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Abstract

The theoretical description of heavy fermion physics, in particular the formation and energy scale of the heavy electron
liquid, is still an open issue. One of the competing points of view is based on Nozières' exhaustion scenario that predicts
a strongly reduced Kondo scale in concentrated systems. We study the properties of the paramagnetic phase of the
periodic Anderson model within the dynamical mean-"eld theory at ¹"0 using Wilson's numerical renormalization
group. Special emphasis is laid on the relation between lattice and impurity energy scales. ( 2000 Elsevier Science B.V.
All rights reserved.
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Heavy fermion compounds [1] can be viewed as para-
digm for strong correlation e!ects in solids. The physics
of these systems can in several cases, like e.g. CeAl

3
,CeB

6
or CeCu

6
[1], be at least qualitatively understood by

a picture of independent, but coherent Kondo scatterers,
with the low-energy scale set by the impurity Kondo
temperature. However, for UPt

3
,URu

2
Si

2
or Yb

4
As

3
[2,3] there seem to exist two distinct energy scales; one
high-temperature scale, ¹

K
, describing conventional in-

coherent Kondo scattering, and a much smaller scale,
¹

0
, marking the onset of Fermi liquid formation.
One possibility to understand this discrepancy is based

on NozieH res' exhaustion scenario that predicts a reduced
scale for the Fermi liquid formation in concentrated
systems due to the small number of screening states
available [4}9]. Evidence for such behaviour has recently
been observed in studies of the periodic Anderson model
(PAM)
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within the dynamical mean-"eld theory (DMFT) [10] for
SnfT"1 and a value of ;/<2+4 [6}9]. Except for the
work by Vidhyadhiraja et al. [9], which is based on
second-order perturbation theory in ; (IPT), the results
were obtained by quantum Monte-Carlo. However, for
large ;/<2, the identi"cation of exponentially small en-
ergy scales with QMC is problematic due to its restric-
tion to "nite temperatures. The IPT as a perturbational
approach in ;, on the other hand, certainly cannot
produce exponentially small energy scales. Thus, for
a quantitative description of the low-temperature phase
and especially a reliable calculation of the low-energy
scale ¹

0
, a non-perturbative technique at ¹"0 is neces-

sary.
Such a method has become available recently by the

application of Wilson's NRG [11,12] to the DMFT
[13}15], which we use to study the paramagnetic phase
of the PAM within the DMFT at ¹"0. The conduction
band is described by a Gaussian density of states, the
position of its center of mass e

#
controls the "lling. As
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Fig. 1. f-density of states A
f
(u) for PAM (dashed line) and

SIAM (full line) for ;"!2e
f
"2,<2"0.2 and e

#
"0.5.

Fig. 2. m/mHJ¹
0

versus Sn#T for ;/<2"8.

Fig. 3. m/mH as function of ;/<2 for Sn#T+0.6. The circles
(squares) denote varying ;(<2) for "xed <2"0.2 (;"2).

a typical result we show in Fig. 1 the local density of
f-states A

f
(u) for ;/<2"10, SnfT+1 and e

#
"0.5

(Sn#T+0.6) for the PAM (dashed line) and the single
impurity Anderson model (SIAM, full line). One sees the
characteristic structures, namely the charge}excitation
peaks at u+$;/2 and the Kondo resonance at the
Fermi level. The height of the Kondo peak in the PAM is
strongly enhanced as compared to the SIAM, while its
width is narrowed (right inset to Fig. 1) [6}9]. The
enhancement in the Kondo peak is connected with a de-
pletion of the e!ective hybridization function D(u) (left
inset of Fig. 1) at the Fermi level. This depletion has been
coined as hallmark of exhaustion physics in the PAM
and related models [6}9], since according to Nozières
phenomenological picture [4,5] due to screening at other
sites the e!ective density of conduction states available at
a given site should be reduced. The reduced e!ective
hybridization at the Fermi level gives also rise to a re-
duced low-energy scale, characterised by an e!ective
mass mH/m+17 in the PAM, whereas the corresponding
quantity for the SIAM is mH/m+8.

Calculating mH/m for "xed ;/<2 and SnfT+1 as
function of Sn#T, one can compare this quantity for the
SIAM and the PAM. To allow a convenient distinction
between the scale of the lattice and the impurity model
we denote the former as ¹

0
and the latter as ¹

K
here-

after. An example for;/<2"8 is shown in Fig. 2, where
we plotted m/mHJ¹

0
as function of Sn#T. Note that for

Sn#T+1 the value ¹
0

for the PAM is enhanced over the
impurity scale [16,17], with an enhancement ln(¹

K
)/

ln(¹
0
)+3/2. Below Sn#T+0.8 the energy scale of the

PAM decreases rapidly below ¹
K
, being almost two

orders of magnitude smaller for Sn#T+0.25.
Nozières' phenomenological arguments also lead to an

estimate of ¹
0

as function of Sn#T, namely ¹
0
J

(¹
K
)2/A(0)

#
(0) [5], where A(0)

#
(0) is the free band-electron

DOS at the Fermi energy. This relation has recently been
tested with IPT [6}9] and found to be ful"lled at least for
;/<2+4 between 0.4)Sn#T)0.8. A much more sensi-
tive check is a comparison of ¹

0
and ¹

K
as function of

;/<2 for "xed Sn#T, since A(0)
#

(0) is constant in this case
and the estimate reads ¹

0
J(¹

K
)2. The result for

Sn#T+0.6 as function of ;/<2 for both varying ; at
constant <2"0.2 (circles) and varying <2 at constant
;"2 (squares) is shown in Fig. 3 on a semi-logarithmic
scale. Evidently ¹

K
and ¹

0
follow an exponential law

¹
0
, ¹

K
Jexp(!a;/<2). However, both curves are par-

allel in the semi-logarithmic plot in Fig. 3, i.e. the coe$-
cients of ;/<2 in the exponents of both quantities are
identical. This of course means ¹

0
J¹

K
rather than

¹
0
J(¹

K
)2, as predicted by Nozières.
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