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Ground-state dynamical correlation functions:
An approach using the density-matrix renormalization-group method
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A numerical approach to ground-state dynamical correlation functions from the density-matrix renormaliza-
tion group (DMRG) is developed. Using sum rules, moments of a dynamic correlation function can be
calculated with DMRG, and with the moments the dynamical correlation function can be obtained by the
maximum entropy method. We apply this method to a one-dimensional spinless fermion system, which can be
converted to the spin-1/2 Heisenberg model in a special case. The dynamical density-density correlation
function is obtained.

Dynamical correlation functions of a model are of specialmodel and the Heisenberg model. The dynamical density-
interest, because they can provide a comprehensive compadensity correlatiofinamely the structure functioB(q, ) in
son to experimental measurements. Unfortunately they arspin chair is obtained. For the noninteracting catlee XY
very difficult to calculate analytically or numerically for mode) we compare our result with the exact result, and ob-
strongly correlated systems. Even for one-dimensional sygain a very good agreement.
tems, the dynamical correlation functions are hard to obtain. The one-dimensional spinless fermion model we consider
For example, th&=1/2 Heisenberg model, although its ex- has the following Hamiltonian:
act solution from Bethe ansatz has been known for a long
time, its ground-state dynamical correlation functions have +
not yet been obtained. Until now there are only a few general H=—t> (c/cug+H.c)+VY niniiq, 1)
ways to obtain dynamical correlation functions. Analytically, ' '

only the asymptotic behavior of correlation functions for yherec(™) gre annihilation(creation operators for a fermion
one-dimensional models in the quantum critical regime are,, ., . andn, = c'c; — 1/2. The Hamiltonian written in such

. e ! , | )
able to be obtained by bosonization or conformal f'eldform ensures the ground state is at half filling. This model

1 : ; _
th?ory- Numenca_lly, one way to calcu!ate Qynamlcal corre may be mapped to th&¥XZ model by the Jordan-Wigner
lation functions is the analytic continuation of quantum . . .
transformation. Under this transformationS'=n;,

Monte Carlo simulations with the maximum entropy meth-_= """ = S _ .
0d 23 But this method will encounter essential difficulties if 9x=Jy=2t, andJ,=V. At V=0 this model is equivalent to
he XY model, while atv=2t it is equivalent to the Heisen-

we are interested in zero-temperature properties. Another n+P- del. Wi | der th i thi K
merical method to calculate the ground-state dynamicaP€'d Mmodel. We only consider these two cases in this work.

propertie is based on the Lanczos method. The method is The first step of our met'hod Is to use sum rul'es to express
limited to very small systems the moments of a dynamical correlation function by some

The density-matrix renormalization-grou DMRG) static correlation functions. The sum rules for the spin model

method proposed by Whitds a powerful method to study have_ been dgrive?jWQ use the similar definition of the cor-
the ground-state of one-dimensional interacting systemg.elatlon functions as in Ref. 8:
With this method the ground-state energy, a few excitation
energies, and static correlation functions can be calculated
for a large system. However, it was not clear if one can
obtain dynamical properties from this method. 1
In this paper, we describe a numerical method for calcu- " _- _
lating ground-state dynamical correlation functions in a sys- X(a.t 2([n(q,t),n( a.0]). @
tematic way, which is a combination of DMRG and maxi- _
mum entropy metho@¢MEM). (After we finished this work ~where n(q) =N""2=n;e', the curly bracket indicates an
we noticed the work by Hallbergwhich provides anothor anticommutator, and (n(q))=Tr{n(q)e #"].  The
way to obtain the correlation function based on DMR@®.  fluctuation-dissipation ~ theorem gives the relation
general the moments of a dynamical correlation function canc(d,») = coth(/2kgT) x"(q, ). The structure function or
be expressed as static correlation functions, which can bdynamic form factor S(q,w) is defined as
calculated by the DMRG method. With these moments weS(d, ®) = x"(q,w)/(1—e~ “/eT). Due to the parity and time
can obtain the dynamic correlation function with MEM. We reversal symmetry in our mode},’(q,w) andx.(d,w) have
apply this method to the one-dimensional spinless fermiorthe following properties: x"(q,— w)=—x"(q,») and
system with nearest neighbor interaction. This model isy.(d,— w)=x.(q,w). At zero temperature S(q,w)=
equivalent to the spin-1/XXZ chain. We have considered x.(d,0)= x"(q,») for >0, therefore the sum rules given
two special cases of this model, corresponding to X in Ref. 8 can be written as

1
Xc(qvt): E({n(qvt)vn(_qio)}>_<n(qrt)><n(_q10)>’
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»dw x"(q,0) 1 elements of the combined operatgn; by multiplying the
my(q)=| — = §X(q,w=0), matrices ofn; andn;. We can prove that the precision of
o T w . . . .
(nin;) is completely controlled by discarded weight in
; DMRG calculations, which means the precision can be as
m (q):fmd—wa (q"*’): (q,t=0) high as that for the ground-state energy or any local
2 0o ) Xell ' operators? For a system which has parity and translational
symmetries, (n;n;) only depends onl|i—j|. Therefore
cdo (o) 1 (ngn_q)==(njn;)€'%" is independent of. Since the cal-
2 b . . g
m3(q)=f —w —=—§<[[H,n(q)],n(—q)]) culations are done with an open boundary condition,
o @ (n;n;.;) depends on the position Also due to the open
=2(clc;, )[1—cogq)], 3) boundary, the correlatiofn;n;. ;) has an even-odd oscilla-

tion in j. We take the mean value ¢h;n; ) atj even and
wherey(q,w=0) is the static susceptibility. These sum rules©dd, which is closer to the value with period boundary con-

can be easily generalized to higher moments: dition for a system having the same size. When the system
size goes to infinity, the boundary effect can be neglected.

<dw Y'(9, ) We calculate t_he moments f_or system sizes va.ryi.ng from 100

m(q) = fo - lT sites to 200 sites, and obtain their values for infinite system

by extrapolating the data. Since the first moment is not an
1 equal time correlation but the static susceptibility, it is calcu-
— §<[[H’ ... [H,n(@]...1,)n(—=q)]), |odd, lated with the finite lattice method. For a particular momen-
_ tum g, we apply a small field,cos(i) which couples with
1 the density in this wayh,2;n;cos@i), then we calculate the
SUH, . Hn@]. . Ln(=q)}),  Teven  yengjy responséng) = 1INZ;(n;)cosgi) with DMRG. The
ratio (ng)/hg in the h,— 0 limit gives the static susceptibil-
whereH appears in the commutatdrs 2 times. Apart from ity.
the first moment which is given by the static susceptibility, The next step is to use the MEM to obtain the dynamical
all the other moments can be expressed as equal-time correorrelation functions. The MEM has become a standard way
lation functions. Theoretically if all the moments are known, to extract maximum information from incomplete déf@his
one can obtain thg”(q,t) and thusy”(q,w). In real calcu- method has been applied to the analytic continuation of the
lations, it is tedious to calculate the commutators for higheiquantum Monte Carlo datd,and in this paper we apply a
moments, and there are more and more new equal-time cogimilar method to extract the dynamic susceptibility
relation functions that appear in the expression of higher mox”(q,) from the finite number of moments, with the
ments. However it is still reasonable to obtain the expressiogorresponding errors; . We definef (w) = x"(w)/w, which
for the first several moments using a symbolic manipulatorjs positive definite, as a distribution function, and the entropy
such as Mathematica, to calculate the commutators. In thier the information functionS=2 ,f(w)—f(w)Inf(w). By
work we have calculated the expressions for the first fivemaximizing the entropy under the  constrains
moments. m— [5(dw/m) o' " (w)=0, f(w) has the following form:
The second step is to obtain the moments by calculating
the corresponding static correlation functions with the ! _
DMRG. The infinite lattice methotsee Ref. 5 for detailss f(w):ex;{ -2 (\o! l))’ (4)
' ' =1
used in our calculations for open ended chatssl is cho-
sen, and states kept at each iteration varies from 52 to 64vheren is the number of moments ang are the Lagrange
The equal-time correlations, for examgien;), are usually ~ multipliers. At this point one may try to findl, by requiring
calculated by puttingy; andn; on different blocks?® In the  the f(w) to satisfy the constraints without considering the
DMRG calculation, the matrix of a local operator likgcan  error bars of the moments. However, in general, the error
be constructed when siteis added into the system, and its bars cannot be neglected. The kernel of the transformation is
elements in the truncated Hilbert space are updated at easingular, so small errors in moments may produce large er-
iteration. By inserting a complete basis set, the matrix elefors in f(w). By maximizing the posterior probability
ments of operators like;n; in the truncated Hilber space can e*S" where L==[m— [§(dw/m) o' *f(w)]* o, one
be calculated if we know the matrices of operatofsand  can find the most probabl& w), which gives us the mo-
n; . Since we only have their matrices in the truncated Hilberments within the range of error bars.
space, in general multiplying two matrices does not give the Let us first discuss the extrapolation and the error bar of
correct matrix for the combined operator. One way to avoidour DMRG results. There are two major contributions to the
such a problem is to put; andn; on separate blocks. But the error: that from finite size effects and that from basis set
precision of a correlation function calculated in this way istruncation in the DMRG calculations. The error bar of the
much lower than that of a local operator. In contrast to theDMRG calculation for any finite size is obtained by varying
conventional method, we choosgandn; on the same block the number of states kept at each iteration, whereas the finite
and sitej at the edge of the block connecting to the othersize error is obtained by varying the system size. The asymp-
block. Since the sitg is one of the two sites which are just totic behavior of correlation functions is known for this
added into the system, the Hilbert space at giecomplete  model! which decay as a power of system size. For a system
for the operatom;. Therefore we can calculate the matrix with a gap, the extrapolation should be done as an exponen-
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FIG. 1. Moments vs the inverse system sizB-+0 for V=2t FIG. 2. The dynamical structure functigri(q, w) for V=0 (the
andq=m/2, whereM is the number of states kept at each iteration X y mode) andq=2/3. The results obtained by the MEM with a

in DMRG calculations. The extrapolation is toN:~0, and the  ifferent number of moments are plotted. Two solid vertical lines
error is estimated by the different extrapolations caused by the eiyre the energy boundaries.

rors in slope.

tial function of system size. In Fig. 1, we plot the second anc?1€S mean thax"(q,») is zero whenw is beyond the
third moments afj==/2 for V=2t as a function of ™,  Poundaries, and we use it asa requirement /i, ») when
whereN is the number of sites of the system. The error from"/€ gppl},/ the MEM to gety"(q,w). Using the MEM’ we
basis set truncation produces the error in the extrapolate@Pt@in x(a,@) for g=2=/3. In Fig. 2, we plotx"(q,®)
values. We use this resultant error to estimate the error bar @°tained by the MEM with a different number of”moments
the moments. Extrapolating toN/~0 givesm,=0.1700, 2and the exact one from E@S5). It shows that thex"(q,w)

and the error bar is estimated as f0For the third moment OPtained by the MEM converges toward the exact one when
we have m;=0.590 85 and the estimated error bar isth&number of moments is increased, afidq, ») calculated

2x 1075, Actually the third moment is known exactly: with five moments is a good approximation for the exact

ms= — (2/3)E[ 1— cos@)] with the ground state energy per result. We have also calculated (q,w) for other g, they

site E= —2(In2—1/4). The exact value at/2 is 0.590 863. have similar behavior. . .

Ve fest our method for the nonineracting case. In tis, " iC EC e e ey exciations are known
casex"(d,w) is known exactly. as S=1/2 object$® (spinons. The dispersion relation is
e(q) = wrt|sin(@)|,** which provides the lower bound of exci-
tation energies for each momentenThe spectral weight is
domin%ted by the continuum of the two-spinon excited
where 6(x) is the step function. The moments can also beState.Sl’ and the energy range for _the continuum 1S

. t 7| sin(@)|<w<2twsin(@?2)|. Based on this fact an analytic
calculated analytically. In Table I, we compare the moments t7 for" d
calculated by the DMRG with the exact results. The error® o2t 10X (q,w) was propose
bars obtained by the DMRG provide a very good estimate.
Apart from the five moments, there are two more pieces of
information in this case: the energy boundaries

2t|sin(@)|<w<4t|sin@/2)| for x"(q,»). The energy bound-

, _ Olo—2t[sin(q)|]6[4t[siN(a/2)| - w]
X (q!w)_ [16t23in2(CI/2)_(1)2]1/2 '

©)

Ol o— mt|sin(q)|]16[ 27t|sin(q/2)| — w]
[w®— m?t?sir’(q)]"? ’
(6)

X"(g,0)=A

TABLE |. The comparison of the moments obtained by DMRG

Wit.h the exact results fov=0 andq§2w/3f. In the DMRG calcu- where 6(x) is the step function. This is an approximate so-
lations 64 states are kept at each iteration, and the error bars &8tion. because it cannot satisfy the sum rules with a fixed
estimated by changing the number of states kept and finite SiZBaran%enteA. Since the contributions from the excited states

scaling. of more than two spinons are finite, we only have the low
energy bound. We use it as a requiremeni6(q, ) in our
Exact DMRG Error MEM calculations. In Fig. 3, the”(qg,w) obtained by the

m,(2/3) 0.121013 0.1211 €103 MEM with different number of moments are plotted for
my(27/3) 0.333333 0.33337 81075 g=2/3. The analytic ansatz which satisfies the third sum
ms(27/3) 0.954930 0.954928 %6106 rule is also plotted in Fig. 3 for comparison. One can see the
my(27/3) 2.826993 2.8273 5104 tendency of the curves as the number of moments increase.
ms(27/3) 8.594367 8.59434 8105 x"(q,w) tends to diverge at the lower bound. We also mark

the position of the upper bound for two-spinon excited states.
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FIG. 3. The dynamical structure functiog(q, ) for V=2t R05 l 1
(the Heisenberg modeand q=2#/3. The results obtained by the
MEM with different number of moments are plotted. The analytic 0.02 5 3'5 ) i
ansatz which satisfies the third sum rule is also plotted for compari- ’ ) o : )

son. The solid vertical line is the lower boundary. The arrow marks

the position of the upper boundary for the two-spinon excited states. FIG. 4. The dynamical structure functiof(q, @) for V=2t

(the Heisenberg modelat (8) q==/2, and (b) #/3 and /4.
It is obvious that the contributions from the two-spinon con-y"(q,») are obtained by the MEM with five moments. The solid
tinuum is dominate. In Fig. 4y”(q,) is plotted for other vertical lines are the lower boundaries for each momentum. The
momentums. arrow marks the position of the upper boundary of the two-spinon
In conclusion, we have developed a numerical method foexcited states.

_calculatlng the_ground-state dynamical correlation functlon_ nown before. This method is a very general one, which can
in one-dimensional quantum systems based on the densi

i lizati thod and th : e applied to any one-dimensional system with short range
matrix renormalization-group metnod and th€ maximum €nye action Jike, e.g., the Hubbard model, t8e1 Heisen-
tropy method. We demonstrate this method on the dynamic erg model, the interacting fermigior boson system with

density-density correlation function’(q,w) of the spinless | 3ndomness.
fermion system with nearest neighbor interaction. For the

noninteracting case, it corresponds to ¥1é model, the dy- We would like to acknowledge useful discussions with J.
namical density-density correlation function obtained by oure. Gubernatis, Shoudan Liang, and R. N. Silver. This work
method shows very good agreement with the exact resulvas supported by the National Science Foundation grant No.
For the interacting case with'=2t, it corresponds to the DMR-9107563. In addition M.J. would like to acknowledge
Heisenberg model, we obtain thé€'(q,»), which was not the support of the NSF NYI program.
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