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We introduce an extension of the dynamical mean-field approximation~DMFA! that retains the causal
properties and generality of the DMFA, but allows for systematic inclusion of nonlocal corrections. Our
technique maps the problem to a self-consistently embedded cluster. The DMFA~exact result! is recovered as
the cluster size goes to 1~infinity!. As a demonstration, we study the Falicov-Kimball model using a variety of
cluster sizes. We show that the sum rules are preserved, the spectra are positive definite, and the nonlocal
correlations suppress the charge-density wave transition temperature.@S0163-1829~98!51436-1#
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INTRODUCTION

Strongly interacting electron systems have been on
forefront of theoretical and experimental interest for seve
decades. This interest has intensified with the discovery
variety of heavy-fermion and related non-Fermi-liquid sy
tems and the high-Tc superconductors. In all these system
strong electronic interactions play a dominant role in
selection of at least the low temperature phase. The simp
theoretical models of strongly correlated electrons, the H
bard model~HM! and the periodic Anderson model~PAM!,
have remained unsolved in more than one dimension des
a multitude of sophisticated techniques introduced since
inception of the models.

With the ground-breaking work by Metzner an
Vollhardt1 it was realized that these models become sign
cantly simpler in the limit of infinite dimensionsD5`.
Namely, provided that the kinetic energy is properly resca
as 1/AD, they retain only local, though nontrivial, dynamic
The self-energy is constant in momentum space, thoug
has a complicated frequency dependence. Consequently
HM and PAM map onto a generalized single impur
PRB 580163-1829/98/58~12!/7475~5!/$15.00
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Anderson model. The thermodynamics and phase diag
have been obtained numerically by quantum Monte Ca
~QMC! and other methods.2–4

The name dynamical mean-field approximation~DMFA!
has been coined for approximations in which a purely lo
self-energy~and vertex function! is assumed in the context o
a finite-dimensional electron system. While it has be
shown that this approximation captures many key feature
strongly correlated systems even in a finite-dimensional c
text, the DMFA, which leads to an effective single si
theory, has some obvious limitations. For example,
DMFA cannot describe phases with explicitly nonlocal ord
parameters, such asd-wave superconductivity, nor can it de
scribe the short-ranged spin correlations seen in the met
state. Consequently, there have been efforts to extend DM
by inclusion of nonlocal correlations, which would corr
spond to 1/D corrections to the self-energy of theD5`
models.5,6 These attempts have been only partially succes
because of the difficulties of formulating a causal7 theory out
of nonlocal Green functions. The nonlocal Green functio
do not have a negative-definite imaginary part, so any s
energy diagram constructed with them is not guarantee
R7475 © 1998 The American Physical Society
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preserve causality. In fact, in the work by Schiller a
Ingersent6 on the Falicov-Kimball model~FKM! violations
of the spectral sum rule occurred for moderately large val
of the interaction strength.

In this work we introduce a new method that includ
short-ranged dynamical correlations and allows for nonlo
order parameters. The method is an iterative self-consiste
scheme on a finite-size cluster with periodic boundary c
ditions. The essential approximation is the assumption
the self-energy is only weakly momentum dependent so
it is well approximated on a coarse grid of cluster mome
tum pointsK . This approximation will be very good in high
dimensions, but in low dimensions its validity is less cle
However, in many correlated systems, the momentum de
dence of the self-energy is believed to be less important t
its energy dependence, since the physical properties
dominated by a weakly dispersive feature in the electro
spectra near the Fermi surface, as seen, e.g., in experim
on heavy-fermion systems.8

The paper is organized as follows. First, we briefly revi
the DMFA, which is reproduced by our method if we choo
a cluster consisting of only a single site. We then descr
the new technique that we name dynamical cluster appr
mation ~DCA!. Finally, we demonstrate the method by e
ample of the Falicov-Kimball model.

DYNAMICAL MEAN-FIELD APPROXIMATION

The DMFA assumes that the self-energy is a purely lo
functional of the local Green’s function only,S i , j
5S i ,i(Gi ,i)d i , j . Consequently, the self-energy has no m
mentum dependence, and the lattice problem may be ma
onto a self-consistently embedded impurity problem. The
sulting DMFA algorithm has the following steps.

~1! The procedure starts with a local host Green’s fu
tion G that includes self-energy processes at all lattice s
except at the ‘‘impurity’’ sitei under consideration.G defines
the undressed Green’s function of a generalized Ander
impurity model that is then solved by some technique, e
the QMC method.

~2! ThenS i ,i5G212Gimp
21 , whereGimp is the computed

Green’s function of the generalized Anderson impur
model.

~3! This self-energy is assumed to also be the self-ene
of the lattice. Consequently, the local lattice Green’s fu
tion follows from Gi ,i5(1/N)(k„Go

21(k)2S i ,i…
21, where

Go(k) is the bare lattice Green function andN is the ~infi-
nite! number of points of the lattice.

~4! The iteration loop closes by defining the newG21

5Gi ,i
211S i ,i . The iteration typically continues untilGi ,i

5Gimp to within the desired accuracy, and the proced
may be shown to be completely causal.

DYNAMICAL CLUSTER APPROXIMATION

We consider a cluster of sizeNc5LD with periodic
boundary conditions. The corresponding first Brillouin zo
is divided intoNc cells of size (2p/L)D. The algorithm be-
gins with a guess, usually zero, for the cluster self-ene
Sc(K ) ~here and in the following we suppress the frequen
argument!. We now define a Green functionḠ as
s
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Ḡ~K !5
Nc

N (
k8

@z2eK1k81m2Sc~K !#21, ~1!

where thek8 summation runs over the momenta of the c
about the cluster momentumK . z is the~complex! frequency
argument, andm the chemical potential. Ḡ is causal pro-
vided that its proper self-energySc(K ) is causal. It is a
coarse-grained average of the lattice Green’s function in m
mentum space with a self-energySc(K ). Before a new esti-
mate for the self energy can be formulated, we calculate
host cluster propagatorG~K ! using

G21~K !5Ḡ21~K !1Sc~K !. ~2!

This is the ‘‘cluster exclusion’’ to prevent overcounting o
self-energy diagrams on the cluster. Since the self-energ
Eq. ~1! is independent of the integration variable, Eqs.~1!
and~2! are formally identical to the corresponding equatio
~steps 3 and 4! used in the DMFA~after rescalingk8). Thus,
at this point the DCA is equivalent toNc independent
DMFA’s, one for eachK . That Eq.~2! preserves causality
can be seen as follows: SinceSc(K ) in Eq. ~1! does not
depend onk8, the sum onk8 can be rewritten as an energ
integral with aK -dependent density of states~DOS! rK(e).
However, for any positive semidefinite, normalized functi
rK(e) one has

E de
rK~e!

z1m2Sc~K !2e
5@z2Sc~K !2«K

1m2GK„z1m2Sc~K !…#21

with an effective ‘‘dispersion’’«K5(Nc /N) (k8eK1k8 for
the embedded cluster and a causal functionGK„z1m
2Sc(K )…,9 which is the self energy ofG.

Given a causal host cluster propagatorG~K ! we then com-
pute the interacting cluster Green’s functionGc(K ) ~or self-
energySc) by any convenient method. This introduces no
local interactions and correlations between the differ
momentum cells.Sc(K ) is obtained via

Sc~K !5G21~K !2Gc
21~K !. ~3!

Sc(K ) is assumed to be a good approximation of the latt
self-energy at the cluster momenta. It is fed into Eq.~1! to
generate a newḠ(K ). This process is repeated until upo
convergence of the algorithmḠ(K )5Gc(K ). The schemat-
ics of the algorithm is sketched in Fig. 1.

FIG. 1. Schematic sketch of the dynamical cluster algorithm
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DISCUSSION OF THE ALGORITHM

Several assumptions were made in the construction of
algorithm. The first is the weak momentum dependence
the self-energy that is equivalent to assuming that the
namical intersite correlations have some short spatial ra
b&L/2. Then, according to Nyquist’s sampling theorem,10 to
reproduce these correlations in the self-energy, we need
sample the reciprocal space at an interval ofDk'2p/L; i.e.,
on a cluster ofNc5LD points within the first Brillouin zone.
Equivalently,S(K1k8)'S(K ) for eachk8 within a cell of
size (p/b)D, so the lattice self-energy is well approximate
by the self-energySc(K ) obtained from the coarse-graine
cluster. Thus, the algorithm is a natural extension of
DMFA. The second assumption is the form of Eq.~1!. This
choice is not unique, but it is the simplest that mainta
causality and produces an algorithm that both recovers
DMFA whenNc51 and becomes exact whenNc5`. When
Nc51, the k8 summation runs over the complete Brillou
zone andḠ is the local Green’s function. WhenNc5`, the
k8 summation vanishes.

We want to stress that the DCA is a general scheme
specialized to a particular model of interest or to the te
nique used to obtain the cluster self-energy. A variety
techniques, including perturbation theory11 @noncrossing
approximation ~NCA!, the fluctuation exchange approx
mation12#, quantum Monte Carlo, or numerical renormaliz
tion group can also be used to solve the embedded clu
problem.

APPLICATION: THE FALICOV-KIMBALL MODEL

The spinless FKM can be considered as a simplified H
bard model in which one spin species is prohibited to h
and has consequently only local dynamics. The Hamilton
reads

H52t(
^ i , j &

di
†dj2m(

i
~ni

d1ni
f !1U(

i
ni

dni
f , ~4!

with ni
d5di

†di , ni
f5 f i

†f i , and in the particle-hole symmetri
case that we consider,m5U/2. We measure energies i
units of the hopping elementt. For D>2 the system has a
phase transition from a homogeneous high-tempera
phase with ^ni

d&5^ni
f&51/2 to a checkerboard phase@a

charge density wave with ordering vectorQ5(p,p, . . . )#
with ^ni

d&Þ^ni
f& for 0,U,`.13 In contrast to the Hubbard

and related models, within the DCA the FKM can be solv
without the application of QMC because thef electrons are
static, acting as an annealed disorder potential on the
namic d electrons. We generalize the algorithm of Bran
and Mielsch14 to a finite-size cluster. Given an initial hos
Green’s functionGi j of the d electrons, the algorithm firs
computes the Boltzmann weightswf of all configurations$ f %
of f electrons on the cluster, aswf5wf

0/Z with

wf
052Nc)

vn

det
Gi j

21~ ivn!2Uni
fd i j

ivnd i j
~5!
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the unnormalized weight.Z5($ f %wf
0 is the ‘‘partition sum.’’

The determinant is to be taken over the spatial indices. Gi
the weights, the newd-electron cluster Green’s function i
given by

Gi j ~z!5(
$ f %

wf@G i j
21~z!2Uni

fd i j #
21. ~6!

The self-consistency loop closes by use of Eqs.~1!–~3!.
Because the number off configurations grows exponen

tially with the cluster size we confine ourselves to 131, 2
32, and 434 clusters in two dimensions. We first simulta
neously determine the weights and the Matsubara Gre
function. Then we use knowledge of the weights to find t
retarded Green’s function. Convergence of the algorithm
fast for Matsubara frequencies, but relatively slow for re
frequencies. Upon convergence we test the sum rules of
spectral function at the cluster momenta.

The spectral functions are always positive, and the s
rules for both the cluster Green’s function as well as the h
Green’s functionG are fulfilled within numerical accuracy
for moderate interaction strengthU. For largeU a gap opens
in the DOS and convergence becomes more difficult forv
50. This is because the self-energy for the momenta on
Fermi surface@e.g.,K5(p,0)# approaches the atomic limi
S(v)'U2/4(v1 ih) for frequencies inside the gap~h is a
positive infinitesimal!. This implies that asv→0, Im S
→2`, which is rather difficult to converge to. On the oth
hand, for all other frequencies the algorithm converges
within the desired accuracy. Since the contribution to
DOS from v50 is infinitesimal, the spectral sum rules a
also fulfilled to within numerical accuracy. We emphasi
that these peculiarities atv50 are only observed for the rea
frequency algorithm. For the Matsubara frequency alg
rithm, the sum rules~which may be reexpressed in terms
imaginary-time propagators! were always satisfied and th
algorithm was perfectly stable~at least at the temperature
considered!.

In Fig. 2 we show the DOS of the conduction electro
for the half-filled case for the 232 cluster forU51.6. In
DMFA there is no temperature dependence of the DO
since the weights of the unoccupied and occupiedf state are

FIG. 2. Conduction electron DOS in the homogeneous phase
various temperatures (232 cluster! and U51.6. Note the emer-
gence of ‘‘charge-transfer’’ peaks with simultaneous suppressio
the 2D van Hove peak at the band center. In contrast, the DM
result is temperature independent.
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wo5w151/2, independent of temperature~in the homoge-
neous phase!. This is changed in the DCA, where the chec
erboard configurations begin to dominate as the tempera
is lowered. The result is the appearance of the ‘‘charge tra
fer’’ features in the DOS, the two peaks separated by
interaction strengthU.

Next, we explore the finite-size effects of the DCA
large U where the DOS shows more features~including a
gap!, and finite-size effects are more severe. In small clus
the effects of periodic boundary conditions are strong. O
results for the DOS atU58 are shown in Fig. 3. Notice how
the spurious features of the 232 cluster~strong dips and an
additional small gap! have essentially disappeared in t
DOS of the 434 cluster, though small features at the edg
of the gap remain~not discernible in the figure!. As larger
clusters cannot be evaluated exactly~too many configura-
tions! we employ Monte Carlo sampling of the configur
tions. As a preliminary result of work in progress we sho
the DOS of the 636 cluster. Already at this modest clust
size all finite-size features are essentially eliminated. T
hints to the superior finite-size scaling properties of the D
as compared to the standard lattice techniques without
pling to a host.

Finally, we discuss the effect of nonlocal corrections
the transition temperatureTc to the checkerboard phas
Within the DCA, we findTc by estimating the temperatur
where the order parameter in the broken symmetry ph
vanishes. The phase diagram is displayed in Fig. 4. The n
local correlations of the DCA suppress theTc compared to
the DMFA estimate, except for weakU where the nonloca
corrections to the vertex are very small~of orderU2 smaller
than local contributions!. For largeU, however, the mode

FIG. 3. Conduction electron DOS in the homogeneous phase
various cluster sizes for a fixedT51 andU58. Only half of the
symmetric DOS is shown. Note that the artificial sideband of
232 cluster disappears at larger cluster size. The entire DOS
the 636 cluster is shown in the inset.
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maps onto an effective Ising model with a near-neighb
exchange couplingJ5t2/2U and a correspondingTc

Ising

51.134/U.15 Figure 4 shows that already for the 232 clus-
ter the achieved correction takes one almost halfway to
asymptotically (U→`) exact Tc of the two-dimensional
~2D! Ising model.

CONCLUSIONS

We have introduced a new dynamical cluster approxim
tion that includes short-ranged spatial correlations in addit
to the local correlations of the dynamical mean-field appro
mation of strongly interacting electron systems. The meth
interpolates between the infinite lattice and the DMFA
evaluating the self-energy on a finite-size cluster with pe
odic boundary conditions. The DCA is a general scheme
is easily adapted to specific models and various existing
act and perturbative techniques to solve these models. A
example we applied the method to the Falicov-Kimb
model in 2D and obtained the DOS as a function of tempe
ture for small cluster sizes. In addition, we computed
critical temperature of the checkerboard phase transition
showed that it is suppressed for large interactions when c
pared to the result of DMFA.
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FIG. 4. Phase diagram of the 2D FKM at half filling. Compar
to the DMFA result~circles! Tc of the 232 cluster DCA~triangles!
is significantly suppressed for large interaction. At asymptotica
largeU theTc of the DCA is bounded from below by theTc of the
2D Ising model.
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