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Analysis of the dynamical cluster approximation for the Hubbard model
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We examine a central approximation of the recently introduced dynamical cluster approximation~DCA! by
example of the Hubbard model. By both analytical and numerical means we study noncompact and compact
contributions to the thermodynamic potential. We show that approximating noncompact diagrams by their
cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only
the compact contributions should be taken from the cluster, whereas noncompact graphs should be inferred
from the appropriate Dyson equation. The distinction between noncompact and compact diagrams persists even
in the limit of infinite dimensions. Nonlocal corrections beyond the DCA exist for the noncompact diagrams,
whereas they vanish for compact diagrams.
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I. INTRODUCTION

Strongly correlated electron systems are often charac
ized by short-range dynamical fluctuations. Consequently
cal approximations like the dynamical mean-field appro
mation1–4 ~DMFA! successfully describe many of the qua
tative properties. However, in low-dimensional systems, s
tial correlations become increasingly important and
thought to be responsible for, e.g., non-Fermi-liquid behav
andd-wave pairing in the cuprate superconductors.

The dynamical cluster approximation~DCA! was intro-
duced as a technique to include such nonlocal correction
the DMFA.5,6 This is accomplished by mapping the lattic
problem onto that of a self-consistently embedded clus
with periodic boundary conditions.7 The DCA may also be
viewed diagrammatically as an approximation which syste
atically restores momentum conservation at the internal
tices of many-body Feynman diagrams, which is rel
quished in the local DMFA. Here, we investigate one of t
central approximations of the DCA: that compact~skeletal!
contributions to the thermodynamic potential are well a
proximated by their cluster counterparts, whereas nonc
pact ~nonskeletal! contributions should not be approximate
by their cluster counterparts. Rather, they should be c
structed using the appropriate Dyson equation.

II. GENERAL CONSIDERATIONS

Following Baym,8 a microscopic theory may be define
by its approximation to the generating functionalF@G# de-
fining the thermodynamic potential~difference! of the sys-
tem via

DV5V2V0522Tr@SG2 ln~G/G0!#1F@G#, ~1!

whereG is the full andG0 the bare one-particle Green fun
tion, andS the self-energy.F@G# is a sum of all compac
~skeletal! closed connected Feynman diagrams. The ot
contributions to the thermodynamic potential incorpor
noncompact diagrams. Typical compact and noncompact
grams are illustrated in Fig. 1. In the noncompact diagra
two self-energy piecess and s8 are connected with two
Green functions. In the compact diagram, two vertex partG
andG8 are connected with four Green functions.7
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As shown by Mu¨ller-Hartmann,2 the DMFA may be de-
fined by relinquishing the momentum conservation at e
internal vertex inF@G#.9 This conservation is described b
the Laue function

D5(
x

eix•(k11k22k32k4)5Ndk11k2 ,k31k4
. ~2!

In the DMFA, momentum conservation is completely aba
doned and the Laue functionDDMFA[1. We may then sum
freely over all the internal momenta labels.

The DCA is constructed to systematically restore the m
mentum conservation at each internal vertex by mapping
lattice onto a self-consistently embedded cluster proble
We have provided a microscopic definition of the DC
through its Laue function. However, to clarify the relatio
between this microscopic definition and the cluster proble
we must first decompose the lattice into clusters and de
the corresponding problem in reciprocal space. Here, the
lattice ofN sites is tiled byN/Nc clusters, each composed o
Nc5LD sites whereD is dimensionality andL the size of
clusters~cf. Fig. 2 for L5D52). We label the origin of the
clusters byx̃ and theNc intracluster sites byX. So for each
site in the original latticex5X1 x̃. In reciprocal space, the
pointsx̃ andX form lattices labeled byk̃ andK , respectively,
with Ka5na2p/L and integerna . Then k5K1 k̃ ~see
Fig. 2!.

In the DCA, we first make the separation

D5
N

Nc
d k̃11 k̃2 ,k̃31 k̃4

NcdK11K2 ,K31K4
~3!

FIG. 1. ~a! Typical noncompact~nonskeletal! and ~b! typical
compact~skeletal! diagrams.
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and then setN/Ncd k̃11 k̃2 ,k̃31 k̃4
>1, so that

DDCA5NcdK11K2 ,K31K4
, ~4!

which indicates that the momentum is partially conserved
transfers between the cells.

In this paper, we consider the approximation ma
through the substitutionD→DDCA in the compact and non
compact contributions to the thermodynamic potent
Whenever the substitution is made, all internal legs are
placed by the coarse grained Green function defined by

Ḡ~K ,z!5
Nc

N (
k̃

G~K1 k̃,z!. ~5!

The corresponding estimate of the self-energy will then n
essarily be a function ofK and ~complex! frequencyz. The
DCA estimate of the lattice Green function is then given

G~k,z!5
1

z2ek1m2SDCA~K ,z!
. ~6!

It is of importance to note that by using Eq.~6! we have
already made the approximationS(k,z)5SDCA(K ,z)
1O„(Dka)2

… whereDk is the size of the coarse graining ce
shown in Fig. 2 anda is the lattice constant~chosen as
unity!. We also drop the frequency label from this point
for simplicity.

III. COARSE GRAINING
COMPACT VS. NON-COMPACT DIAGRAMS

We investigate the additional approximations associa
with coarse graining in compact and noncompact diagra
To do this we will consider diagrams with all legs coar
grained, except those explicitly displayed in Figs. 3 and
Consider the first nontrivial correction to the coarse-grain
noncompact diagrams as illustrated in Fig. 3:

d (1)@DVncp#;
1

Nc
(

K1 ,K2

s~K1 ,K2!s8~K1 ,K2!

3E
2`

` E
2`

`

de1de2G~K1 ,e1!G~K2 ,e2!

3@rncp~e1 ,K1 ;e2 ,K2!

2 r̄ncp~e1 ,K1 ;e2 ,K2!#dK2 ,K1
, ~7!

FIG. 2. The real lattice cluster~left! and the first Brillouin zone
~right! divided into subcells.
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where

rncp~e1 ,K1 ;e2 ,K2!5
Nc

N (
k̃1 ,k̃2

d~e12eK11 k̃1
!

3d~e22eK21 k̃2
!d k̃2 ,k̃1

~8!

and

r̄ncp~e1 ,K1 ;e2 ,K2!

5
Nc

2

N2 (
k̃1 ,k̃2

d~e12eK11 k̃1
!d~e22eK21 k̃2

!. ~9!

In the above derivations we assumed that the self-ene
is k̃ independent and therefore the entirek̃ dependence of the
Green function is only through the dispersione given by

eK1 k̃522t/~2D !1/2(
n51

D

cos~Kn1 k̃n!, ~10!

which is just the noninteracting dispersion of the Hubba
model Hamiltonian with nearest-neighbor hoppings and
mensionalityD. By the same token, in Fig. 4, for the com
pact part with coarse-grainedG andG8 we have

d (1)@DVcp#;
1

Nc
3 (

K1 ,K2
K3 ,K4

dK4 ,K11K22K3
G~K1 ,K2 ,K3 ,K4!

3G8~K1 ,K2 ,K3 ,K4!

3E
2`

` E
2`

` E
2`

` E
2`

`

de1de2de3de4

3G~K1 ,e1!G~K2 ,e2!G~K3 ,e3!G~K4 ,e4!

3@rcp~e1 ,K1 ;e2 ,K2 ;e3 ,K3 ;e4 ,K4!

2 r̄cp~e1 ,K1 ;e2 ,K2 ;e3 ,K3 ;e4 ,K4!#, ~11!

where

FIG. 3. First correction by noncompact diagrams,d (1)@DVncp#.

FIG. 4. First correction by compact diagrams,d (1)@DVcp#.
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rcp~e1 ,K1 ;e2 ,K2 ;e3 ,K3 ;e4 ,K4!

5
Nc

3

N3 (
k̃1 ,k̃2

k̃3 ,k̃4

d~e12eK11 k̃1
!d~e22eK21 k̃2

!

3d~e32eK31 k̃3
!d~e42eK41 k̃4

!d k̃4 ,k̃11 k̃22 k̃3
~12!

and

r̄cp~e1 ,K1 ;e2 ,K2 ;e3 ,K3 ;e4 ,K4!

5
Nc

4

N4 (
k̃1 ,k̃2

k̃3 ,k̃4

d~e12eK11 k̃1
!d~e22eK21 k̃2

!

3d~e32eK31 k̃3
!d~e42eK41 k̃4

!. ~13!

We now define the Fourier transforms ofr andr̄ with respect
to the energy arguments, e.g.,

C~s,K !5E
2`

`

r~e,K !eisede. ~14!

For the noncompact corrections, Eq.~14! defines
Cncp(s1 ,K1 ;s2 ,K2) and C̄ncp(s1 ,K1 ;s2 ,K2), respectively.
In order to calculate the difference betweenC and C̄ in
finite dimensions, we expand the dispersions and expon
tials as functions ofk̃ and keep the terms up toDk2. The
differencedCncp for the noncompact diagrams becomes

dCncp~s1 ,K1 ;s2 ,K2!

'
t2

3
Dk2@h~K11K2!

2h~K12K2!#s1s2exp@ i ~s1eK1
1s2eK2

!#, ~15!

where h(K )51/D(ncos(Kn). Reversing the Fourier trans
form then yields for the difference ofrncp and r̄ncp

FIG. 5. The compact contribution of the thermodynamic pot
tial vs Dk2 using the FLEX method forU51.57.
15310
n-

drncp~e1 ,K1 ;e2 ,K2!

'2
t2

3
Dk2@h~K11K2!

2h~K12K2!#
]

]e1
d~e12eK1

!
]

]e2
d~e22eK2

!. ~16!

Equation ~16! demonstrates that the difference betwe
coarse graining and no coarse graining in noncompact
grams yields an error of orderDk2. After a tedious but
straightforward calculation for the corresponding differen
between coarse graining and no coarse graining in com
diagrams we obtaindrcp;O(Dk6). Since Dk52p/L, for
large clusters this error becomes much smaller than the e
in Eq. ~16!.

To illustrate the above point we simulate a two
dimensional Hubbard model~with local interactionU and a
nearest-neighbor hoppingt51) using the fluctuation ex-
change approximation~FLEX!.10 We employ an elaborate
subtraction scheme to correctly deal with the high-freque
behavior of the Green functions and FLEX potentials.11 In
Figs. 5 and 6 the compact and noncompact parts ofDV have
been plotted for the interactionU51.57 for various cluster
sizesL and temperaturesT. In Fig. 5, it is readily seen tha
for the compact contribution with coarse-grained Gre
functions the variation ofVcp over the entireDk range is
roughly 10%. In contrast, as shown in Fig. 6, the differen
between the noncompact contributions with and witho
coarse graining generates deviations of over 100%. Note
at very low temperatures~inset in Fig. 5! the deviation from
linearity forT,0.066 is due to the correlation length excee
ing the size of clusterL. Then, the DCA assumption of re
placingS(k) by SDCA(K ) is no longer valid.

IV. LIMIT OF INFINITE DIMENSIONS

To make contact with the original derivations of th
DMFA,1,2 we explore the differences between the comp
and noncompact graphs in the limit of many spatial dime

- FIG. 6. Noncompact contributions of the thermodynamic pot
tial with and without coarse graining forU51.57.
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sionsD. For D→`, we calculateDr for both compact and
noncompact diagrams by simply expandingC and C̄ but
this time with respect to 1/D instead ofDk2. Letting D
→` we can show that

lim
D→`

Cncp~s1 ,K1 ;s2 ,K2!

'C̄D→`3expS 2t2

12
Dk2@h~K22K1!

2h~K11K2!#s1s2D . ~17!

Expanding the exponential in Eq.~17!,

lim
D→`

Cncp~s1 ,K1 ;s2 ,K2!

'C̄D→`3S 12
t2

12
Dk2@h~K22K1!

2h~K11K2!#s1s21••• D ~18!

and, consequently,

lim
D→`

drncp~e1 ,K1 ;e2 ,K2!

'
t2

12
Dk2@h~K22K1!2h~K11K2!#

3
]

]e1

]

]e2
r̄D→`~e1 ,K1 ;e2 ,K2!1O~Dk4!. ~19!

However, for the difference in the compact diagrams
D→` we find limD→`dCcp50. Thus, for allDk, there are
nonlocal corrections to noncompact diagrams while there
none to compact diagrams asD→`. This result is consisten
with what Müller-Hartmann has shown for the DMFA.2 Re-
gardless of whether the expansion parameter isDk or 1/D,
15310
s

re

there is a fundamental difference between compact and n
compact diagrams which requires different treatments
each. Consequently, only the compact contributions sho
be formed from coarse-grained Green functions, wher
noncompact graphs should be inferred from the appropr
Dyson equation.

Finally, even though we directly invoked the neare
neighbor hopping dispersion in our algorithm, our argume
can be generalized to other models assuming that the G
function falls off exponentially asG(r );e2r /r s wherer s is a
characteristic length depending on dimensionality. It tu
out that the compact diagrams fall off much faster due
having a larger number of Green functions relative to
noncompact ones which again explains why we coarse g
the Green functions in only the compact part of the fr
energy difference. The arguments made here may also
applied to the DMFA simply by takingNc51. They also
may be extended to other cluster approaches, such as
molecular coherent potential approximation12 and its formal
equivalent for dynamical systems the molecular cluster
namical mean field.13

V. CONCLUSIONS

We justify one of the central underlying approximatio
of the dynamical cluster approximation. We both analytica
and numerically demonstrate that coarse graining the Gr
functions in noncompact diagrams results in a larger amo
of error compared to that incurred in compact diagram
Consequently, noncompact diagrams and their contribu
to the thermodynamic potential are not coarse grained.
distinction between noncompact and compact diagrams
sists even in the limit of infinite dimensions. This concu
with previous work on dynamical mean-field theory and h
implications for other cluster approaches.
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