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A numerical approach to ground-state dynamical correlation functions from the density-matrix renormaliza-
tion group ~DMRG! is developed. Using sum rules, moments of a dynamic correlation function can be
calculated with DMRG, and with the moments the dynamical correlation function can be obtained by the
maximum entropy method. We apply this method to a one-dimensional spinless fermion system, which can be
converted to the spin-1/2 Heisenberg model in a special case. The dynamical density-density correlation
function is obtained.

Dynamical correlation functions of a model are of special
interest, because they can provide a comprehensive compari-
son to experimental measurements. Unfortunately they are
very difficult to calculate analytically or numerically for
strongly correlated systems. Even for one-dimensional sys-
tems, the dynamical correlation functions are hard to obtain.
For example, theS51/2 Heisenberg model, although its ex-
act solution from Bethe ansatz has been known for a long
time, its ground-state dynamical correlation functions have
not yet been obtained. Until now there are only a few general
ways to obtain dynamical correlation functions. Analytically,
only the asymptotic behavior of correlation functions for
one-dimensional models in the quantum critical regime are
able to be obtained by bosonization or conformal field
theory.1 Numerically, one way to calculate dynamical corre-
lation functions is the analytic continuation of quantum
Monte Carlo simulations with the maximum entropy meth-
od.2,3 But this method will encounter essential difficulties if
we are interested in zero-temperature properties. Another nu-
merical method to calculate the ground-state dynamical
properties4 is based on the Lanczos method. The method is
limited to very small systems.

The density-matrix renormalization-group~DMRG!
method proposed by White5 is a powerful method to study
the ground-state of one-dimensional interacting systems.
With this method the ground-state energy, a few excitation
energies, and static correlation functions can be calculated
for a large system. However, it was not clear if one can
obtain dynamical properties from this method.

In this paper, we describe a numerical method for calcu-
lating ground-state dynamical correlation functions in a sys-
tematic way, which is a combination of DMRG and maxi-
mum entropy methods6 ~MEM!. ~After we finished this work
we noticed the work by Hallberg,7 which provides anothor
way to obtain the correlation function based on DMRG.! In
general the moments of a dynamical correlation function can
be expressed as static correlation functions, which can be
calculated by the DMRG method. With these moments we
can obtain the dynamic correlation function with MEM. We
apply this method to the one-dimensional spinless fermion
system with nearest neighbor interaction. This model is
equivalent to the spin-1/2XXZ chain. We have considered
two special cases of this model, corresponding to theXY

model and the Heisenberg model. The dynamical density-
density correlation@namely the structure functionS(q,v) in
spin chain# is obtained. For the noninteracting case~theXY
model! we compare our result with the exact result, and ob-
tain a very good agreement.

The one-dimensional spinless fermion model we consider
has the following Hamiltonian:

H52t(
i

~ci
†ci111H.c.!1V(

i
nini11 , ~1!

whereci
(†) are annihilation~creation! operators for a fermion

at sitei , andni5ci
†ci21/2. The Hamiltonian written in such

form ensures the ground state is at half filling. This model
may be mapped to theXXZ model by the Jordan-Wigner
transformation. Under this transformationSi

z5ni ,
Jx5Jy52t, andJz5V. At V50 this model is equivalent to
theXY model, while atV52t it is equivalent to the Heisen-
berg model. We only consider these two cases in this work.

The first step of our method is to use sum rules to express
the moments of a dynamical correlation function by some
static correlation functions. The sum rules for the spin model
have been derived.8 We use the similar definition of the cor-
relation functions as in Ref. 8:

xc~q,t !5
1

2
^$n~q,t !,n~2q,0!%&2^n~q,t !&^n~2q,0!&,

x9~q,t !5
1

2
^@n~q,t !,n~2q,0!#&, ~2!

where n(q)5N21/2(nle
iql , the curly bracket indicates an

anticommutator, and ^n(q)&5Tr@n(q)e2bH#. The
fluctuation-dissipation theorem gives the relation
xc(q,v)5coth(v/2kBT)x9(q,v). The structure function or
dynamic form factor S(q,v) is defined as
S(q,v)5x9(q,v)/(12e2v/kBT). Due to the parity and time
reversal symmetry in our model,x9(q,v) andxc(q,v) have
the following properties: x9(q,2v)52x9(q,v) and
xc(q,2v)5xc(q,v). At zero temperatureS(q,v)5
xc(q,v)5x9(q,v) for v.0, therefore the sum rules given
in Ref. 8 can be written as
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0
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p
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m2~q!5E
0
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0
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v
52
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^@@H,n~q!#,n~2q!#&

52^ci
†ci11&@12cos~q!#, ~3!

wherex(q,v50) is the static susceptibility. These sum rules
can be easily generalized to higher moments:

ml~q!5E
0

`dv

p
v l21

x9~q,v!

v

5H 2
1

2
^@@H, . . . ,@H,n~q!# . . . #,n~2q!#&, l odd,

1

2
^$@H, . . . ,@H,n~q!# . . . #,n~2q!%&, l even,

whereH appears in the commutatorsl22 times. Apart from
the first moment which is given by the static susceptibility,
all the other moments can be expressed as equal-time corre-
lation functions. Theoretically if all the moments are known,
one can obtain thex9(q,t) and thusx9(q,v). In real calcu-
lations, it is tedious to calculate the commutators for higher
moments, and there are more and more new equal-time cor-
relation functions that appear in the expression of higher mo-
ments. However it is still reasonable to obtain the expression
for the first several moments using a symbolic manipulator,
such as Mathematica, to calculate the commutators. In this
work we have calculated the expressions for the first five
moments.

The second step is to obtain the moments by calculating
the corresponding static correlation functions with the
DMRG. The infinite lattice method~see Ref. 5 for details! is
used in our calculations for open ended chains.t51 is cho-
sen, and states kept at each iteration varies from 52 to 64.
The equal-time correlations, for example^ninj&, are usually
calculated by puttingni andnj on different blocks.5,9 In the
DMRG calculation, the matrix of a local operator likeni can
be constructed when sitei is added into the system, and its
elements in the truncated Hilbert space are updated at each
iteration. By inserting a complete basis set, the matrix ele-
ments of operators likeninj in the truncated Hilber space can
be calculated if we know the matrices of operatorsni and
nj . Since we only have their matrices in the truncated Hilber
space, in general multiplying two matrices does not give the
correct matrix for the combined operator. One way to avoid
such a problem is to putni andnj on separate blocks. But the
precision of a correlation function calculated in this way is
much lower than that of a local operator. In contrast to the
conventional method, we chooseni andnj on the same block
and site j at the edge of the block connecting to the other
block. Since the sitej is one of the two sites which are just
added into the system, the Hilbert space at sitej is complete
for the operatornj . Therefore we can calculate the matrix

elements of the combined operatorninj by multiplying the
matrices ofni and nj . We can prove that the precision of
^ninj& is completely controlled by discarded weight in
DMRG calculations, which means the precision can be as
high as that for the ground-state energy or any local
operators.10 For a system which has parity and translational
symmetries, ^njni& only depends onu i2 j u. Therefore
^nqn2q&5( l^njnj1 l&e

iql is independent ofj . Since the cal-
culations are done with an open boundary condition,
^njnj1 l& depends on the positionj . Also due to the open
boundary, the correlation̂njnj1 l& has an even-odd oscilla-
tion in j . We take the mean value of^njnj1 l& at j even and
odd, which is closer to the value with period boundary con-
dition for a system having the same size. When the system
size goes to infinity, the boundary effect can be neglected.
We calculate the moments for system sizes varying from 100
sites to 200 sites, and obtain their values for infinite system
by extrapolating the data. Since the first moment is not an
equal time correlation but the static susceptibility, it is calcu-
lated with the finite lattice method. For a particular momen-
tum q, we apply a small fieldhqcos(qi) which couples with
the density in this way:hq( inicos(qi), then we calculate the
density responsênq&51/N( i^ni&cos(qi) with DMRG. The
ratio ^nq&/hq in the hq→0 limit gives the static susceptibil-
ity.

The next step is to use the MEM to obtain the dynamical
correlation functions. The MEM has become a standard way
to extract maximum information from incomplete data.6 This
method has been applied to the analytic continuation of the
quantum Monte Carlo data,11 and in this paper we apply a
similar method to extract the dynamic susceptibility
x9(q,v) from the finite number of momentsml with the
corresponding errorss l . We definef (v)5x9(v)/v, which
is positive definite, as a distribution function, and the entropy
or the information functionS5(v f (v)2 f (v)lnf(v). By
maximizing the entropy under the constrains
ml2*0

`(dv/p)v l21f (v)50, f (v) has the following form:

f ~v!5expS 2(
l51

n

~l lv
l21!D , ~4!

wheren is the number of moments andl l are the Lagrange
multipliers. At this point one may try to findl l by requiring
the f (v) to satisfy the constraints without considering the
error bars of the moments. However, in general, the error
bars cannot be neglected. The kernel of the transformation is
singular, so small errors in moments may produce large er-
rors in f (v). By maximizing the posterior probability
eaS2L where L[( l@ml2*0

`(dv/p)v l21f (v)#2/s l
2 , one

can find the most probablef (v), which gives us the mo-
ments within the range of error bars.

Let us first discuss the extrapolation and the error bar of
our DMRG results. There are two major contributions to the
error: that from finite size effects and that from basis set
truncation in the DMRG calculations. The error bar of the
DMRG calculation for any finite size is obtained by varying
the number of states kept at each iteration, whereas the finite
size error is obtained by varying the system size. The asymp-
totic behavior of correlation functions is known for this
model,1 which decay as a power of system size. For a system
with a gap, the extrapolation should be done as an exponen-
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tial function of system size. In Fig. 1, we plot the second and
third moments atq5p/2 for V52t as a function of 1/N,
whereN is the number of sites of the system. The error from
basis set truncation produces the error in the extrapolated
values. We use this resultant error to estimate the error bar of
the moments. Extrapolating to 1/N→0 givesm250.1700,
and the error bar is estimated as 1024. For the third moment
we have m350.590 85 and the estimated error bar is
231025. Actually the third moment is known exactly:
m352(2/3)E@12cos(q)# with the ground state energy per
siteE522(ln221/4). The exact value atp/2 is 0.590 863.

We test our method for the noninteracting case. In this
case,x9(q,v) is known exactly:12

x9~q,v!5
u@v22tusin~q!u#u@4tusin~q/2!u2v#

@16t2sin2~q/2!2v2#1/2
, ~5!

whereu(x) is the step function. The moments can also be
calculated analytically. In Table I, we compare the moments
calculated by the DMRG with the exact results. The error
bars obtained by the DMRG provide a very good estimate.
Apart from the five moments, there are two more pieces of
information in this case: the energy boundaries
2tusin(q)u,v,4tusin(q/2)u for x9(q,v). The energy bound-

aries mean thatx9(q,v) is zero whenv is beyond the
boundaries, and we use it as a requirement onx9(q,v) when
we apply the MEM to getx9(q,v). Using the MEM, we
obtain x9(q,v) for q52p/3. In Fig. 2, we plotx9(q,v)
obtained by the MEM with a different number of moments
and the exact one from Eq.~5!. It shows that thex9(q,v)
obtained by the MEM converges toward the exact one when
the number of moments is increased, andx9(q,v) calculated
with five moments is a good approximation for the exact
result. We have also calculatedx9(q,v) for other q, they
have similar behavior.

For the interacting case withV52t, which corresponds to
the Heisenberg model, the elementary excitations are known
as S51/2 objects13 ~spinons!. The dispersion relation is
e(q)5ptusin(q)u,14 which provides the lower bound of exci-
tation energies for each momentumq. The spectral weight is
dominated by the continuum of the two-spinon excited
states,15 and the energy range for the continuum is
tpusin(q)u,v,2tpusin(q/2)u. Based on this fact an analytic
ansatz forx9(q,v) was proposed as15

x9~q,v!5A
u@v2ptusin~q!u#u@2ptusin~q/2!u2v#

@v22p2t2sin2~q!#1/2
,

~6!

whereu(x) is the step function. This is an approximate so-
lution, because it cannot satisfy the sum rules with a fixed
paramenterA. Since the contributions from the excited states
of more than two spinons are finite, we only have the low
energy bound. We use it as a requirement onx9(q,v) in our
MEM calculations. In Fig. 3, thex9(q,v) obtained by the
MEM with different number of moments are plotted for
q52p/3. The analytic ansatz which satisfies the third sum
rule is also plotted in Fig. 3 for comparison. One can see the
tendency of the curves as the number of moments increase.
x9(q,v) tends to diverge at the lower bound. We also mark
the position of the upper bound for two-spinon excited states.

FIG. 1. Moments vs the inverse system size 1/N→0 for V52t
andq5p/2, whereM is the number of states kept at each iteration
in DMRG calculations. The extrapolation is to 1/N→0, and the
error is estimated by the different extrapolations caused by the er-
rors in slope.

TABLE I. The comparison of the moments obtained by DMRG
with the exact results forV50 andq52p/3. In the DMRG calcu-
lations 64 states are kept at each iteration, and the error bars are
estimated by changing the number of states kept and finite size
scaling.

Exact DMRG Error

m1(2p/3) 0.121013 0.1211 131023

m2(2p/3) 0.333333 0.33337 531025

m3(2p/3) 0.954930 0.954928 531026

m4(2p/3) 2.826993 2.8273 531024

m5(2p/3) 8.594367 8.59434 531025

FIG. 2. The dynamical structure functionx9(q,v) for V50 ~the
XY model! andq52p/3. The results obtained by the MEM with a
different number of moments are plotted. Two solid vertical lines
are the energy boundaries.
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It is obvious that the contributions from the two-spinon con-
tinuum is dominate. In Fig. 4,x9(q,v) is plotted for other
momentums.

In conclusion, we have developed a numerical method for
calculating the ground-state dynamical correlation functions
in one-dimensional quantum systems based on the density
matrix renormalization-group method and the maximum en-
tropy method. We demonstrate this method on the dynamical
density-density correlation functionx9(q,v) of the spinless
fermion system with nearest neighbor interaction. For the
noninteracting case, it corresponds to theXY model, the dy-
namical density-density correlation function obtained by our
method shows very good agreement with the exact result.
For the interacting case withV52t, it corresponds to the
Heisenberg model, we obtain thex9(q,v), which was not

known before. This method is a very general one, which can
be applied to any one-dimensional system with short range
interaction like, e.g., the Hubbard model, theS51 Heisen-
berg model, the interacting fermion~or boson! system with
randomness.
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FIG. 3. The dynamical structure functionx9(q,v) for V52t
~the Heisenberg model! andq52p/3. The results obtained by the
MEM with different number of moments are plotted. The analytic
ansatz which satisfies the third sum rule is also plotted for compari-
son. The solid vertical line is the lower boundary. The arrow marks
the position of the upper boundary for the two-spinon excited states. FIG. 4. The dynamical structure functionx9(q,v) for V52t

~the Heisenberg model! at ~a! q5p/2, and ~b! p/3 and p/4.
x9(q,v) are obtained by the MEM with five moments. The solid
vertical lines are the lower boundaries for each momentum. The
arrow marks the position of the upper boundary of the two-spinon
excited states.
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