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The paramagnetic phase of the two-channel Kondo lattice model is examined with a quantum
Monte Carlo simulation in the limit of infinite dimensions. We find non-Fermi-liquid behavior at
low temperatures including a finite low-temperature single-particle scattering rate, no Fermi distribution
discontinuity, and zero Drude weight. However, the low-energy density of electronic states is finite.
We label our model system in this phase an “incoherent metal.” We discuss the relevance of our results
for concentrated heavy fermion metals with non-Fermi-liquid behavior. [S0031-9007(96)00886-1]

PACS numbers: 75.30.Mb, 71.27.+a, 75.10.Dg

The Fermi liquid theory of Landau has provided a re-Among the remaining theories to explain experiment are
markably robust paradigm for describing the properties othose based upon proximity to a zero-temperature quan-
interacting fermion systems such as liqiide and alkali  tum critical point [4], those based upon disorder induced
metals (e.g., sodium). The key notion of this theory is thatistributions of Kondo scales in local moment systems
the low lying excitations of the interacting system posses$s], and those which hope to explain the physics from
a 1:1 map to those of the noninteracting system and hendmpurity to lattice crossover effects in the multichannel
are called “quasiparticles.” In the metallic context, oneKondo model [6]. Notably lacking for dimensions higher
may think of the quasiparticles as propagating electronthan one are rigorous solutions to microscopic models
like wave packets with renormalized magnetic momentwhich display non-Fermi-liquid behavior [7].
and effective mass reflecting the “molecular field” of the In this Letter, we present the first rigorous solution of the
surrounding medium. A sharp Fermi surface remains inwo-channel Kondo lattice model in infinite spatial dimen-
the electron occupancy functiory which measures the sions. We find that the paramagnetic phase of this model
number of electrons with a given momentum, and for enis an “incoherent metal” with finite density of states at the
ergiesw and temperature® asymptotically close to the Fermi energy and finite residual resistivity. The excita-
Fermi surface the excitations have a decay rate going agn spectrum is non-Fermi-liquidlike; in particular, there
w? + 7*(kgT)?, which is much smaller than the quasi- is a finite lifetime for electrons at the Fermi energy, an ill
particle energy, and generally translates int6?acontri-  defined quasiparticle mass, a linear low-temperature elec-
bution to the electrical resistivity (I'). This theory has ftrical resistivity with a finite residual value, and no dis-
proven useful in describing phase transitions within thecontinuity inn;. We find that physical quantities may be
Fermi liquid, such as superconductivity which is viewedsuitably scaled with a lattice Kondo scdlgthat is signifi-
as a pairing of Landau quasiparticles in conventional meteantly enhanced over the impurity limit. We discuss the
als such as aluminum. possible relevance of these results to understand transport

The Fermi liquid paradigm appears now to be breakproperties of concentrated heavy electron materials.
ing down empirically in numerous materials, notably the The two-channel Kondo impurity model consists of two
quasi-two-dimensional cuprate superconductors [1] and &lentical species of noninteracting electrons antiferromag-
number of fully three-dimensional heavy Fermion alloysnetically coupled to a spin /2 impurity. Non-Fermi-
and compounds [2]. In these systems such anomalidijuid behavior results because of the inability to screen
as a conductivity with linear dependence en7 and out the impurity spin: it is energetically favorable for both
logarithmically divergent linear specific heat coefficientsconduction electron bands to couple to the impurity which
are often observed. If the quasiparticle paradigm indeedives a spin 12 complex on all length scales. As a result,
breaks down, this may require completely new conceptthe ground state is degenerate and the excitation spec-
to explain the superconducting phases of these materirum non-Fermi-liquidlike. In contrast, the single-channel
als. While the Luttinger liquid theory provides an elegantKkondo model has a singlet ground state with the impu-
way to achieve non-Fermi-liquid theory in one dimensionrity spin screened out, and a Fermi liquid excitation spec-
(with, e.g., no jump discontinuity imj, and separation trum corresponding to the removal of one conduction state
or unbinding of spin and charge quantum numbers), thirom the system. On extension to the lattice and ignoring
results from the special point character of the Fermi surthe renormalization of the environment around each spin,
face. Whether the essential spin-charge separation mdlge array of single-channel model singlets would sim-
“bootstrap” into higher dimensions remains unclear [3].ply renormalize the potential scattering. In contrast, the
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array of many body doublets in the two-channel caseéhe density of states (DOS) at high temperatures (i.e., a
would give rise to a dynamical spin-disorder scattering inGaussian) and use this as a default model to analytically
the absence of any cooperative transition that lent cohecontinue the highest temperature data. The output is
ence to the spin array. We might thus anticipate a finitdhen used as a default model to analytically continue
residual resistivity and other non-Fermi-liquid propertiesthe data for the next lower temperature, and so on. As
in the paramagnetic phase [8]. the temperature is lowered, only the low-energy features
The Hamiltonian for the two-channel Kondo lattice is change, so very little additional information needs to be
. ) added at each temperature. To ensure that we have the
=JY)S; el e + Hec. best possible results from this procedure, we systemati-
Z Sha 2\/d (,,)Za (,( PLeTIe ‘ cally improve the precision of the QMC data (by running
longer) until the continued spectra stabilize. The single
M Z CiaoCiaos (1) particle self-energy may then be obtained by inverting
S the relationG(w) = —i/7mw(w + u — 2(w)), where
WherecIa,[, (ci.a.0) Creates (destroys) an electron on sitew(z) is the complex Fadeev function.
i in channela = 1,2 of spino, S; is the Kondo spin on Most of our simulations were limited to the model at
site i, ands; , are the conduction electron spin operatorshalf filling of the conduction bandsM = 1.0 for J =
for site i and channeke. The sitesi form an infinite- 0.75,0.625,0.5,0.4); however, we have also studied the
dimensional hypercubic lattice. Hopping is limited to system away from half filling { = 0.75 and 0.50) for
nearest neighbors with hopping integrae +*/2./d; the  two values of/ (J = 0.75 and 0.625). The qualitative
scaled hopping integrat* determines the energy unit features of the single-particle properties in the paramag-
and is set equal to r* = 1). Thus, on each site the netic phase of the model do not depend strongly upon
Kondo spin mediates spin interaction between the twdilling. Error bars are ill defined for individual points in
different channels. This problem is nontrivial, and, foranalytically continued spectra [20], and are less than 3%
the region of interest in which > 0 andT <« J, t*itis  for the other results presented here.
describable only with nonperturbative approaches. Clearly As the temperature is lowered, the local susceptibilities
some simplifying method which allows for a solution of the show evidence of Kondo screening: the screened local
lattice problem in a nontrivial limit is necessary. Kondo momentT y(T) falls like TIn(T), and the local

Such a method was proposed by Metzner and Vollhardkondo spin-conduction spin correlation indicates an
[9] who observed that the renormalizations due to locabkntiparallel alignment(S; - s;,) < 0; whereas local
two-particle interactions become purely local as the coorspin-spin correlation function between the channels in-
dination number of the lattice increases. More preciselydicates a weak parallel alignmefd;, - s;;) > 0. By
the irreducible single-particle self-ener§y(z) and there- comparing the susceptibility of the local moment to
fore the irreducible two-particle self-enerdy ;. .(z,z Y the impurity susceptibility, we are able to estimate the
both become independent of momentum for Iarge coordiKondo scalely, from the defining relatiofT y (Ty) = 0.3.
nation numberZd — ) [10,11]. A further consequence We find that T, = 0.85J exp(—1.01¢*/J). For com-
of this is that the solution of most standard lattice modelsparlson in the impurity limit we would anticipate
may be mapped onto the solution of a local correlated sysF, = = 7~ '/2J expd(— /7 t*/J). Hence, T, is collec-
tem coupled to an effective bath that is self-consistentlytively enhanced in the lattice, as found in the one-channel
determined [11-16]. We refer the reader to the abovénderson lattice problem near half filling [21-23]; we
references and recent reviews for further details on theiscuss our enhancement further below.
method [17]. When the temperature is lowered beldly, we find

In order to solve the remaining impurity problem, we non-Fermi-liquid behavior in the single-particle properties
use the Kondo impurity algorithm of Fye and Hirsch [18], of the model. For example, in Fig. 1 the derivative of
modified to simulate the two-channel problem [19]. Inthe particle distribution function(e;) = T >, G(&;, iw,)
the quantum Monte Carlo (QMC) approach the problenis plotted. dn(e;)/dex = —T >, 1/[iw, — €x + u —
is cast into a discrete path formalism in imaginary time,2(iw,)]? is calculated by numerically evaluating the sum.
71, wherer; = [A7, A7 = B/L, andL is the number of This saturates to a finite width distribution, in contrast to
times slices. The values df used ranged from8 to 96, a Fermi liquid where it would display a dominant delta
with the largest values df reserved for the largest values function contribution asT — 0, and a Luttinger liquid
of B since the time required by the algorithm increaseg3] or marginal Fermi liquid [24] where it would have a
like L. A sign problem was also encountered in the QMCsingular divergence. Clearly we see no such features in
process which limited our access to very low temperatures:ig. 1.

The Euclidean-time QMC results for the local greens In Fig. 2 we show one electron properties of the model.
function G(7) were then analytically continued to real Figure 2(a) displays the single particle DOS. This has
frequencies using the “annealing” maximum entropya finite value asw,T — 0, with a peak away from the
method [20]. Here, we start from an exact result forFermi energy. Note that suppressiondfw = 0) leads
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L5 — [Fig. 2(c)]. For a Fermi liquid, this slope would be nega-
X 15 o tive. The physical content is importanZ = 1/(1 —
\\\ %10, o ] dReX/dw) measures the overlap of the quasiparticle
\ §05 [ o0 | wave function with the original one-electron wave func-
. Lo - A\ s tion having the same quantum labels. A positive slope
g Y 2 4 6 s 10 leads toZ > 1 or Z < 0, indicating a breakdown of the
;;f % T, quasiparticle concept. Concomitant with the finite width
9 ! —— TT=3.33 of —dn/de, is a finite imaginary part to the low tempera-
05| NS e ture self-energy [Fig. 2(b)]. This indicates that the one-
\\\\ —— - TTE042 electron excitations are ill defined on approach to the Fermi
\\\\ T e surface, again ruling out a Fermi-liquid description. Since
0.0 ‘ S T the low-temperature thermodynamic properties such as the
0.0 0.5 1.0 1.5 20  specific heat, uniform magnetic susceptibility, and charge
g, susceptibility display no evidence for a gap, we believe the

FIG. 1. Derivati i ficle  distributi funci observed behavior indicates a new kind of metallic state.
n(ek') _ Tzemé;a(;\,ieiwo) Wﬁenpajr 'i% 62%5 r'arlljd'ozn\, ZUT%'On From our numerical results, one can show that the zero
In a noninteracting system or one with a Fermi-liquid low temperature self-energy must be nonanalytic. If the self-

temperature state—dn(0)/de, = Z*B and the distribution energy is analytic everywhere on the real axis (and the

should have a widthe T which is the width of the Fermi edge upper half complex plane), then one may easily show that
and is proportional to the scattering rate at the Fermi surface.

However, in this case-dn(0)/de, saturates at lowf’ and so . ImX2(w) . dReX(w)

does the width of-dn(e;)/de,, shown in the inset, indicating |T'E]0 w - ﬁﬂ"o do 0’ ()
that a Fermi liquid has not formed and that scattering rate 0 o=

remains finite where, = u asT — 0. where wy = 7T is the lowest fermionic Matsubara fre-

quency along the imaginary axis. However, we find

to an enhanced effective medium DOS which accountshat whenT < Ty, Im 3(wo)/wo < 0 and is apparently
qualitatively for our collectively enhancef values. divergent; whereas, from Fig. 2(c) it is apparent that

Novel behavior is seen in the real part of the oneq ReS(w)/dwl|,—o > 0. Thus,3(w) cannot be analytic
electron self-energy which has positive slopecat— 0  at the origin of the complex plane. Given this, and the ap-
parent shape ok (w) in Fig. 2(b), we postulate the form
Im 3(w) ~ —c + |w].

The non-Fermi-liquid behavior also strongly effects
experimentally relevant transport properties of the system.
The electrical resistivity is shown in Fig. 3. We find that
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FIG. 2. Single-particle properties of the two-channel Kondo 01 o
lattice in infinite dimensions whed = 0.750 and N = 1.0. 00 o
(a) Single-particle DOS. At high temperatur&s> T, (not 700 02 04 06 08 10
shown), the DOS is a Gaussian, crossing over to the peake T/T,
distribution with relative suppression ab — 0 for lower 0.0 ,
temperatures wheff < Ty. (b) Imaginary part of the self- 0.1 1.0 10.0
energy. As the temperature is lowered the self-energy doe: . T/T

not approach a Fermi-liquid form IB(w) « —T? — »?, but ’

rather appears to approach the nonanalytic form (see tex§lG. 3. Resistivity of the two-channel Kondo lattice.
Im3(w) « —c + (w). (c) The real part of the self-energy p(T)/p(0) is plotted vsT /T, for various values of/. In the
ReX(w) is also anomalous since its initial slope is positive inset, the lowest temperature data (f6yT, < 1, shown as
indicating a quasiparticle renormalization factor which isopen circles) was fit byp(T)/p(0) = 1 + B(T/Ty)*, with
greater than 1. B = —04 anda = 1.03.
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