
PHYSICAL REVIEW B 67, 085101 ~2003!
Dynamical cluster approximation employing the fluctuation exchange approximation
as a cluster solver
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We employ the dynamical cluster approximation~DCA! in conjunction with the fluctuation exchange ap-
proximation ~FLEX! to study the Hubbard model. The DCA is a technique to systematically restore the
momentum conservation at the internal vertices of Feynman diagrams relinquished in the dynamical mean field
approximation. The FLEX is a perturbative diagrammatic approach in which classes of Feynman diagrams are
summed over analytically using geometric series. The FLEX is used as a tool to investigate the complemen-
tarity of the DCA and the finite size lattice technique with periodic boundary conditions by comparing their
results for the Hubbard model. We also study the microscopic theory underlying the DCA in terms of compact
~skeletal! and noncompact diagrammatic contributions to the thermodynamic potential independent of a spe-
cific model. The significant advantages of the DCA implementation in momentum space suggests the devel-
opment of the same formalism for the frequency space. However, we show that such a formalism for the
Matsubara frequencies at finite temperatures leads to acausal results and is not viable. However, a real fre-
quency approach is shown to be feasible.
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I. INTRODUCTION

Nonlocal correlations play an important role in the phy
ics of strongly correlated electron systems such as highTc

superconductors, heavy fermion metals, etc. The dynam
mean field approximation~DMFA!,1,2 in which all the non-
local correlations are ignored, can capture some of the m
features of strongly correlated systems. Nevertheless,
nonlocal correlations become crucial in the physics of pha
with nonlocal order parameters such asd-wave superconduc
tivity. Even phases with local order parameters such as c
mensurate magnetism can be significantly affected by
nonlocal correlations~e.g., spin waves! ignored in the
DMFA.

The early attempts to extend the DMFA by including no
local correlations resulted in the violation of causality whi
is a requirement for positive definiteness of the spec
weight and the density of states~DOS!.3 The dynamical clus-
ter approximation~DCA! is a fully causal technique used t
systematically add nonlocal corrections to the DMFA
mapping the lattice onto a self-consistently embedded clu
problem. The mapping from the lattice to the cluster is
companied by coarse graining the lattice problem in its
ciprocal space. Thus far, the DCA has been combined w
the quantum Monte Carlo~QMC! approximation,4,5 the non-
crossing approximation~NCA!,6 and the fluctuation ex-
change approximation~FLEX! ~Refs. 11 and 12! to solve the
corresponding cluster problems.

The FLEX is a perturbative diagrammatic approach
which classes of Feynman diagrams are summed to all or
using geometric series.7,8 Others9,10 have employed the
FLEX for finite size lattices with periodic boundary cond
tions. Due to the absence of contributions from some
evant diagrams, the FLEX is not capable of addressing
0163-1829/2003/67~8!/085101~14!/$20.00 67 0851
-

al

or
he
es

-
e

-

l

er
-
-

th

rs

l-
e

Hubbard model physics in the strong regime precisely. Ho
ever, the main objective of this work is to make a compa
son between the DCA-FLEX combination results and pre
ous finite size lattice FLEX calculations. It is hoped that th
study will lead to a better understanding of the DCA.

We earlier11 suggested a prescription to correctly impl
ment the DCA technique in the thermodynamic potent
This prescription will be discussed from a different point
view using a more general argument. Based upon the G
function’s exponential falloff as a function of distance, w
conclude that compact diagrams~two-particle irreducible in
the thermodynamic potential! are better approximated usin
the DCA than noncompact~two-particle reducible! ones.
Hence the DCA is applied to the compact diagrams only, a
noncompact ones are calculated explicitly using dressed
coarse grained Green functions.

In this work we also consider the extension of the DCA
frequency space. The many-body theory at finite tempe
tures is conventionally derived in terms of discrete imagin
Matsubara frequencies. We illustrate that even for a s
consistent algorithm like the FLEX, coarse graining t
imaginary frequency propagators results in causality vio
tions and can not be implemented. However, a real freque
formalism is shown to be causal and applicable not only
the FLEX, but also to other cluster solving methods such
the NCA.

This paper is structured as follows. In the next three s
tions, we briefly review the DCA and its application to th
Hubbard model, the FLEX, and then we describe how
FLEX and the DCA may be merged into a single algorith
In the next three sections, we use the FLEX-DCA, in co
parison to the FLEX for finite sized systems, to explore t
properties of the DCA. The last two sections, are devoted
a microscopic derivation of the DCA, and to an extension
the DCA to frequency space.
©2003 The American Physical Society01-1
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II. DYNAMICAL CLUSTER APPROXIMATION „DCA…

Both the DCA and DMFA may be derived by explorin
the momentum conservation in the diagrammatics. As
picted in Fig. 1, momentum conservation at each vertex
described by the Laue function:

D5(
x

eix•(k12q2k2)5Ndk1 ,q1k2
, ~1!

In the DMFA, momentum conservation at the internal ve
ces of irreducible Feynman diagrams is completely re
quished. That is, the DMFA simply setsD51.13 Hence we
may sum freely over all the internal momenta entering a
leaving each vertex. Only local contributions survive t
sum. Thus this is equivalent to mapping the lattice probl
onto a self-consistently embedded impurity problem. T
DMFA becomes exact at infinite dimensions.14

The DCA is an approach to systematically restore the m
mentum conservation relinquished in the DMFA. In t
DCA, the first Brillouin zone in the reciprocal space is d
vided intoNc equal cells of linear sizeDk labeled byK in
their centers, and the momenta within each cell are labe
by k̃. Thenk5K1 k̃ ~cf. Fig. 2!. To visualize this scheme in
the real lattice, one could consider tiling the lattice ofN sites
by N/Nc clusters each composed ofNc5LD sites whereL is
the linear size of the subcell and D is dimensionality~cf. Fig.
2 for L52). We will use this picture in Sec. VIII while
discussing the microscopic theory of the DCA. We label
origin of the clusters byx̃ and theNc intercluster sites byX.
So for each site in the original latticex5X1 x̃. Care must be
taken when choosing the cluster geometries in order to
serve the lattice point group symmetry and also satisfy so
other criteria for cubic or square lattices.15

FIG. 1. A typical vertex in a Feynman diagram with solid lin
as one-particle Green functions and the wiggly line as an inte
tion.

FIG. 2. The real lattice clusters~right! and ~left! the first Bril-
louin zone divided into subcells.
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In the DCA, we first make the following separation in E
~1!:

D5(
x

ei ( x̃1X)•(K12Q2K21 k̃12q̃2 k̃2). ~2!

The productsK1• x̃,Q• x̃ andK2• x̃52np, wheren is an in-
teger. Therefore, their associated phases may be negle
and Eq.~1! splits into two parts:

D5
N

Nc
d k̃1 ,q̃1 k̃2

NcdK1 ,Q1K2
. ~3!

The DCA also ignores the phasese2 i k̃• x̃ due to the position
of the cluster in the original lattice and~far less important!
e2 i k̃•X corresponding to the position within the cluster. As
result, it approximatesN/Ncd k̃1 ,q̃1 k̃2

>1, so that

DDCA5NcdK1 ,Q1K2
, ~4!

which indicates that the momentum is conserved moduloDk
for transfers between the cells.

The approximation made through the substitutionD
→DDCA corresponds to replacing all internal legs in t
compact ~skeletal! diagrams by the coarse grained Gre
function Ḡ and interaction potentialV̄ defined by

Ḡ~K ,vn!5
Nc

N (
k̃

G~K1 k̃,vn!, ~5!

V̄~Q!5
Nc

N (
q̃

V~Q1q̃!. ~6!

In Sec. VIII, we will define the compact and noncompa
diagrams and elaborately discuss why only the compact o
undergo the coarse graining approximation.

ReplacingD by DDCA tremendously reduces the comple
ity of the problem because instead of having to perform su
over all N states in the entire first Brillouin zone, we hav
sums over only a set ofNc states whereNc!N.

III. HUBBARD MODEL

We will apply the DCA to study the Hubbard mode
Hamiltonian incorporating interactions between the electr
on a lattice. It includes a tight-binding part due to the ho
ping of electrons among the sites and an interaction betw
the electrons. The general Hamiltonian reads

H5H01HI , ~7!

where

H052t(
s

(̂
i j &

cis
† cj s ~8!

and

HI5
1

2 (
j l ,ss8

nj snls8V~Rj2Rl !

c-
1-2
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V~R!'
e2

R
. ~9!

Factors t and V(R) correspond to electron hoppings an
Coulomb interactions, respectively. Later in the paper,
will study the simplest Hubbard interaction which is ful
local and only between electrons sitting at the same site h
ing opposite spin directions. The interaction strength is
constant called U. Hence, for the local model, Eq.~9! sim-
plifies to

HI5U(
i

ni↑ni↓ . ~10!

In terms of the vertex properties addressed in Sec. II, s
the interaction is local and therefore independent ofq, we
may sum freely over theq momentum for a pair of Laue
functions in Eq.~1! sharing a common interaction wiggl
line as depicted in Fig. 1. As a result, the corresponding L
function will become

D5
1

N (
q

(
x

eix•(k12q2k2)(
y

eiy•(k31q2k4)

5N(
q

dk1 ,q1k2
dk31q,k4

5Ndk11k3 ,k21k4
, ~11!

and analogously for the DCA, by summing freely overQ,

DDCA5Nc dK11K3 ,K21K4
. ~12!

IV. FLUCTUATION EXCHANGE APPROXIMATION
„FLEX …

In the Feynman diagrammatics of the Hubbard mo
with a local interaction, all the interactions~wiggly lines in
Fig. 3! contribute ac numberU from Eq.~10!. The electronic
Green functions~solid lines! which interact with one anothe
should have opposite spins. Considering these restricti
had we been able to include all the possible diagrams in
expansion we would have solved the problem exactly. Ho
ever, in practice this is not feasible.

The FLEX was introduced as an approximate techniqu
simplify this diagrammatic sum,7,8 while retaining a conserv
ing approximation. In the FLEX, the interaction part of th
Hubbard model Hamiltonian is treated perturbatively by
lecting a certain class of all the possible diagrams which m
be summed as a geometric series. Following Baym,16 we
define the generating functionalF@G(k,vn)# as the collec-
tion of all the selected families of diagrams illustrated in F
3. Therefore,F@G(k,vn)# for the FLEX can be written

F5Fph
d f 1Fph

s f 1Fpp , ~13!

Fph
d f 52

1

2
Tr@xph#

21
1

2
TrF ln~11xph!2xph1

1

2
x2

phG ,
~14!

Fph
s f 5

3

2
TrF ln~12xph!1xph1

1

2
x2

phG , ~15!
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Fpp5TrF ln~11xpp!2xpp1
1

2
x2

ppG , ~16!

where Tr5(T/N)(k(n with T the temperature andN the
number of lattice sites. The particle-hole and particle-parti
susceptibility bubbles are

xpp~q,vn!5U~T/N!(
k

(
m

G~k1q,vn1vm!

3G~2k,2vm!, ~17!

xph~q,vn!52U~T/N!(
k

(
m

G~k1q,vn1vm!G~k,vm!,

~18!
The self-energy and the Green function are defined by

S~k,vn!5
1

2

dF@G#

dG~k,vn!
, ~19!

G~k,vn!5@G(0)21~k,vn!2S~k,vn!#21, ~20!

whereG(0) is the noninteracting one-particle Green functi
defined by

G(0)~k,vn!5
1

vn2ek1m
, ~21!

with ek the noninteracting Hubbard model dispersion andm
the chemical potential.

Calculating the self-energy for Eq.~13!, using Eq.~19!,
we get

FIG. 3. ~a! Lowest order diagram~Hartree term!, ~b! longitudi-
nal spin and density fluctuationF diagrams with an even number o
bubbles (Fph

d f ), ~c! transverse spin fluctuations (Fph
s f ), and ~d!

particle-particle fluctuations (Fpp).
1-3
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S~k,vn!5U~T/N!(
q

(
m

@V(ph)~q,vm!G~k2q,vn2vm!

2V(pp)~q,vm!G~2k1q,2vn1vm!#, ~22!

in which

V(ph)~q,vm!5xph~q,vm!1
1

2
xph~q,vm!

3F 1

11xph~q,vm!
21G1

3

2
xph~q,vm!

3F 1

12xph~q,vm!
21G , ~23!

V(pp)~q,vm!5xpp~q,vm!F 1

11xpp~q,vm!
21G . ~24!

Equations~23! and~24! for the potential functionsV(ph) and
V(pp) are geometric series forxph and xpp similar to the
random phase approximationresults. The Hartree term con
tribution to the self-energy has not explicitly appeared in E
~22!, as it is constant and can be always embedded in
chemical potential in Eq.~21!.

The differenceDV(T,m) between interacting and nonin
teracting thermodynamic potential functionals is also
pressible in terms of the Green functions, self-energy,
F@G#:

DV~T,m!5V2V0522Tr@SG2 ln~G/G0!#1F@G#.
~25!

In the FLEX, since we include only a limited set of all th
diagrammatic contributions, we do not anticipate to precis
address the Hubbard model physics. However, there a
number of significant physical features such as antiferrom
netic order at half filling and low temperatures that this a
proximation is able to capture. Moreover, by using the FLE
together with both the DCA and finite sized systems w
periodic boundary conditions, we can study the differen
between these approaches. For example, as we will sh
illustrate, the complementarity of the DCA and finite si
lattice techniques is manifest in the FLEX. The FLEX c
also be invoked as a good test for the microscopic theor
the DCA and the coarse graining effects in the compact
non-compact diagrams for Eq.~25!.

V. COMBINATION OF THE FLEX AND DCA
„ALGORITHM …

In the combination of the FLEX and DCA, our goal is
calculate the self-energy in Eq.~19! whereby we construc
the dressed Green function for the lattice as a building bl
for all the relevant physical quantities. We start out with t
bare ~noninteracting! Green functionG(0)(k,z) defined in
Eq. ~21! with z the Matsubara frequency~complex!. We
coarse grainG as directed in Eq.~5!, and calculate the self
energy using Eq.~19!. This is used to recompute the dress
Green function
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G~k,z!5
1

z2ek1m2SDCA~K ,z!
. ~26!

where the index DCA inSDCA(K ,z) indicates that we have
used coarse grainedḠ for the construction of self-energy
The newG is coarse grained and used to calculate a n
estimate ofSDCA(K ,z). We repeat this process iterative
until convergence at a desired tolerance is obtained. The
self-energy is used to construct the dressed Green functio
Eq. ~26!, required to compute the physical quantities such
spectral function, the density of states, etc. The algorithm
this calculation is demonstrated in Fig. 4.

VI. COMPLEMENTARITY OF THE DCA TO THE FINITE
SIZE LATTICE APPROXIMATION WITH PERIODIC

BOUNDARY CONDITIONS

In the half-filled Hubbard model, the antiferromagne
correlation lengthj increases with decreasing temperatu
and diverges at the phase transition. In a finite size lat
with periodic boundary conditions, as the temperature dro
once the correlation length reaches the size of the lattice,
system is fully frozen and there is a gap to excitations@cf.
Fig 5~a!#. In contrast, in the DCA, the correlations are co
fined within clusters of sizeNc!N ~the size of the entire
lattice! and they never reach the size of the lattice. As
lower the temperature, the correlation length approaches
size of the cluster, but since the lattice remains in the th

FIG. 4. The FLEX-DCA numerical algorithm. The dressedG is
solved self-consistently withS. The iteration process stops when
ever convergence is achieved.

FIG. 5. ~a! The finite size lattice with periodic boundary cond
tions, sizeL and correlation lengthj and~b! the lattice with clusters
of sizeL and the correlation lengthj.
1-4
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DYNAMICAL CLUSTER APPROXIMATION EMPLOYING . . . PHYSICAL REVIEW B67, 085101 ~2003!
modynamic limit, it never freezes@cf. Fig 5~b!#. By increas-
ing the size of clusters in the DCA, we take longer rang
correlations into account so the gap will become more p
nounced. Consequently, correlation induced gaps are ge
ally overestimated in the finite size lattice, while in the DC
they are underestimated.

This complementary behavior may be seen inG(k,t),
with k5(0,p) computed using finite size lattices with per
odic boundary conditions and the DCA. As illustrated in F
6, by increasing the size of the finite size lattice and the D
cluster, the Green functions converge from opposite dir
tions. In the finite size lattice, the Green function~e.g., att
5b/2) decreases with the increase of size which is con
tent with overestimating the gap, while in the DCA the Gre
function increases as the cluster size grows, consistent
underestimating the gap. It is also observed that the con
gence in the DCA is much faster, meaning that the resul
the DCA is closer to the true curve at a given cluster si
Both finite size lattices with periodic boundary conditio
and the DCA converge with corrections ofO(l/L2) with L
the linear size of the finite lattice or the DCA cluster andl a
coefficient.17 The faster convergence of the DCA corr
sponds to its smallerl compared to finite size lattices.

In Fig. 7, the values of theG(k5(0,p),t5b/2) and
G„k5(0,p),t5b/4… in Fig. 6 have been plotted versus 1/L2

for both the DCA and finite size results. The Green funct
behaves linearly as a function of 1/L2 for large L. The ex-
trapolations of the DCA and finite size results meet asL
→`, approximating the value of the dressed Green funct
in the thermodynamic limit. The complementarity of DC
and finite size methods allows a determination of the th
modynamic limit of imaginary time Green functions wit
unprecedented accuracy.

FIG. 6. The Green functionG„k5(0,p),t… at T50.10 and
U/t51.57 vs imaginary timet/b (b51/T). Finite size results
~filled symbols! and DCA results~open symbols! are displayed for
lattice sizes ofN5838, 12312, and 20320. The curves show the
complementary approach of the two methods to the thermodyna
limit.
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VII. FINITE SIZE VERSUS THE DCA FLEX RESULTS FOR
THE TWO-DIMENSIONAL HUBBARD MODEL AT

HALF-FILLING

The Hubbard model at half filling undergoes a phase tr
sition to anti-ferromagnetic order at low temperatures. A
cording to the Mermin-Wagner-Hohenberg theorem, for
mensionD52 the critical temperature is zero. However,
we continue to lower the temperature, close enough to z
a pseudogap will appear in the density of states as a pre
sor to the anti-ferromagnetic phase~which has a full gap as
its signature!. An approach towards non-Fermi-liquid beha
ior is also visible in both the real and imaginary parts of t
retarded self-energy.9

In Figs. 8 and 9, the densities of states for lattices w
finite sizes of 32332 and 64364 and periodic boundary
conditions and coarse graining cluster sizes of 16316 and
32332 are plotted. We analytically continue the Green fun
tion in order to calculate the spectral functionA(k,v) and
the DOS using the Pade´ approximation.18 In this approxima-
tion, we generate a continued fraction interpolating all t
data points and use it as an analytic function of the Mats
ara frequenciesvn . The analytic continuation is accom
plished by substitutingvn with v1 ih, whereh is a small
positive shift. However, the errors inherent in the numeri
Fourier transform~FFT! and also the sharp high-frequenc
behavior of the Green function, FLEX potentials, and t
self-energy limit the accuracy of the Pade´ approximation.
The high-frequency behavior is improved by implementing
more authentic cutoff scheme introduced by Deiszet al.19 in
which the high-frequency tails of these quantities are Fou
transformed analytically prior to any numerical FFT a
added back to the FFT outputs afterwards. In addition to
high-frequency cutoff improvement, we also check for t
analyticity of the Pade´ results in the upper-half frequenc
plane as a requirement for retarded physical quantities. T
task is carried out by converting the continued fraction in
Padéapproximation into a ratio of two polynomials. Th
complex roots of these two polynomials are obtained via
Jenkins-Traub root finder routine.20 Those orders of the Pad´
approximation for which there exist poles in the upper-h
plane are omitted unless these poles are canceled by the
of the numerator. The acceptable Pade´ results correspond to
the highest order with no uncompensated poles in the up
half plane.

As seen in Fig. 8, by increasing the size of a finite lattic

ic

FIG. 7. The Green functionG„k5(0,p),t… at t5b/2 ~left! and
t5b/4) ~right! vs 1/L2 for the DCA and finite size results in Fig. 6
The linear extrapolations meet at a point representing the ther
dynamic limit of the Green function of the Hubbard model eva
ated within the FLEX.
1-5
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K. ARYANPOUR, M. H. HETTLER, AND M. JARRELL PHYSICAL REVIEW B67, 085101 ~2003!
the pseudogap occurs at higher temperatures and also
comes less pronounced~sharper! as we approach the actu
size of an infinite real lattice. The DCA yields a compleme
tary behavior, as shown in Fig. 9. By increasing the coar
graining cluster size, similar to the finite size lattices, t
pseudogap is shifted toward higher temperatures. Howe
unlike the finite size lattices, for the DCA the precursor b
comes more pronounced~broader! as the cluster increases
size because the size of the lattice remains constant an
correlations are limited to the cluster size. Thus, compa
tively, the DCA underestimates the gap while the finite s
calculation overestimates it.

By comparing the results in Figs. 8 and 9 one may
that the 32332 DCA cluster yields more realistic physic
than the corresponding 32332 finite size lattice. The 64
364 finite size lattice results are also close to those for
32332 DCA cluster at slightly lowerT ~e.g.,T50.055 for
the finite size andT50.033 for the DCA!. However, since
the sizes of clusters are considerably smaller than the size
lattices, the DCA significantly reduces the complexity of t
problem and consequently the CPU time. In terms of
CPU time, the FLEX with the numerical Fourier transform
scales asNlnN whereN is the product of the total numbe
of Matsubara frequencies and thek points in the first Bril-
louin zone. Hence, using a 32332 cluster in place of a 64
364 lattice, both having 1024 Matsubara frequency poin
roughly reduces the CPU time by a factor of 4.4. If the DC

FIG. 8. The FLEX density of states~DOS! for a 32332 finite
size lattice with periodic boundary conditions~top! vs energy for
U/t51.57 at various temperatures, and for a 64364 finite size lat-
tice ~bottom!. The evolution of a week pseudogap is observed
T50.067 for the 64364 lattice higher thanT50.055 for the 32
332 one and the pseudogap is also much broader for the 32332
lattice @1283128 finite size lattice results were obtained by De
et al. ~Ref. 9!#.
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cluster sizeNc equals the size of the finite latticeN, the DCA
requires somewhat more CPU time than the finite size lat
due to course-graining. Nevertheless, comparatively,
large finite lattices such as 64364, the lattice size contribu
tions to the CPU time significantly dominate the coar
graining ones in a 32332 cluster. Thus, the 32332 DCA
cluster is much faster.

The FLEX often has difficulty reaching low temperature
This is due to the fact that thexph defined in Eq.~18! ap-
proaches unity as the temperature drops which in turn ca
theV(ph) in Eq. ~23! to diverge. In the DCA,xph approaches
unity more slowly, allowing the calculations to reach low
temperatures. One has to note that in the FLEX, thexph

DCA is
defined as

xph
DCA~Q,vn!52U~T/Nc!(

K
(
m

Ḡ~K1Q,vn1vm!

3Ḡ~K ,vm!, ~27!

with Ḡ defined in Eq.~5!. Figure 10 illustrates the saturatio
of xph for both the DCA and finite size lattices. Thexph for
the 32332 finite size lattice~filled circles! saturates at highe
temperatures compared to the 32332 DCA cluster~open dia-
monds!, indicating that in the DCA, for a certain cluster siz
the precursor to the phase transition can evolve to lo
temperatures compared to a finite size lattice of the same
with periodic boundary conditions. However, for the corre
tion lengthj.L the DCA approximation breaks down an

t

FIG. 9. The FLEX density of states~DOS! for a 16316 DCA
cluster~top! vs energy forU/t51.57 at various temperatures, an
for a 32332 DCA cluster~bottom!. For the 32332 cluster, the
evolution of a weak pseudogap is observed atT50.055 higher than
T50.025 for the 16316 one and the pseudogap is also broader
the 32332 cluster.
1-6
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DYNAMICAL CLUSTER APPROXIMATION EMPLOYING . . . PHYSICAL REVIEW B67, 085101 ~2003!
replacing the self-energy by its coarse grained counterpa
no longer accurate. Here the DCA takes on a signific
mean-field character.

Another feature of the Hubbard model near half-fillin
verified by the FLEX~Ref. 9! is a non-Fermi-liquid behavior
Here, this is studied by increasing the electron electron in
action U at a constant temperature. In Figs. 11 and 12
real and imaginary parts of the self-energy at the X point~on
the noninteracting Fermi surface! have been plotted versu
energy for finite size lattices and the DCA respectively.
the interaction is increased, the negative slope in the real
turns positive aroundv50 which is inconsistent with the
requirement that the renormalization factor@1
2] ReS(kF ,v)/]vuv50#21 should be smaller than unity in
the Fermi-liquid theory. There also appears an anoma
inverted peak in the imaginary part atv50.

As presented in Fig. 11, by increasing the length of
finite size lattice, the sharpness of the non-Fermi-liquid f
tures is reduced. The same features for the DCA in Fig.
are slightly less pronounced, and, in a complementary fa
ion to the finite size lattices, their sharpness is enhanced
increasing the size of the cluster. Thus, again, the DCA
derestimates the non-Fermi-liquid features while the fin
size calculation overestimates it.

Earlier in Fig. 10 it was shown that the FLEX particle
hole bubble xph(q,vm50) at q5Q5(p,p) approaches
unity as the temperature is lowered. This causes the s
fluctuationT matrix

Ts,s~q,vm!5
3

2 F xph~q,vm!2

12xph~q,vm!G , ~28!

which is just the third term inV(ph)(q,vm) in Eq. ~23! to
peak around the (Q,vm50) point. For real frequencies
Ts,s(Q,v) has a sharp peak aroundv50. SinceTs,s(Q,v)
is only used to construct the irreducible self-energy, with
the DCA it is constructed from coarse grained Green fu

FIG. 10. The FLEX particle-hole bubble (xph) at Q5(p,p)
andvm50 for a 16316 and 32332 DCA clusters~diamonds! and
also for 32332 and 64364 finite size lattices with periodic bound
ary conditions~circles! vs temperature T atU/t51.57. The rela-
tively rapid saturation of the finite size latticexph compared to the
more gradual approach of the DCA results towards unity is mani
@1283128 finite size lattice results were obtained by Deiszet al.
~Ref. 9!#.
08510
is
t

r-
e

s
art

us

e
-
2
h-
by
-

e

in-

-

tions. Thus the DCA counterpart of Eq.~28! is obtained by
only replacingxph with xph

DCA defined in Eq.~27!. Figures 13
and 14 show how this peak sharpens as the temperature
creases or interaction increases for finite size lattices and
DCA respectively. In the 64364 finite size lattice~cf. Fig.
13, bottom!, the peak continues to develop as the tempe
ture is lowered and the interaction is raised. AtT50.067 and

st

FIG. 11. The FLEX real~top two! and imaginary~bottom two!
parts of the self-energy at theX point for 32332 and 64364 finite
size lattices with periodic boundary conditions vs energy forT
50.10 and two different interactionsU. The inverted peak atv
50 in the imaginary part and the positive slope in the real part
both signatures of non-Fermi-liquid behavior. For smaller latt
sizes these signatures are more pronounced@1283128 finite size
lattice results were obtained by Deiszet al. ~Ref. 9!#.
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U51.6 where there exists a pseudogap in the DOS, the p
undergoes a significant growth compared to the other gra
shown in the same figure. The 32332 ~cf. Fig. 13, top! lat-
tice presents the same behavior with a slightly sharper
shorter peak.

The DCA also illustrates the same type of peaks a
slightly higher interaction and lower temperatures for t
16316 cluster~cf. Fig. 14, top!. Increasing the cluster size t
32332 gives rise to higher peaks similar to the finite s
lattices case but unlike the finite size lattices peaks bec
sharper as the size is increased.

FIG. 12. The FLEX real~top two! and imaginary~bottom two!
parts of the self-energy at the X point for 16316 and 32332 DCA
clusters vs energy forT50.10 and two different interactionsU. The
non-Fermi-liquid features occur at slightly higher interactions co
pared to the finite size lattices. Upon increasing the cluster s
these features become more pronounced~complementary to the fi-
nite size lattices with periodic boundary conditions!.
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All the results illustrated in this section indicate th
complementarity of the DCA to the finite size lattice schem
It is also observed that the DCA is capable of reproduc
relatively the same physics as the finite size FLEX at sligh
different parameters but a lower CPU cost. The combinat
of these two facts makes this technique a good candidat
be employed in the numerical treatment of a wide range
many-body problems.

Lastly, to better understand the effect of the DCA clus
embedded in a fermionic bath, we can rewrite the cou
grained Green function defined in Eq.~5! as

Ḡ~K ,z!5
1

z2 ēK2S~K ,z!2G~K ,z!
. ~29!

where ēK5Nc /N( k̃eK1 k̃ and G(K ,z) is the host function.
Maier et al.,6 defined

tK1 k̃5eK1 k̃2 ēK , ~30!

wherebyG(K ,z) can be expressed as

G~K ,z!5

Nc

N (
k̃

t2
K1 k̃G~K1 k̃,z!

11
Nc

N (
k̃

tK1 k̃G~K1 k̃,z!

. ~31!

By Taylor expandingtK1 k̃ around the cluster pointsK it
is found thattK1 k̃;O(Dk) with Dk52p/L. Thus Eq.~31!
yields G(K );O@(Dk)2# as Dk→0. To illustrate this, we
calculateG(r 50,t50) by summing over all theK points
and vn frequencies, and plot it versus (Dk)2. Figure 15 il-
lustrates this linear behavior forNc>16. Nc51 holds com-
plete mean field characters and no nonlocal fluctuations.Nc
54 is anomalous, as explained in a paper by Bettset al.15

There, the finite size cubic lattices with less than six~four in
two-dimensional square lattices! distinct nearest neighbor
per each site are not used in finite size scalings for estima
the physical properties of models like the spin one halfXY
ferromagnet or the Heisenberg antiferromagnet. ForNc54,
because of the periodicity of the clusters, each cluster p
is surrounded by two identical nearest neighbors in ev
direction and therefore has only two distinct nearest nei
bors ~cf. Fig. 16!. Thus the effect of fluctuations ar
overestimated.21 For Nc.4 there is no such anomaly an
hence, all the points present the linear behavior pro
above. Nevertheless, calculations withNc54 do a reason-
able job in capturing the qualitative effects of corrections
the DMFA.

VIII. MICROSCOPIC THEORY OF THE DCA

In Sec. IV we defined the thermodynamic potential fun
tional differenceDV(T,m) in terms of the Green function
self-energy, andF@G# @cf. Eq. ~25!#. In Eq. ~13!, F@G#
includes all the compact~skeletal! Feynman diagrams an
the rest incorporates the entire noncompact contributio22

Typical compact and noncompact diagrams are illustrate
Fig. 17. The noncompact diagram~a! consists of two self-

-
e,
1-8
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FIG. 13. The FLEX real part of theT matrix at Q5(p,p) vs energy for 32332 ~top! and 64364 ~bottom! finite size lattices with
periodic boundary conditions. For the 32332 finite size lattice atT50.067 andU/t51.6 ~solid!, we observe a huge peak due to th
formation of a pseudogap in the DOS. By increasing the lattice size to 64364 a higher and broader peak occurs at the same tempera
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energy piecess and s8 connected with two one-particl
Green functions. Removing these two Green functions wo
split the diagram into two separate pieces. In the comp
diagram~b! two vertex partsG andG8 with four Green func-
tions are connected together. One can not split this type
diagrams into two separate pieces by just removing two o
particle Green functions. As mentioned earlier, in the DC
we employ coarse grained Green functions to construct o
the compact diagrams. The Green functions in noncomp
diagrams are calculated directly using Eq.~26! in which the
self-energySDCA(K ,z) is coarse grained@the circles at the
top and the bottom of the noncompact diagram in Fig. 17~a!#.

Earlier, in a shorter paper concerning the Hubbard mo
in particular,11 we showed both analytically and numerical
that the error produced by coarse graining the noncom
diagrams is significantly larger than the error produced
coarse graining the compact ones. Here, we would like
give a more general argument in real space. We wish
emphasize two points in this approach. First, since the d
vation of the DCA in this section relies only upon the exp
nential fall off of the Green function as a function of di
tance, it is far more intuitive than the momentum spa
argument in Ref. 11. Second, it ties the derivation of
DCA to the original derivation of the DMFA in the limit o
infinite dimensions, where similar arguments a
employed.14

The exponential falloff behavior occurs naturally in hig
dimensions. In the tight-binding Hamiltonian@cf. Eq. ~8!#,
the factort corresponds to the hopping of electrons amo
nearest neighboring sites. Thus, one could show that the
space Green functionG(r ) ~we drop the frequency labe
from this point on for simplicity! for r nearest neighbor hop
is proportional toG(r );t r as t→0. On the other hand
Metzneret al. and Müller-Hartmann14,13 have shown that, in
08510
ld
ct

of
e-
,
ly
ct

el

ct
y
o
to
ri-
-

e
e

g
al

D dimensions, the factort should be renormalized ast/AD in
order to have a finite density of states width asD→`. As a
result of this renormalization,

G~r !;t r;~1/AD !r;D2r /25e2r /r s

r s5
2

ln D
, ~32!

meaning thatG(r ) falls off exponentially as a function ofr.
In the DCA, we attempt to minimize the error due

coarse graining the Green function~and potentials! in the
Feynman diagrams. Consider the first nontrivial correction
the coarse grained noncompact diagrams generated by
placing the explicit coarse grained Green function lines
the noncoarse grained ones as illustrated in Fig. 18,

d (1)@DVncp#;
1

N (
k

s~K !s8~K !G~k!22
1

Nc
(
K

,

~33!

s~K !s8~K !Ḡ~K !2,

where K are the coarse graining cell momenta andk5K
1 k̃ include all the momenta in the first Brillouin zone show
in Fig. 2. In this derivation we also presume that the se
energy isk̃ independent and the entirek̃ dependence is em
bedded in the Green functions.

By breaking up the sums overk in Eq. ~33! into K and k̃
sums and writing all theG in terms of their Fourier trans
forms at the same time we get
r
ow higher
FIG. 14. The FLEX real part of theT matrix atQ5(p,p) vs energy for 16316 ~top! and 32332 ~bottom! DCA clusters. Peaks simila
to the finite size lattices appear at slightly higher interactions and lower temperatures. By increasing the cluster size, the peaks gr
~similar to finite size lattices! and also sharpen~complementary to the finite size lattices!.
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d (1)@DVncp#;
1

N (
k̃,K

s~K !s8~K ! (
x1 ,x2

G~x1!G~x2!

3e2 i k̃•(x11x2)e2 iK•(x11x2)2
Nc

N2

3 (
K ,k̃1 ,k̃2

s~K !s8~K ! (
x1 ,x2

G~x1!G~x2!

3e2 i k̃1•x1e2 i k̃2•x2e2 iK•(x11x2), ~34!

in which we used Eq.~5! for Ḡ(K ). According to Fig. 2, we
can split x5X1 x̃, where x̃ extend between two separa
clusters whileX always remain within a single cluster. B
making this separation in Eq.~34! one picks up phases in
cluding products of2 iK•X, 2 iK• x̃, 2 i k̃•X and2 i k̃• x̃ in
their exponents. The phase associated with the productK• x̃
52np with n an integer equals unity. The phases involvi
2 i k̃•X products are also neglected as discussed in Sec
Hence, Eq.~34! can be rewritten as follows:

FIG. 15. The host functionG(r 50,t50) vs (Dk)2. The linear
behavior beyondNc54 is manifest, also see the inset.

FIG. 16. DCA clusters in the real space lattice withNc54. Due
to the periodicity of the clusters, points 2 and 4 in squares and 1
3 in circles are equivalent and therefore point 0 observes its ne
neighbors twice in each direction.
08510
II.

d (1)@DVncp#;
1

N (
K

s~K !s8~K ! (
X1 ,X2

(
x̃1 ,x̃2

3G~X11 x̃1!G~X21 x̃2!

3e2 iK•(X11X2)(
k̃

e2 i k̃•( x̃11 x̃2)

2
Nc

N2 (
K

s~K !s8~K ! (
X1 ,X2

(
x̃1 ,x̃2

3G~X11 x̃1!G~X21 x̃2!

3e2 iK•(X11X2) (
k̃1 ,k̃2

e2 i k̃1•x1e2 i k̃2•x2.

~35!

Implementing the substitutions

(
k̃

e2 i k̃•( x̃11 x̃2)5
N

Nc
d x̃1 ,2 x̃2

and

(
k̃1 ,k̃2

e2 i k̃1•x1e2 i k̃2•x25S N

Nc
D 2

d x̃1,0d x̃2,0 , ~36!

Eq. ~35! simplifies into

nd
est

FIG. 17. ~a! Typical noncompact~nonskeletal! and ~b! typical
compact~skeletal! diagrams.

FIG. 18. First correction by noncompact diagram
d (1)@DVncp#.
1-10
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d (1)@DVncp#;
1

Nc
(
K

s~K !s8~K !F (
X1 ,X2 ,x̃

G~X11 x̃!

3G~X22 x̃!e2 iK•(X11X2)

2 (
X1 ,X2

G~X1!G~X2!e2 iK•(X11X2)G . ~37!

Setting s(K )s8(K )5j(K ) and performing theK summa-
tion,

d (1)@DVncp#; (
X1 ,X2

j~X11X2!F(
x̃

G~X11 x̃!G~X22 x̃!

2G~X1!G~X2!G
5 (

X1 ,X2

j~X11X2!(
x̃Þ0

G~X11 x̃!G~X22 x̃!.

~38!

Knowing that j(X11X2)5(
X
s(X)s8(X1X11X2) and

also that the lowest order ofs(X);G3(X);e23uXu/r s we
conclude that in Eq.~38!, the largest contribution is due t
terms havingX152X2 or in other words, localj. As shown
in Fig. 19, the first term in thex̃ sum corresponds toux̃u
5L ~size of the cluster! and X can be as large asX52(L
21) in the opposite direction. Hence the leading order te
in Eq. ~38! falls off as

d (1)@DVncp#;j~0!32D3G@L2~L21!#G@2L1~L21!#

;2Dj~0!e21/r se21/r s52Dj~0!e22/r s, ~39!

where 2D is the number ofux̃u5L contributions inD differ-
ent dimensions of aD-dimensional cubic lattice. In Eq.~39!
we also used the fact that due to the lattice symme
G(2X)5G(X). As D→`, usingr s52/lnD,

d (1)@DVncp#;2Dj~0!e2 ln D52j~0!DD21;O~1!.
~40!

FIG. 19. Two adjacent clusters with theirX and x̃ vectors.
08510
y,

which indicates the existence of nonlocal corrections to
noncompact contribution of the thermodynamic poten
even at infinite dimensions.

Now we replace the coarse grained self-energy bubble
Fig. 18 with coarse grained vertices having four exter
legs, and look at the difference between compact diagra
with and without coarse grained Green functions which
explicitly shown in the figure. Since we earlier dropped t
frequency labels in the Green functions, here we use ind
1, 2, 3, and 4 to emphasize that these Green functions h
different frequency labels. The first correction to the comp
contribution of the thermodynamic potential depicted in F
20 is

d (1)@DVcp#;
1

N3 (
k1 ,k2

q

G~K1 ,K2 ,Q!G8~K1 ,K2 ,Q!

3G1~k1!G2~k2!G3~q!G4~k11k22q!

2
1

Nc
3 (

K1 ,K2

Q

G~K1 ,K2 ,Q!G8~K1 ,K2 ,Q!

3Ḡ1~K1!Ḡ2~K2!Ḡ3~Q!Ḡ4~K11K22Q!,

~41!

where, similar to Eq.~33!, all the vertices are coarse graine
but the Green functions are not. Following the same pro
dure as for the noncompact difference, we arrive at

d (1)@DVcp#; (
X1 ,X2

X3 ,X4

L~X11X4 ,X21X4 ,X32X4!

3F(
x̃

G1~X12 x̃!G2~X22 x̃!

3G3~X31 x̃!G4~X41 x̃!

2G1~X1!G2~X2!G3~X3!G4~X4!G , ~42!

where

FIG. 20. First correction by compact diagrams,d (1)@DVcp#.
1-11
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L~X11X4 ,X21X4 ,X32X4!

5
1

Nc
3 (

K1 ,K2

Q

G~K1 ,K2 ,Q!G8~K1 ,K2 ,Q!

3e2 iK1•(X11X4)e2 iK2•(X21X4)e2 iQ•(X32X4)

5 (
X,X8

X9

G~X,X8,X9!G8~X1X11X4 ,X81X21X4 ,X9

1X32X4!. ~43!

Once again, the largest contribution is associated with lo
L, i.e., X152X4 , X252X4 andX35X4. Therefore,

d (1)@DVcp#;(
X

L~0!F(
x̃

G1~2X2 x̃!G2~2X2 x̃!G3~X

1 x̃!G4~X1 x̃!2G1~X!G2~X!G3~X!G4~X!G
5L~0! (

X,x̃Þ0

G1~X1 x̃!G2~X1 x̃!

3G3~X1 x̃!G4~X1 x̃!. ~44!

Consideringux̃u5L andXmin52(L21),

d (1)@DVcp#;L~0!32D3G1@2L1~L21!#G2@2L1~L

21!#G3@L2~L21!#G4@L2~L21!#

52DL~0!e24/r S52L~0!D21, S r s5
2

ln D D ,

~45!

which vanishes asD→`.
Comparing Eq.~45! with Eq. ~40! shows that the first

correction to the compact contribution of the thermodynam
potential falls off exponentially twice as fast as the equiv
lent correction in the noncompact contribution. In additio
even at the infinite dimensional limit, there are corrections
order 1 to the noncompact contribution, whereas for
compact diagrams the DCA becomes exact and there ar
corrections. This justifies coarse graining only in the co
pact diagrams. The Green functions in the noncompact
grams have to be explicitly constructed from the coar
grained self-energySDCA(K ,vn) using Eq.~26!.

In Fig. 21, the compact contribution of the thermod
namic potential difference constructed by coarse grai
Green functions is plotted versus (Dk)251/L2. The variation
of DVcp over the entire 1/L2 range is about 1%. At very low
temperatures (T,0.066 in the inset!, some deviation from
linearity is observed due to the correlation length exceed
the cluster sizeL, and therefore the approximation ofS(k)
by SDCA(K) begins to break down. Figure 22 illustrates t
noncompact contribution sketched versus 1/L2 using both
coarse grained and noncoarse grained Green functions. U
noncoarse grained Green functions, the variation ofDVncp
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over the entire 1/L2 range is roughly 30%. Coarse grainin
the Green functions in these diagrams can even change
sign of this noncompact contributions, clearly indicating th
coarse graining the Green function is an unrealistic appro
mation for noncompact diagrams. However, one notices
for large cluster sizes the coarse grained and nonco
grained results approach each other as the approximatio
the infinite lattice becomes better.

IX. DCA IN FREQUENCY SPACE

As illustrated for the momentum space, the DCA resu
in a significant reduction of the problem complexity and it
complementary to the finite size lattice approach. In analo
to the momentum space, one could consider dividing
one-dimensional Matsubara frequency space into a num
of coarse graining subcells. For both fermions and boso
each cell should include an odd number of frequencies
order for the frequencies in the centers of these cells to
serve Fermionic or Bosonic properties. Figure 23 represe
how the frequency space can be divided into coarse grain
subcells each comprising a centralVn frequency and a num

FIG. 21. The compact contribution to the thermodynamic pot
tial vs (Dk)2 at U/t51.57 and various temperatures, using coar
grained Green functions. The deviation from linearity at the low
temperatures hint at the correlation length exceeding the clu
size.

FIG. 22. Noncompact contribution to the thermodynamic pot
tial vs (Dk)2 at U/t51.57 with and without coarse grained Gree
functions. Using coarse grained Green functions can result i
noncompact contribution with the wrong sign.
1-12
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DYNAMICAL CLUSTER APPROXIMATION EMPLOYING . . . PHYSICAL REVIEW B67, 085101 ~2003!
ber of coarse grainingṽn lying around it. The centralVn
frequencies can be rewritten in the form of the original latt
with renormalizedb shown asbc in the figure. Similar to the
case of the momentum space, we make the following tra
formation for the Laue function:

D5b dvn1 ,vn21vn3
→DDCA5bc dVn1 ,Vn21Vn3

. ~46!

For the Matsubara frequencies of the vertex shown in Fig
considering frequency dependent interactions in genera~in
condensed matter physics, most of the interactions are ind
simultaneous and thus frequency independent!. As a result,
we may again coarse grain the Green function over the s
cell frequencies

Ḡ~K ,Vn!5
bc

b (
ṽn

G~K ,Vn1ṽn!. ~47!

According to Fig. 24, the full coarse graining of the Gre
function amounts tobc→0 which causes all the self-energ
Feynman diagrams ordered higher than first~Hartree-Fock
diagrams! to vanish and consequently we arrive at a fu
static problem.

Unfortunately, we can show that coarse graining o
Matsubara frequencies can lead to the violation of causa
and as a result, the DCA is not systematically implementa
for the Matsubara frequency quantities. The simplest
ample is the noninteracting Green function coarse graine
follows:23

FIG. 23. Dividing the fermion~a! and boson~b! Matsubara fre-
quency spaces into subcells. The centralVn frequencies can be
written in the form of the original lattice with renormalizedb de-
noted asbc (bc5b/3 in this case!.
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Ḡ(0)~K ,Vn!5
bc

b (
ṽn

G(0)~K ,Vn1ṽn!

5
bc

b (
ṽn

1

iVn1 i ṽn2ek1m
. ~48!

The retarded Green function is derived by the substitut
iVn→V1 ih:

Ḡret
(0)~K ,V!5

bc

b (
ṽn

1

V1 ih1 i ṽn2ek1m
. ~49!

The theory of analytic functions of a complex variable te
us that in order for the Green function to remain retarded
the time space,Ḡret

(0)(K ,V) must not have any poles in th
upper half plane ofV. In Eq. ~49!, one could readily create
poles in the upper half plane for negativeṽn which causes
causality violation and consequently unphysical results.

The way around this difficulty is to use real frequenci
even at finite temperatures. By invoking real frequencies
no longer coarse grain over imaginary values. Therefore,
retarded Green function will never acquire poles in the up
half plane and remains causal as shown below

Ḡret~K ,V!5
Nṽ

Nv
(
ṽ

1

V1ṽ1 ih12ek1m2S ret~K ,V!
,

~50!

with Nv the total number of frequencies andNṽ the number
of those we coarse graining over in each cell. In an article
Hettleret al.,4 a formal proof of causality is given~based on
a geometrical argument! for coarse graining in the momen
tum space. This proof can be straightforwardly applied to
real frequency space as well and it extends the applicatio
real frequency DCA not only to the perturbative cluster so
ers such as the FLEX but also techniques like the NCA.

FIG. 24. The algorithm for the cluster solvers such as the N
in which at each step before using the cluster solver the bare G
function is calculated by excluding the cluster self-energy. This
the only step through the algorithm where problems with causa
might occur.
1-13
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Lastly, similar to the momentum space, care must
taken when choosing the the size of the frequency coa
graining cells. One must make sure that the cells are
larger than some characteristic energy scale~e.g. the Kondo
temperatureTK) as the coarse graining would then suppre
the relevant physics.

X. CONCLUSIONS AND OUTLOOK

We introduce and examine the DCA in detail by emplo
ing it with the FLEX to study the half filled two dimensiona
Hubbard model. The FLEX is not as precise as nearly ex
techniques such as the quantum Monte Carlo approxima
in describing the Hubbard model at strong interaction
gime. However, it is capable of illustrating the utility of th
DCA, including its complementarity and convergence co
pared to finite size lattice approaches. The DCA and fin
size calculations~with periodic boundary conditions! both
converge with correctionsO(l/L2); however, in our ex-
ample the coefficientlDCA was smaller thanlFS , and of
opposite sign indicating that the DCA converges mo
quickly and from a complementary direction. This comp
mentarity was also seen in other quantities such as
pseudogap in the density of state and the non-Fermi liq
behavior that the DCA~finite size! calculation systematically
under~over! estimates.

We also provide a detailed microscopic definition of t
DCA by inspecting the error generated by coarse graining
Green functions in the compact and noncompact contr
tions to the thermodynamic potential. We conclude that d
to the large magnitude of error that it generates, coarse gr
ing the Green function in the noncompact part should
avoided and only the compact contribution should unde
coarse graining. It also appears that coarse graining
d
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Green functions over the Matsubara frequencies can and
lead to a violation of causality and therefore is pathologic
Nevertheless, one can coarse grain the Green function
real frequencies and preserve the causality not only for
FLEX but also cluster solvers such as NCA in which t
cluster contribution to the coarse grained dressed Gr
function is excluded before being inserted into the clus
solver.

The outlook for the FLEX-DCA approach is promising
Although the FLEX fails to accurately describe short-rang
physics such as moment formation~and related phenomen
like the Mott gap!, it does a good job describing long-range
physics associated with spin and charge fluctuations. On
other hand, numerically exact calculations such as the Q
method are too expensive to perform for large clusters,
are thus restricted to the study of short-length scales. H
ever, since the DCA gives us a way of parsing the probl
into different length scales, it may be used to combine
short-length scale information from the QMC method w
the long length scale information from the FLEX. This ma
be accomplished, by embedding a QMC cluster, of sizeL,
into a much larger FLEX cluster of sizeL8@L, which is
itself embedded in a mean field. As we have shown here,
approach should be implemented by approximating the g
erating functionalF'FQMC(L)2FFLEX(L)1FFLEX(L8).
Work along these lines is in progress.
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