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f-sum rule for the spin conductivity in itinerant magnets
R. S. Fishman
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032

M. Jarrell
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

We derive a rigorousf-sum rule for the spin conductivityD(v), valid in the paramagnetic regime
of any itinerant system with nearest-neighbor hopping, assuming only that the potential energy
conserves the total spin at each site. Two such itinerant systems are the double-exchange and
Hubbard models. According to thef-sum rule, the integral overD(v) is proportional to the average,
electronic kinetic energy and is inversely proportional to the static susceptibility. The elastic value
D(0) can be obtained directly from the width of the quasielastic peak in neutron-scattering
measurements. For infinite dimensions dynamical mean-field theory implies thatD(v) is
proportional to the optical conductivitys~v! and that implies thef-sum rule forD(v) reduces to the
well-known optical sum rule fors~v!. Our results place severe constraints on the appropriate model
to describe the magnetoresistive manganites. ©2002 American Institute of Physics.
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Because most models in condensed-matter physics
an exact solution, rigorous sum rules can help us to un
stand physical behavior and to estimate the error incurred
various approximations. One of the most useful sum rule
the f-sum rule for the optical conductivitys~v!. For a tight-
binding model with nearest-neighbor hopping, this sum r
relates the integral overs~v! to the average kinetic energ
^K& of the electrons. A correlated, nondisordered electro
system at zero temperature is an insulator if limv→0 s(v)
50.1

This paper provides a generalization of these ideas to
paramagnetic spin conductivityD(v) which was first intro-
duced by Maleev2 for a Heisenberg ferromagnet aboveTC .
Assuming nearest-neighbor hopping and that the poten
energyV does not change the total spin at any site, the in
gral overD(v) is shown to be proportional tôK& and in-
versely proportional to the static susceptibilityx. The elastic
spin conductivity or spin-diffusion coefficient~SDC! Ds

5D(0)/2 can beobtained directly from the widthG of the
quasielastic-peak in neutron-scattering measurements ar
v50. In the hydrodynamic limit,3 G(k)52/t(k)52Dsk

2

provides the lifetimet(k) of a magnetic fluctuation with
wave vectork. WhenDs becomes very small, such as nea
ferromagnetic transition, the system can be considered a
insulator4 even when the particle conductivitys~0! remains
high.

Recent work5,6 in infinite dimensions suggests that sp
relaxation in itinerant systems is much more complica
than in Heisenberg systems. For infinite dimensions, we
the dynamical mean-field theory7 to show thatD(v) is pro-
portional tos~v! and that thef-sum rule forD(v) reduces to
the well-known optical sum rule fors~v!.

Due to the isotropy of magnetic fluctuations aboveTC ,
the total spin correlation function S(Ri2Rj ,t)
5^Stot,i

z (t)Stot,j
z (0)& of a paramagnet does not contain any o

diagonal matrix elements. Generally, the Fourier transform
correlation function may be written as
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S~k,v!5
2

12e2bv x2~k,v!, ~1!

x2~k,v!5
1

2 (
i

E dt eivt2 ik•~Ri2Rj !

3^@Stot,i
z ~ t !,Stot,j

z ~0!#&. ~2!

In the hydrodynamic limit of small momenta and lo
frequencies,3,8 the response functionx2(k,v) can be param-
etrized by the form

x2~k,v!5
vk2Dsx

v21~Dsk
2!2 , ~3!

which implies thatS(k,v) contains a quasielastic peak wit
width G(k)52Dsk

2.
In place of Eq.~3!, we employ a somewhat more gener

relation2,8 which is valid for smallk but arbitraryv:

x2~k,v!5Im x~k,v1 ih!5Im
ik2D̄~u!x

u1 ik2D̄~u!
U

u5v1 ih

,

~4!

D̄~u!5E dv

2p i

D~v!

v2u
, Im u.0, ~5!

whereh.0 is infinitesimal. This parametrization ofS(k,v)
and x2(k,v) is valid for ka!1 andkj!1, wherej is the
magnetic correlation length anda is the lattice spacing. So
for a fixed k!1/a, it fails only in the critical regime very
close toTC , whenj becomes large. Comparing Eqs.~2! and
~4!, we confirm that the SDC is given byDs5D(0)/2.

It follows that the spin conductivity can be written i
terms of the spin-current response functionP~v! as

D~v!5
2v

x
lim
k→0

1

k2 x2~k,v!52
2a2

vx
Im P~v!, ~6!
0 © 2002 American Institute of Physics
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P~v!52
i

N
lim
k→0

E
0

`

dt eivt^@Jg
z~k,t !,Jg

z~2k,0!#&, ~7!

whereg is fixed and arbitrary~owing to the isotropy above
TC! andJg

d is the spin current in the directiong with polar-
ization d. These relations imply thatD(v)>0 for all
frequencies.8

Consider a tight-binding Hamiltonian with the formH
5K1V, where the kinetic energy operator is

K52t(
^ i , j &

~cRia
† cRja

1cRja
† cRia

!5(
k

ekck,a
† ck,a . ~8!

HerecRia
† andcRia

are the creation and destruction operat

for an electron with spina5↑ or ↓ at sitei. For simplicity,
we have assumed a single band but thef-sum rule derived
below still holds for multiple bands so long as the hoppi
remains between nearest neighbors. If the system con
both local and electronic spin degrees of freedom, then
total spin at sitei can be writtenStot,i5si1Sloc,i , wheresi

5(1/2)cRia
† sabcRib

is the electronic spin. The potential en

ergy V is assumed to conserve the total spin at sitei so that
@V,Stot,i#50. Both the Hubbard and double-exchange mod
obey these assumptions.

The spin current is obtained from the equation of con
nuity for the total spin:

i
dStot k

d

dt
5@Stot k

d ,H#5k"agJg
d~k!, ~9!

Jg
d~k!5

t

2i (i
e2 ik"RicRia

† sab
d ~cRi1ag ,b2cRi2ag ,b!

5
1

2a (
k8

vk8,gck8,a
† sab

d ck81k,b , ~10!

where ag is one of z/2 primitive lattice vectors andvk,g

5]ek /]kg is the electron velocity. Based on the definitio
of x2(k,v) in Eq. ~2! andJg

z(k) in Eq. ~10!, we find that

E dv

p
vx2~k,v!5

1

N
k"ag^@Jg

z~k!,Stot,2k
z #&, ~11!

but the commutator is given by

@Jg
z~k!,Stot,2k

z #5
t

4
k"ag(

i
$cRi ,a

† cRi1ag ,a

1cRi ,a
† cRi2ag ,a%, ~12!

so that

1

x E dv

p
vx2~k,v!5k2E dv

2p
D~v!52

~ka!2

2Nzx
^K&,

~13!

where the first equality follows from Eq.~6!.
Thus, we finally obtain thef-sum rule for the spin con

ductivity:

E dv

2p
D~v!52

a2

2Nzx
^K&, ~14!
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which relates the integral overD(v) to the expectation value
of the kinetic energy. Equation~14! is valid for all tempera-
tures and in any dimension.

In infinite dimensions, the response function can be c
siderably simplified by using dynamical mean-field theo
Due to the absence of off-diagonal matrix elements aboveTC

and the lack of current vertex corrections9 in infinite dimen-
sions, the spin-current response function can be written
P(v)5P( ivm5v1 ih) where5

P~ ivm!5
T

2a2N (
k,l

G~k,in l !G~k,in l1 ivm!vk,g
2 . ~15!

Here G(k,in l)ab5G(k,in l)dab is the one-particle Green’s
function, which is a function of the Matsubara frequenc
vm52mpT andn l5(2l 11)pT at temperatureT. It follows
thatD(v) is simply related to the particle conductivitys~v!
by D(v)5s(v)/2xe2 and that the SDC is related tos~0! by
Ds5s(0)/4xe2. So in infinite dimensions, thef-sum rule for
D(v) is equivalent to the the optical sum rule fors~v!:10

E dv

p
s~v!52

2e2a2

Nz
^K&. ~16!

With the effective mass defined by 1/m* 52(2a2/z)
3^K&/Nel.0,10 the right-hand side reduces to the we
known expressionNele

2/Nm* 5(vp
2/4p)(V/N).

Now we briefly explore the consequences of thef-sum
rule for the double-exchange model,11,12 where the Hund’s
energyV522JHS isi•Sloc,i acts to align the local and itiner
ant spins. At least qualitatively, the double-exchange mo
is believed to describe the magnetoresistive mangan
which become metallic belowTC . Recently, thef-sum rule
for the optical conductivity has been used to understand
physics of manganites belowTC and to appraise the limita
tions of the double-exchange model.13–15The f-sum rule for
the spin conductivity provides similar insight into the appr
priate models to describe the spin dynamics of the mang
ites aboveTC .

Neutron-scattering measurements16,17on manganites like
LaxCa12xMnO3 with x'0.3 indicate thatDs exhibits little
temperature dependence asT approachesTC . Moreover, spin
diffusion seems to persist even belowTC , where the quasi-
elastic peak inx2(k,v) coexists with spin-wave peaks. Th
f-sum rule for the spin conductivity can help determi
whether such behavior can arise from an exact treatmen
the double-exchange model in three dimensions. Assum
that the magnetic transition is second order, thenx diverges
and the integral overD(v) must vanish asT→TC . Since
D(v)>0 for all v, this implies thatD(v)→0 for everyv
and, in particular, thatDs→0 asT→TC . So away from the
critical regime where the magnetic correlation lengthj be-
comes large and our parametrization of the response func
fails, the double-exchange model predicts thatDs should ex-
hibit dramatic temperature dependence in the vicinity ofTC .
This prediction cannot be reconciled with the measureme
described above.

Therefore, it is necessary to go beyond the doub
exchange model in order to explain the spin dynamics of
manganites even aboveTC . It is now well-established18 that
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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lattice and magnetic polarons play an essential role in
manganites. The inhomogeneities produced by polaro19

may open other avenues of magnetic relaxation close toTC .
Nevertheless, it is difficult to understand how the divergen
of x at TC can be reconciled with the persistence of sp
diffusion close toTC . Even if the sample phase separa
into ferromagnetic and paramagnetic regions, the diverge
of x in the regions which become ferromagnetic should p
duce a dramatic change in the overall value ofDs .

To conclude, we have developed anf-sum rule for the
spin conductivity which relates the integral overD(v) to the
average, electronic kinetic energy. Thisf-sum rule provides
an important check on models for spin relaxation in itiner
systems.
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