therefore ill defined. Without additional regularization, a
infinite number of curves fit the data and, unless the prec
functional form of the internal energyE(T) is known, there
is no precise answer to this question. However, if we kn
the form of the thermal blurring functionK(b,v), we may
ask the question, ‘‘given the blurring function and any oth
relevant prior information that we know, what is the mo
probable spectrumr(v) from which this energy dataE(T)
might arise?’’ As discussed in detail below, this is the p
cise question that the MEM answers.

In addition to relying on fundamental properties of qua
tum systems instead of a functional form, further bene
also accrue from employing our MEM technique. For e
ample, since the MEM gives error bars on integrated qu
tities, the uncertainties in bothE(T) and C(T) are known
when obtained via our MEM technique. Other advantages
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9302 PRB 61CAREY HUSCROFT, RICHARD GASS, AND MARK JARRELL
our technique will be discussed below. Before discuss
algorithmic details, it is useful and instructive to briefly r
view the MEM.

IV. THE MAXIMUM ENTROPY METHOD

The maximum entropy method is discussed in de
elsewhere.5,7–9 Here, we wish to review only as much of th
MEM as is necessary to understand the technique. The M
is frequently used to analytically continue QMC imaginar
time Green function data to real frequencies.5 However, it is
a general technique that is not limited to analytic contin
tion or to QMC-related problems. In fact, the MEM has
relatively long history as an image reconstruction techniq
in photography and dynamic light scattering problems.10,7

In such problems, the observed image is the result
Gaussian blurring of light transmitted from a source throu
a medium, such as the atmosphere. Hence, the functi
form of the image is not known and the question of whet
the observed data fits a specific functional form is
defined—there are an infinite number of curves that fit
data Instead, the best that one can do is to seek themost
probable image given the data. This is exactly what t
MEM sets out to accomplish.

This is done using Bayesian statistics. If there are t
events,a andb, then by Bayes’ theorem, the joint probabili
of these two events is

P~a,b!5P~aub!P~b!5P~bua!P~a!, ~8!

whereP(aub) is the conditional probability ofa givenb. The
probabilities are normalized so that

P~a!5E dbP~a,b! andE daP~a!51. ~9!

In our problem, we search for the spectrumr which maxi-
mizes the conditional probability ofr given the dataE,

P~ruE!5P~Eur!P~r!/P~E!. ~10!

Typically, one callsP(Eur) the likelihood function and
P(r) the prior probability ofr ~or the prior!. Since we work
with one set of QMC data at a time,P(E) is a constant
during this procedure and may be ignored. The prior and
likelihood functions require more thought, and are discus
in detail in Ref. 5, here we present the salient results of
discussion.

If the spectrum is positive definite, we may think of it a
a un-normalized probability density

E
2`

`

dvr~v!,`. ~11!

Then by Skilling,8 the prior probability is proportional to
exp(aS) where S is the entropy defined relative to som
positive-definite functionm(v)

S5E
2`

`

dv$r~v!2m~v!2r~v!ln@r~v!/m~v!#%,

~12!
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P~r!}P~rum,a!} exp~aS!, ~13!

wherem(v) is the default model since in the absence of d
r5m. Selection of the default model for this method is d
cussed in Sec. V. The other unknown quantitya is deter-
mined during the MEM to maximize the probability of th
imager given the data.

The likelihood function follows from the central limi
theorem. If each of the measurementsEi ,T @ET[E(T)# of
the energy at a specific temperatureT is independent, then in
the limit of a large number of measurementsNd to determine
eachET the distribution of theET becomes Gaussian. Th
probability of measuring a particularET is

P~ET!5
1

A2psT

expF2
1

sT
2 ~^ET&2ET!2/2G , ~14!

with an error estimate given by

sT
25

1

Nd~Nd21! (
i

~^ET&2Ei ,T!2 ~15!

and

^ET&5
1

Nd
(
i 51

Nd

Ei ,T ~16!

for the Nd measurements ofEi ,T at temperatureT.
Then the likelihood functionP(Eur) of measuring the se

of E for a given imager is

P~Eur!}e2x2/2, ~17!

where

x25(
T

all T FET2(
v

vK~v,T!r~v!G2

sT
2

~18!

and we have discretized the integral Eq.~6!.
We are now in a position to perform the MEM and fin

the most probable imager given the dataET . We wish to
maximize the joint probability of the image or weightr
given the dataE; the default modelm; and the Lagrange
multiplier a

P~ruE,m,a!}P~Eur!P~rum,a!5
exp~aS2x2/2!

ZSZL
,

~19!

whereZS and ZL are normalization factors, independent
the image. For a fixeda and the given dataE, the most
probable imager̂(a) is the one that maximizesQ5aS
2x2/2. This may be found, for example, using Newton
method.

The details of implementing a MEM code and findinga
are given elsewhere.5 We will not repeat that presentatio
here. A MEM code written according to Ref. 5 is recom
mended for performing the technique we discuss herei11

Having discussed the general MEM formalism, we now tu
to the specific algorithmic details of our technique.
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V. ALGORITHMIC DETAILS OF THE TECHNIQUE

We desire to express the internal energy of the system
an integral over a density of energy levels times a relat
between energy and temperature, according to Eq.~6!. To
that end, we make the following ansatz:

E~T!52E
2`

`

dvv@F~b,v!rF~v!1B~b,v!rB~v!#,

~20!

where F and B are the Fermi- and Bose-distribution fun
tions, respectively,

F~b,v!5
1

11ebv ,

B~b,v!5
1

12ebv ~21!

for b51/T ~we have set the Boltzmann constant equal
unity kB51).

This ansatz corresponds roughly to describing the e
getics of the system as consisting of separate linear co
butions from Fermi and Bose excitations and imposes
constraint that the corresponding energyE(T) increases
monotonically with temperatureT so thatC(T)>0. In addi-
tion, since the degeneracy of the ground state and the
number of accessible states is generally know, the infi
temperature entropy is generally known.S` may be obtained
from

S`52E
0

`dT

T E
2`

`

dvvF]F

]T
rF~v!1

]B

]T
rB~v!G ~22!

by noting that the temperature integral for the Fermi te
can be done analytically and sincerB(v) is odd the Bose
term does not contribute to the integral.12 The net result is
that

S`5 ln 2E
2`

`

dvrF~v!. ~23!

Additional information such as this may be imposed
modifying the prior or the likelihood function. Given th
similarity of Eqs.~23! and~20!, which appears as part of th
likelihood function, we choose the latter approach. We int
duceS` as an additional datum with a relative error estim
sS /S` chosen to be approximately equal to the smallest r
tive error estimate of the energy data. We discuss our rea
for choosing this ansatz in the Appendix.

With this ansatz, we are in a position to employ t
MEM. We write Kr from Eq. ~6! as a linear combination o
FrF1BrB . Equation 18 forx2 is modified similarly. We
pick the default model in the following manner. We note fi
that it must be positive definite and integrable. We emplo
Gaussian default model, which satisfies these criteria.

Once the default model is selected, the method descr
in Ref. 5 may be applied straight away. To further illustra
the method, we now apply it to a nontrivial model.
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VI. EXAMPLE: 3D PERIODIC ANDERSON MODEL

The 3D periodic Anderson model~PAM! is often used to
investigatef-electron systems, where electronic correlatio
are important for the phenomena under study. It is a sim
fied lattice model in which the Coulomb interaction is lim
ited in range to on-site interactions only and then only with
one of the two bands. Nevertheless, it is a rich model
which the interplay between delocalization~kinetic energy!,
Coulomb repulsion, Pauli exclusion, temperature, and e
tron density give rise to a wide variety of phenomena.

The periodic Anderson Hamiltonian is

H5(
ks

ekdks
† dks1(

ks
Vk~dks

† f ks1 f ks
† dks!

1U f(
i

S ni f ↑2
1

2D S ni f ↓2
1

2D1(
is

e fni f s

2m(
is

~ni f s1nids!. ~24!

We choose a simple cubic structure for which

ek522tdd@coskxa1coskya1coskza#,

Vk522t f d@coskxa1coskya1coskza#, ~25!

wherea is the lattice constant. The dispersion ofVk reflects
our choice of near-neighbor~as opposed to on-site! hybrid-
ization of thef and d electrons. With on-site hybridization
the PAM is an insulator at half-filling, whereas with ou
intersite hybridization choice the half-filled, symmetric PA
is metallic.

The parameter values and the temperatureT in this work
are given in units oftdd . We takeU f56 and explore a range
of t f d and T values. QMC results for this model were ob
tained using the determinant algorithm,13 which provides an
exact treatment~to within statistical errors and finite siz
effects! of the correlations. We further choose the symmet
PAM (m5e f50, and thus half filling:̂ ni f &5^nid&51) in
order to eliminate the QMC ‘‘sign problem,’’ allowing accu
rate simulations at low temperatures. The QMC simulatio
were performed on a 43 system. Typical run times were 75
~10 h! at T50.125 (T54.0).

This version of the PAM has been studied in this para
eter regime and is known to undergo a sharp fini
temperature crossover at finitet f d'0.620.8 with an associ-
ated, abrupt change in the free energy which is reflecte
the specific heat.4,3 These thermodynamic anomalies are b
lieved to be signals of a zero-temperature metal-insula
phase transition in thef band which is also seen as a finit
temperature crossover to a localizedf electron system.14,15

We will test our new technique by using it to reproduce t
published work.

Figure 1 shows the energy obtained via the MEM us
Eq. ~20! for various hybridizationst f d50.2,0.6,1.0 along
with QMC data and errorbars on the QMC data. There is
excellent agreement between the QMC data and the M
results throughout the range of temperatures simulated
QMC. The quality of the agreement is further illustrated
the inset in Fig. 1, which shows a magnified view of t
lowest QMC temperature values fort f d50.2. In this Fermi-
onic system, we see essentially no contribution toC(T) from
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9304 PRB 61CAREY HUSCROFT, RICHARD GASS, AND MARK JARRELL
the Bose densityrB . Classical systems or Bosonic system
will provide a more severe test for the Bosonic part of E
~20!.

Once one obtains the image, the specific heatC(T) is
obtained by differentiating as in Eq.~1!. Figure 2 shows the
specific heatC(T), the specific heat divided by the temper
ture C(T)/T, and the entropyS(T) in the top figure as a
function of temperatureT for a fixed hybridizationt f d51.0.
For comparison, the bottom figure shows the energyE(T).
At this hybridization, singlets are known to form at lo
temperatures.4,3 This is reflected in a peak inC(T)/T appear-
ing at T'0.15. The singlet formation peak is also visible
C(T). A smaller peak inC(T) at higher temperatures i
believed to be due to the suppression of charge fluctuat
in the f band.

The entropy may be found in two ways. First,S(T) may
be obtained by integratingC(T)/T according to Eq.~2!. This
was done and is plotted in Fig. 2. The entropy found in t
manner saturates at high temperatures at the infin
temperature limitS`54 ln 22S0 known for this model.3

Second, the infinite temperature entropy may calculated
integrating rF , Eq. ~23!. The latter estimate isS`

53.375 ln 2, which is also that obtained from integrati
C(T)/T @Eq. ~4!# and the value ofS`54 ln 22S0 known for
the model.

In addition to singlet formation at low temperatures f
relatively large hybridizationst f d , the metallic PAM devel-
ops antiferromagnetic long-range-order~AFLRO! at low
temperatures for smallt f d . Hence, if one examinesC(T)/T
for decreasing hybridizationt f d , the singlet-formation peak
should eventually disappear and a low-temperature peak
responding to AFLRO should appear inC(T)/T. Previous
work has observed the disappearance of the sing
formation peak, but did not access a sufficiently low te
perature to observe the appearance of the AFLRO peak3

FIG. 1. Energy vs temperature for variousf -d hybridizations
t f d . The symbols mark QMC data, with errorbars. The solid lin
mark the energy obtained via the MEM. There is an excellent ag
ment between the data and the MEM results throughout the rang
temperatures. This is further illustrated in the inset, where a m
nified view of the lowest QMC temperature values fort f d50.2 is
shown.
.

ns

s
e-

y

r-

t-
-

Figure 3 shows the specific heat divided by temperat
C(T)/T for various f -d hybridizationst f d , ~a! t f d51.0, ~b!
t f d50.6, and~c! t f d50.2. The corresponding entropies fro
integratingC(T)/T @Eq. ~4!# are shown in panel~d!. Here,
we observe the disappearance of the singlet peak with
creasing hybridizationt f d . At t f d51.0 there is a substantia
singlet formation peak. Att f d50.2 there is no singlet forma
tion for any temperature accessed by the simulations,
possibly no singlet formation even atT50.14 The interme-
diate hybridizationt f d50.6 corresponds to a regime whe
singlet formation occurs suddenly for low temperatures,4 as
is reflected in the shift of the singlet peak to lower tempe
tures in Fig 3.

The sum rule16

S`54 ln 22S0 ~26!

for the entropy enforces the total entropy in the system. T
is an important feature of the method and satisfying the s
rule is one check on whether the specific heat is physic
reasonable. However, when the system does not quenc
of the entropy by the lowest temperature accessed by
QMC simulation, one may worry whether enforcing the su
rule will push spurious entropy into the specific heat. Th
does not happen, as shown in Fig. 3~d!. Instead, this entropy
beyond that quenched within the accessed temperatures
below the lowest QMC temperature, where indeed it sho
go on physical grounds. However, then the extrapolation
low the lowest QMC data point is unreliable. This unreliab
ity of the extrapolation to a regime where the sum rule h
forced entropy below the QMC data is seen by the large e

s
e-
of

g-

FIG. 2. Specific heatC(T), specific heat divided by temperatur
C(T)/T, and entropyS(T) ~top figure!, and energyE(T) ~bottom
figure! as a function of temperatureT for a fixed hybridizationt f d

51.0. Representative error bars are shown. The dashed vertica
at T50.08 corresponds to the lowest QMC data point. A peak
C(T)/T appears atT'0.15 due to singlet formation. At a highe
temperature, a hump appears inC(T)/T which is believed to be due
to the suppression of charge fluctuations. The total entr
3.375 ln 2 in the system obtained by integrating the image from
MEM ~see the text! matches both the total entropy obtained fro
integrating C(T)/T @Eq. ~4!# and the value ofS`54 ln 22S0

known for the model.
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PRB 61 9305MAXIMUM ENTROPY METHOD OF OBTAINING . . .
bars on the specific heat in this extrapolation regime. Tha
the method puts the entropy where it belongs, but then
forms one that the results of the MEM in this regime a
totally uncertain. This is an extremely desirable result.17

VII. SUMMARY

We have described a technique to obtain the internal
ergy as a function of temperature, as well as the specific h
the entropy, and the free energy of a system using Q
energy data sampled at a small, finite set of temperature
ues. Our technique relies on probability theory to obtain
most probablethermodynamic functions given the sampl
QMC energy. The question of determining the number
fitting parameters, which plagues the other methods
thereby removed. An entropy sum rule or other appropriaa
priori information may also be used, if known. The tec
nique was illustrated by applying it to the 3D period
Anderson model. An important benefit of the technique
that it returns not only the thermodynamic functions, but a
their uncertainties. This is a significant improvement over
prior techniques.
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FIG. 3. Specific heat divided by temperatureC(T)/T for various
f -d hybridizationst f d , ~a! t f d51.0, ~b! t f d50.6, and~c! t f d50.2.
The corresponding entropies from integratingC(T)/T @Eq. ~4!# are
shown in panel~d!. The dashed vertical line atT50.08 corresponds
to the lowest QMC data point. At large hybridizations,t f d51.0,
essentially all of the entropy in the system is quenched within
temperatures accessed by the simulations~a!. As the hybridization
decreases, antiferromagnetic ordering at temperatures below
accessed by the simulations becomes important and a subst
amount of entropy is not quenched within the simulated temp
tures. The sum rule enforces the total entropy in the system, w
appears in the results below the accessed temperatures, yet the
probable form of the specific heat for this regime cannot be p
cisely determined.This is reflected in large errorbars seen in pa
~b! and ~c! for the specific heat at temperatures below those
cessed by the simulations.
s,
-

n-
at,
C
al-
e

f
is

s
o
e

.
k
d

DMR–9357199. The QMC simulations were performed
the U.S. Department of Energy ASCI Red and Blue-Pac
computers.

APPENDIX: THE FORM OF THE ENERGY ANSATZ

In section V we wrote the ansatz for the energy as

E~T!52E
2`

`

dvvF~b,v!rF~v!

2E
2`

`

dvvB~b,v!rB~v!, ~A1!

where F and B are the Fermi- and Bose-distribution fun
tions, respectively,

F~b,v!5
1

11ebv ,

B~b,v!5
1

12ebv . ~A2!

Each integral in Eq.~A1! is a Fredholm integral equation o
the first kind for the corresponding density with eitherF or B
as the kernel. Since these kernels are continuous, the p
lem of inverting Eq.~A1! to findE(T) is ill posed18 and must
be regularized. MEM provides an efficient regularizati
method. In this appendix we motivate our ansatz and disc
other possible functional forms.

The ansatz given in Eq.~A1! is not the only possible, or
even sensible choice. In general one wants to choose a
ansatz the one that captures the underlying physics of
problem. For models such as the PAM, we expect a den
of Fermionic excitations represented byrF associated with
quasiparticle excitations. Since quasiparticles are conser
their density should be positive definite which is requir
when the MEM formalism is employed.

In addition, we expect a densityrB of Bosonic excitations
associated with collective behavior such as spin waves. W
no Bosonic operators in the Hamiltonian, these bosons
not conserved and have zero chemical potential. Th
rB(v.0).0 corresponding to the creation of such exci
tions, andrB(v,0),0 corresponding to their destruction
This choice ofrF , rB , and K constrain the specific hea
C(T) to be positive definite,C(T)>0. Furthermore,rB(v)
is odd as required by the fluctuation-dissipation theore
Therefore, we may reduce the second integral in Eq. A1
the range (0,̀ ) whererB(v) is positive semidefinite.

An ansatz should also provide a faithful representation
the E(T) data. To explore this question, we note that for
finite-sized systemE(T) is an analytic function that can b
expanded in a Taylor series inT aroundT50. Expanding
F(b,v) in a Sommerfeld low-temperature expansion19

yields only even powers ofT in the energy. In order to ge
odd powers ofT that complete the Taylor series, the Boson
kernel is required. Having the Taylor expansion forE(T),
the remaining question is the positive-definite nature of
imager(v). Even the fact that the energy is monotonic do
not yield a mathematical constraint thatrF and rB(v.0)
are positive definite, yet in practice this constraint impos
by the MEM is not a limitation.
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It is possible to dispose of the ansatz and use a gen
form for the energy. A faithful representation for systems
thermal equilibrium with a heat bath is provided by

E~T!52

E
2`

`

dvvr~v!exp~2v/T!

E
2`

`

dvr~v!exp~2v/T!

, ~A3!

wherer(v).0 is the density of eigenstates of the Ham
J

ev

ion
ra
er

n-

e

raltonian. However, since the relationship between the den
andE is nonlinear, the MEM algorithm described in Sec. I
cannot be applied without significant modification. Furthe
more, the representation provided by Eq.~A1! in each case
we have tested has provided a fit to within the measu
error. Thus, the additional complications associated with
use of Eq.~A3! seem unnecessary for this and similar sy
tems. However, this general technique would allow ext
sion of the method to classical Monte Carlo simulations a
is something we are currently exploring.
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