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Dynamics of the disordered heavy-fermion model of Mirandaet al. are calculated using an expression for
the spectral function of the Anderson model that is consistent with quantum Monte Carlo results. We compute
S(v) for three distributions of Kondo scales including the distribution of Bernalet al. for UCu52xPdx . The
corresponding low-temperature optical conductivity shows a low-frequency pseudogap, a negative optical mass
enhancement, and a linear in frequency transport scattering rate, consistent with results in Y12xUxPd3 and
UCu52xPdx . The formalism is strictly valid for a dilute system of Kondo scatterers like Y12xUxPd3 , but the
leading frequency behavior at lowT ~much lower than bulkTK! hold for lattice systems as well.
@S0163-1829~97!50330-4#

Introduction.Over the past four decades, the Fermi-liquid
paradigm has been the key to our understanding of metallic
behavior. In Fermi-liquid theory we assume a 1:1 correspon-
dence between the low-lying eigenstates of the interacting
system to those of the noninteracting electron gas. This leads
to a magnetic susceptibility that is weakly temperature de-
pendent, a specific heat linear inT, and a low temperature
resistivity that is quadratic.

However, recently there has been a great deal of experi-
mental interest in disordered heavy-fermion compounds1

~e.g. Y12xUxPd3, UCu52xPdx!, where strong electronic cor-
relations preclude Fermi-liquid behavior. The non-Fermi-
liquid behavior in these compounds is characterized by a
linear resistivity at lowT, a logarithmic low temperature
divergence of the susceptibility and the specific heat coeffi-
cient, an optical conductivity with a low frequency
pseudogap and a linear transport scattering rate at low
frequencies.1–3 Several models have been proposed to ex-
plain these experimental results. Among them are theories
based upon proximity to a zero temperature quantum critical
point4 and those which explain the impurity to lattice cross-
over effects in the multichannel Kondo model.5

Dobrosavljevic´ et al.6 investigated a dilute system of
magnetic impurities in a disordered metal. Since disorder can
give rise to a distribution of the local density of states of the
conduction electrons, a distribution of Kondo scalesP(TK)
is induced that could be singular enough to producex andg
that diverge asT→0, a strongly non-Fermi-liquid behavior.
More recently, Bernalet al.7 have shown that thisP(TK) is
not appropriate for theU-doped heavy-fermion systems.
They propose an alternative spread of Kondo scales, and use
it to calculate the thermodynamics of these alloys. Miranda
et al.8 have recently shown that the underlying mechanism
behind the non-Fermi-liquid transport and thermodynamics
is the presence of a finite number of unquenched low-TK
spins, along with an essentially constantP(TK) at low TK .
This gives a linear inT low temperature resistivity.

Formalism.We stay within this phenomenological frame-
work and calculate dynamical quantities such as the optical
conductivity and self-energy. Our analysis is strictly valid
only in systems with adilute collection of Kondo centers,
like Y12xUxPd3, but the leading frequency dependence of

the dynamical quantities~at low T) should apply to concen-
trated systems like UCu3.5Pd1.5 as well.9 We begin by con-
centrating on the Kondo regime of the Anderson impurity
model, whered-electrons occupy the conduction band, and
f -electrons provide the magnetic impurities for the spin-spin
scattering processes. In the low temperature limit this model
corresponds precisely to the Fermi-liquid picture of Landau.
The electronic density of states has a resonance at the Fermi
level, giving significant impurity contributions to the specific
heat and magnetic susceptibility. Following Doniach and
Sunjic,10 Frota and Oliveira11 argued that the Doniach-Sunjic
form, modified to account for thep/2 phase shift, should
describe the shape of Kondo resonance. Their expression is
in agreement with their results for the Kondo resonance ob-
tained from numerical renormalization group calculations,12

as well as low-temperature quantum Monte Carlo~QMC!
results analytically continued with the maximum entropy
method~MEM!.13,14

We can generalize their expression to finite temperatures
and get

Af~v,TK!5
1

pD
Re@ iGK /~v1 iAGK

2 1g2!#1/2, ~1!

where D is the f -d hybridization energy, andGK
5(p/2)2TK is the half-width of this resonance,TK being the
Kondo temperature. We add a temperature dependent width
g to the original expression of Frota and Oliveira,11 with g
determined by fitting to QMC-MEM results.13 As shown in
Fig. 1, this form continues to exhibit remarkable agreement
with the shape of the Kondo resonance~the low-frequency
peak! obtained from QMC-MEM,even at finite tempera-
tures. By comparison with a wide range of Anderson impu-
rity spectra, we were able to obtain the universal function
g(T/TK) for over three decades ofT/TK . ForT/TK<0.3, we
useg(T)54.52T, a value derived from Nozie´res’15 phenom-
enological Fermi-liquid description of the Kondo problem at
low temperatures. The result forg(T/TK) will be presented
in a table of an upcoming publication.

Since we are working in the dilute limit, we assume the
impurities to be independent scatterers and disorder average
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over the universal single impurity spectral function@Eq. ~1!#
to calculate dynamical quantities. The Hilbert transform of
Af(v,TK) then gives the average impurityt matrix

t f~z!5E dTKP~TK!E dv
V2Af~v,TK!

z2v
, ~2!

whereV is the f -d hybridization. Following Mirandaet al.8

we use a dynamical mean-field approximation,16 which be-
comes exact in the limit of infinite dimensions, to calculate
the lattice self-energy from a concentrationx of substitu-
tional Kondo impurities

S~v!5
xtf~v!

11xtf~v!G~v!
, ~3!

whereG(v) describes the average effective medium of the
impurity. It is related to the average local host Greens func-
tion G

G~v!5E de
N~e!

v2e1m2S~v!
, ~4!

through the relation

G215G211S, ~5!

whereN(e)5(1/t* Ap)e2e2/t* 2
and we sett* 510 000 K to

establish a unit of energy and temperature. The solutions of
Eqs.~1!–~5! then give the full lattice self-energy.

The knowledge of this self-energy enables one to calcu-
late physical quantities17 like transport coefficients and the
optical conductivity. In this paper we concentrate on the op-
tical conductivity s(v). It is measured in units ofs0
5e2p/2\a, which with h/e2'2.63104 V, varies between
1023 and 1022 @~mV cm)21# , depending on the lattice con-
stanta.

Results.We choose three different distributionsP(TK),
corresponding to strong,6 weak7 and a phenomenological dis-
order motivated by Mirandaet al.’s8 argument that the ex-
perimentalP(TK) should be relatively constant at low tem-
peratures. We consider the distribution of Kondo scales as
arising from a distribution of couplings between the conduc-
tion and thef -electron spinsP(J). For the strongly disor-
dered sample,P(TK) has the form6

Psd~TK!5~4p!21/2
1

TKln~ t* /TK!

3exp$20.25ln2@0.217e21ln~ t* /TK!#%, ~6!

where we have used a bulk Kondo temperatureTK
0 5102 K

~in most U-based heavy-fermion systemsTK
0 varies between

100–200 K!. The weak disorder is characterized by a Gauss-
ian distributionP(J) of width 2u50.01, whereu is a disor-
der parameter6 and a higher value ofu corresponds to more
disorder. This leads to

Pwd~TK!5
1

A0.01p

1

0.217TKln2~TK /t* !

3expH 2100F 1

0.217ln~TK /t* !
11G 2J . ~7!

For the phenomenological spread of Kondo scales, we as-
sume the form

Pph~TK!5
0.01

e~TK2TK
0

!11
. ~8!

This distribution is not based on microscopics; it simply sat-
isfies the experimental criterion of constancy at lowTK and
looks qualitatively similar to theP(TK) for UCu52xPdx .8

Unlike the 1/(TKlnTK) divergence of the strongly disordered
case,Pph(TK) has a finite number of spins withTK50.

The nature of the disorder gives rise to different physics
in each case, as is manifested in the functional form of
ImS(v) ~Fig. 2! ~these plots are forT50 andx50.2 for all
three distributions!. For a weakly disordered system,
ImS(v) has the form2c1v2 as v→0 where c is a
constant.19 This suggests a finite lifetime for the electrons
at the Fermi energy at zero temperature which makes it
different from a normal~pure metal! Fermi liquid. But since
there are no unquenched spins atT50, the system does form
a local Fermi liquid, with a resistivityr(T);r(0)2AT2.
For the case of strong disorder,Psd(TK) is divergent at
low TK . Even though we are on the metallic side of the
metal-insulator transition, a large number of spins with very
low Kondo temperatures gives a non-Fermi-liquid ground
state. For this scenario, we find that ImS(v);2c1v1/4 at
low v.

Pph(TK), the distribution of Kondo scales that is relevant
to UCu52xPdx , is intermediate between these two cases. It
gives us an ImS(v) that behaves like2c1uvu as v→0.
This behavior can be understood through the following
simple argument. Oliveira’s expression for thef -electron
spectral function atT50 can be expanded nearv50 to give
a form Af(v,TK);12a(v/TK)2, where a is a constant.

FIG. 1. Spectral function for thef -electron in the Kondo limit of
the Anderson model. The long-dashed line is the Doniach-Sunjic
result ~Ref. 11! ~true for T50!. The dotted lines represent the ex-
tension of the Doniach-Sunjic result to finiteT which is used for
calculating the dynamics in this paper; the solid lines represent
QMC-MEM results.T/TK50.2, 0.8, 3.2, and 12.8 for the curves
from top to bottom. ForT/TK<0.3, Af(v,Tk) has a widthg
54.52T which comes from Fermi-liquid theory~Ref. 15!. For
higherT/TK , we adjustg to fit the QMC-MEM data.
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Given that Pph(TK)'const at low TK ,
*0

`Af(v,TK)Pph(TK)dTK gets its dominant contribution
from the region whereTK>v. If we change the lower limit
of the integral from 0 tov and make use of the fact that
Pph(TK) has a finite upper cutoff~;100 K!, ImS(v) turns
out to be2c1uvu. A similar argument was employed by
Mirandaet al.8 to calculate the resistivity. Averagingv over
a region of widthkBT near the Fermi surface replacesuvu by
T, giving a resistivity linear in temperature which is ob-
served experimentally in Y12xUxPd3 and UCu3.5Pd1.5.1 This
result is confirmed by direct calculation of the resistivity~not
shown!.

Figure 3 shows the temperature dependence of the optical
conductivity of the phenomenologically disordered system.
Consistent with what is seen in Y12xUxPd3 and UCu3.5Pd1.5

~Ref. 2!, the Drude-like peak is recovered whenT*100 K,
since spins with essentially all possible values ofTK are
participating in the dynamics at this temprature. The inset
lists the zero temperature optical conductivities for the
three distributions of Kondo scales. All are characterized
by a vanishing Drude weight at lowT, along with a finite
frequency peak. As the disorder is increased, this peak
moves towards lower frequencies, concomitant with the
decrease in the average value ofTK ~which is different than
TK

0 !. The Drude peak atT50 is recovered from the weak
disorder case ifu→0 in P(J), giving Pwd(TK)}d(TK

2TK
0 ) ~TK

0 is the bulk value!, which takes us to the single
Kondo scale physics. The identicalT50 dc value of the
conductivity in all three cases is a consequence of the Friedel
sum rule at the Fermi level and is an artifact of our frame-
work ~we are always in the unitarity limit!. s(v50,T50)
would be different if the values ofx are chosen to be differ-
ent in the three cases.

The optical conductivity of metals, even non-Fermi-liquid
metals, is usually analyzed by rewriting it in a generalized
Drude form2

s~v!5
vp

2

4p

1

G~v!2 iv„11l~v!…
, ~9!

FIG. 2. Imaginary part of the conduction electron self-energy
whenT50 andx50.2. The three different curves denote different
distributions of disorder. The lowest one corresponds to very weak
disorder @P(TK)→0 as TK→0# and at low v has the form
ImS(v)}2c1v2, giving a local Fermi liquid withr(T)5r(0)
2AT2. The highest one is for strong disorder~still metallic!, with a
v1/4 dependence asv→0. The one in the middle corresponds to a
phenomenological distribution of Kondo scales suitable for the
heavy-fermion systems. It approaches the form ImS(v)}2c
1uvu as v→0. This strongly hints towards a linear resistivity at
low T in these compounds.

FIG. 3. Optical conductivity for the phenomenological distribu-
tion of Kondo scales at a few temperatures whenx50.2. At very
low temperatures a finite number of unquenched spins preempt the
formation of a Fermi liquid. The interesting feature is the develop-
ment of a Drude peak as we go from temperatures much below the
bulk Kondo value~TK

0 '100 K! to those much above it. The inset
shows the conductivity for the three differentP(TK) when T50.
The absence of a Drude peak is conspicuous in all three cases.

FIG. 4. ~a! Frequency dependence of the scattering relaxation
rateG(v) at T50 for the three differentP(TK) whenx50.2. Note
that G(v) is linear inv, and therefore consistent with experiment
~Ref. 2!, only for the phenomenological distribution of Kondo
scales.G(v) corresponding to weak disorder has anv2 behavior as
v→0, suggesting the formation of a local Fermi liquid.~b! G(v)
for Pph(TK) at different temperatures; in each case the solid line is
a fit to the formG(v)5G0„12(T/T0)n2(v/v0)n

…. We see that up
until 10 K, we have a scattering rate that is roughly linearly de-
creasing inv andT. ~c! Optical mass enhancement forPph(TK) at
different temperatures@symbols are the same as~b!#. At low tem-
peratures 11l(0),0 indicative of a non-Fermi liquid.
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where s(v)5s1(v)1 is2(v). We calculate the transport
relaxation rateG~v! and the optical mass enhancement
@11l~v!# for the three distributions of Kondo scales. How-
ever, as shown in Fig. 4~a!, only the phenomenological dis-
tribution results in a linear in frequency zero temperature
G~v!, consistent with what is seen in Y12xUxPd3 and
UCu3.5Pd1.5.2 In each case, we find that the low frequency
optical mass enhancement 11l~0! is negative~however, in
the case of weak disorder a positive mass is recovered as
u→0).

G~v! for the phenomenological distribution at several
different temperatures is plotted in Fig. 4~b!. Here, consistent
with Degiorgi et al.2 we fit the relaxation rate toG~v!
5G0„12(T/T0)n2(v/v0)n

… in the low frequency region.
We find thatT0'85 K and v0'0.09t* , and are roughly
constant in temperature. At high temperatures,G~v! and
11l~v! @Fig. 4~c!# are weakly frequency dependent,
11l~v!.0 and n52.00, as expected for a Fermi liquid.
Thus, as seen in Fig. 3, a Drude peak is recovered ins1(v).
As the temperature is lowered,G~v! and 11l~v! become
strongly frequency dependent, 11l~0!,0, and n'1, fea-
tures which we believe should be viewed as characteristic of
a non-Fermi liquid. A very similar sequence of features are
seen in Y12xUxPd3 and UCu3.5Pd1.5.2

Conclusion.Within the Kondo disorder model,6–8 we cal-
culate dynamics fordilute U-based heavy-fermion systems.
As mentioned in the Introduction, this calculation is very
well justified for a system with dilute Kondo scatterers
~Y12xUxPd3! at all temperatures. For a concentrated Kondo
lattice system like UCu3.5Pd1.5, only the leading temperature
(v) dependence applies~not the numerical prefactor!. When
temperature~v! becomes comparable toTK

0 , self-consistent

modifications toP(TK) presumably are significant for the
lattice.

We observe a linear resistivity at lowT consistent with
Ref. 8, the lack of a Drude peak and a low-frequency
pseudogap in the real part of the optical conductivity, a nega-
tive low temperature optical mass, and a linear in frequency
optical dynamical scattering rate. All these features are ob-
served in Y12xUxPd3 and UCu3.5Pd1.5.1,2 It is also straight-
forward to compute the spin-relaxation rate in NMR (1/T1),
which will be addressed in an upcoming publication. Thus,
we conclude that the phenomenological distribution of
Kondo scales model is sufficient to describe the dynamics of
these disordered systems. It is important to stress that Kondo
disorder is not the sole possible explanation of non-Fermi-
liquid behavior in these systems.4,5 In fact, it has recently
been shown that the two-channel Kondo lattice model dis-
plays remarkably similar optical properties.18 However, it re-
mains to be seen if an appropriate two-channel Kondo model
can accurately describe the transport and optical properties of
dilute systems such as Y12xUxPd3.

Note added in proof.Recently, we received an unpub-
lished paper by Mirandaet al. ~since published20! where
scaling arguments are employed to calculate the Green’s
functions and magnetic dynamic susceptibility.
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3H. v. Löhneysenet al., Phys. Rev. Lett.72, 3262~1994!.
4M. A. Continentino, Phys. Rev. B47, 11 587~1993!; A. J. Millis,

ibid. 48, 7183 ~1993!; A. M. Tsvelik and M. Reizer,ibid. 48,
9887 ~1993!.
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