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Electronic susceptibility and Curie temperature of the double-exchange
model within dynamical mean-field theory

R. S. Fishmana)

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
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~Presented on 13 November 2002!

Due to its applications to the manganites, the double-exchange~DE! model has been intensively
studied over the past ten years. An especially promising approach to investigate the DE model is
dynamical mean-field theory~DMFT!, which becomes exact in infinite dimension but accurately
describes local quantum fluctuations in three dimensions. In this article, we use DMFT to solve the
Bethe–Salpeter equation for the electronic susceptibility aboveTC . Assuming a semicircular
density-of-states, we obtain an analytic relation forTC in the limit of large Hund’s coupling from the
condition that the inverse electronic susceptibility vanishes. Our expression forTC agrees with an
earlier result based on the local-moment susceptibility and corrects a mistake in a result based on the
self-consistent equation for the magnetization belowTC . © 2003 American Institute of Physics.
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With the rediscovery of the manganites almost 10 ye
ago,1 the double-exchange~DE! model has been the subje
of many theoretical studies. At least qualitatively, the D
model describes the electron-mediated interactions betw
Mn moments in ferromagnetic manganites. For example,
DE model accurately predicts the colossal drop of the re
tivity below the Curie temperatureTC . One of the most
promising avenues to study itinerant systems is dynam
mean-field theory~DMFT!, which becomes exact in the lim
of infinite dimension but accurately describes local quant
fluctuations in three dimensions.2 However, most applica-
tions of DMFT to the DE model have been restricted to
ferromagnetic phase belowTC .3–5 Although recent DMFT
studies have provided analytic results for the s
conductivity6 and spin-diffusion coefficient7 aboveTC , no
theory exists for the full magnetic susceptibilityx of the DE
model. In this article, we evaluate the electronic portion ox
to obtain an analytic expression forTC from the condition
that 1/xel→0.

The Hamiltonian of the DE model can be written as

H52t(
^ i , j &

~cia
† cj a1cj a

† cia!22JH(
i

si•Si , ~1!

wherecia
† andcia are the creation and destruction operat

for an electron with spina at site i , si5(1/2)cia
† sabcib is

the electronic spin,Si is the spin of the local moment, andJH

is the Hund’s coupling between the local and electro
spins. As is customary, the local moments are treated cla
cally. We shall study the DE model in the limit of larg
JHS for the semicircular density-of-statesr0(e)5(8/

a!Electronic mail: fishmanrs@ornl.gov
7140021-8979/2003/93(10)/7148/3/$20.00

Downloaded 11 Feb 2004 to 129.137.4.15. Redistribution subject to AIP
s

en
e

s-

al

e

s

c
si-

pW2)AW2/42e2, where W54tAz is the full bandwidth.
For large coordination numberz, the hopping energyt scales
as 1/Az.

In imaginary time, the full susceptibility of the DE
model is given by

x~q,ivm!ab5E
0

b

dt eivmt(
i

e2 iq•(Ri2R1)

3^Tt Stot,i
a ~t!Stot,1

b ~0!&, ~2!

where vm52mpT, Tt is the time-ordering operator, an
Stot,i5Si1si is the total spin at sitei . Notice that
x(q,ivm)ab5x(q,ivm)dab contains three sets of terms: th
local-moment susceptibility, the electronic susceptibility, a
the cross terms.

Our goal is to evaluate the static electronic susceptibi
xel5 limq→0,v→0 xel(q,ivm5v1 i«), where

xel~q,ivm!5
1

4 E0

b

dt eivmt(
i

e2 iq•(Ri2R1)

3^Tt cia
† ~t!cib~t!c1k

† c1d&sab
z skd

z . ~3!

As shown in Fig. 1~a!, we may write xel(q,ivm)
5( l ,nx ln(q,ivm), where n l ,n5(2nl ,n11)pT are Fermi–
Matsubara frequencies. For a fixedvm , the matrix~in Mat-
subara space! xI (q,ivm) obeys the Bethe–Salpeter equatio

xI ~q,ivm!5xI
(0)~q,ivm!

1xI
(0)~q,ivm!GI ~ ivm!xI ~q,ivm!, ~4!

whereGI ( ivm) is the vertex function andxI
(0)(q,ivm) is the

bare susceptibility.8 This relation is sketched in Fig. 1~b!,
where summations are performed over the internal Fermi
quenciesno andnp .
8 © 2003 American Institute of Physics
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Within DMFT, momentum conservation at the intern
vertices of irreducible graphs is disregarded so that inte
Green’s functions are replaced by their local values. Con
quently, the vertex function in Eq.~4! and Fig. 1~b! is inde-
pendent of momenta and may be evaluated from an iden
Bethe–Salpeter equation wherexI (q,ivm) and xI

(0)(q,ivm)
are replaced bylocal susceptibilities at site 1, obtained from
the q-dependent susceptibilities by summing over allq.
In other words, GI ( ivm)5xI

(0)21(q,ivm)2xI
21(q,ivm)

5xI
loc(0)21( ivm)2xI

loc21( ivm).8

Defining Gab
loc( in l) as the local Green’s function for

fixedorientationm̂ of the local moment, we obtain the loca
susceptibilities

x ln
loc(0)~ ivm!52

T

4
d ln^Gda

loc~ in l !&

3^Gbk
loc~ in l1 ivm!&sab

z skd
z , ~5!

x ln
loc~ ivm!52

T

4
$d ln^Gda

loc~ in l !Gbk
loc~ in l1 ivm!&

2dm,0̂ Gba
loc~ in l !Gdk

loc~ inn!&%sab
z skd

z , ~6!

where expectation values denote averages overm̂. Equation
~6! is represented graphically by Fig. 1~c!, where ‘‘x’’ de-
notes the local moment and a dashed line indicates that
Green’s functions are correlated by an average overm̂. In
terms of theq-dependent Green’s functionGab(q,in l), the
bareq-dependent susceptibility required in Eq.~4! is

x ln
(0)~q,ivm!52

T

4N
d ln(

k
^Gda~k,in l !&

3^Gbk~k1q,in l1 ivm!&sab
z skd

z . ~7!

In the bare susceptibilities of Eqs.~5! and ~7!, the averages
over m̂ are performed separately for each Green’s functio

The local andq-dependent Green’s functions were fir
derived by Furukawa:4

Gab
loc~ in l !5

G0
21~ in l !dab2JHSsab•m̂

G0
22~ in l !2~JHS!2 , ~8!

FIG. 1. Diagrams representing~a! the full susceptibility,~b! the Bethe–
Salpeter equation, and~c! the local susceptibility with dashed lines connec
ing the center of each Green’s function to the local moment that is aver
over.
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^Gab~q,in l !&5dab@ in l1m2eq2~JHS!2G0~ in l !#
21,

~9!

where G0( in l)51/@ in l1m2W2^Gzz
loc( in l)&/16# plays the

role of a ‘‘mean field.’’2

When JHS is much larger than bothW and T, it is
straightforward to show that the susceptibilities withvm

50 becomex ln
loc(0)52d lnT/2f n

2 , x ln
loc5(12d ln)T/3f l f n , and

x ln
(0)~q50!5

4T

W2 d lnH 12
8

W2 f nS zn1
1

2
f nD J 21

, ~10!

where f n5zn1Azn
22W2/8 and zn5 inn1dm. Here, dm

5m6JHS for band filling p less than (1) or greater than
(2) 1, corresponding to one electron per site or a comple
filled lower band.

Of course, bothxI
loc(0) and xI

(0)(q50) can be immedi-
ately inverted because each is proportional to the unit ma
If xI

loc is a 2nx32nx matrix with un l ,nu<(2nx21)pT, then
its inverse is given by

x ln
loc215

3

T H 2d ln f l
21

f l f n

2nx21J . ~11!

It follows that the inverse of the full electronic susceptibili
matrix with vm50 is

x ln
21~q50!5

1

T Fd lnS W2

4
22 f l~zl1 f l ! D1

3

2nx21
f l f nG .

~12!

The condition forTC that xel5( l ,nx ln(q50)→` implies

that det@xI
21(q50)#→0. With Rn5(Azn

22W2/82zn)/2, TC

is implicitly given by the relation

(
n

Rn
2

Rn
223W2/32

51. ~13!

Also in the limit of largeJHS, the band filling is given by

p511
1

2
sgn~p21!12T(

n
ReH 1

f n
J . ~14!

These results agree with Furukawa4 except for a corrected
definition of Rn .9 Notice that Eq.~13! is independent of the
size ofxI

loc.
In the limit TC!W, replacing the Matsubara sums

Eqs. ~13! and ~14! by integrals yields the analytic expres
sions

TC5
W&

8p H A12y22
1

)
tan21A3~12y2!J , ~15!

p511
1

2
sgn~p21!1

1

p
$yA12y21sin21 y%, ~16!

wherey52&dm/W. These results are identical to those
Auslender and Kogan,10 who evaluated the local-momen
susceptibility by integrating over the Fermionic degrees
freedom.

Results forTC /W from Eqs.~13! and~15! are plotted in
Fig. 2 for 0<p<1. Symmetric results are obtained for
<p<2. Since the maximumTC at half filling (p51/2) is

ed
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about 0.022 W, the approximationTC!W is certainly justi-
fied. Hence, we have established that the Curie tempera
can be evaluated consistently from the divergence of ei
the local moment or electronic portions of the magnetic s
ceptibility aboveTC as well as from a self-consistent relatio
for the magnetization belowTC .

In future work, we shall generalize the present appro
to include all sets of terms in the full susceptibility of E
~2!. However, our calculation, like all previous ones, ignor

FIG. 2. Results forTC /W from Eqs. ~13! ~solid! and ~15! ~dashed! vs
band-filling p.
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the quantum corrections due to the local mutual preces
of the electronic and local magnetic moments. These qu
tum corrections persist even in thez→` limit when S is
finite.
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