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The paramagnetic phase of the two-channel Kondo lattice model is examined with a quantum
Monte Carlo simulation in the limit of infinite dimensions. We find non-Fermi-liquid behavior at
low temperatures including a finite low-temperature single-particle scattering rate, no Fermi distributio
discontinuity, and zero Drude weight. However, the low-energy density of electronic states is finite
We label our model system in this phase an “incoherent metal.” We discuss the relevance of our resu
for concentrated heavy fermion metals with non-Fermi-liquid behavior. [S0031-9007(96)00886-1]
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The Fermi liquid theory of Landau has provided a r
markably robust paradigm for describing the properties
interacting fermion systems such as liquid3He and alkali
metals (e.g., sodium). The key notion of this theory is th
the low lying excitations of the interacting system posse
a 1:1 map to those of the noninteracting system and he
are called “quasiparticles.” In the metallic context, o
may think of the quasiparticles as propagating electr
like wave packets with renormalized magnetic mome
and effective mass reflecting the “molecular field” of th
surrounding medium. A sharp Fermi surface remains
the electron occupancy functionn$k which measures the
number of electrons with a given momentum, and for e
ergiesv and temperaturesT asymptotically close to the
Fermi surface the excitations have a decay rate going
v2 1 p2skBT d2, which is much smaller than the quas
particle energy, and generally translates into aT 2 contri-
bution to the electrical resistivityrsT d. This theory has
proven useful in describing phase transitions within t
Fermi liquid, such as superconductivity which is viewe
as a pairing of Landau quasiparticles in conventional m
als such as aluminum.

The Fermi liquid paradigm appears now to be brea
ing down empirically in numerous materials, notably t
quasi-two-dimensional cuprate superconductors [1] an
number of fully three-dimensional heavy Fermion allo
and compounds [2]. In these systems such anoma
as a conductivity with linear dependence onv, T and
logarithmically divergent linear specific heat coefficien
are often observed. If the quasiparticle paradigm inde
breaks down, this may require completely new conce
to explain the superconducting phases of these ma
als. While the Luttinger liquid theory provides an elega
way to achieve non-Fermi-liquid theory in one dimensi
(with, e.g., no jump discontinuity inn$k, and separation
or unbinding of spin and charge quantum numbers), t
results from the special point character of the Fermi s
face. Whether the essential spin-charge separation
“bootstrap” into higher dimensions remains unclear [
0031-9007y96y77(8)y1612(4)$10.00
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Among the remaining theories to explain experiment a
those based upon proximity to a zero-temperature qu
tum critical point [4], those based upon disorder induc
distributions of Kondo scales in local moment system
[5], and those which hope to explain the physics fro
impurity to lattice crossover effects in the multichann
Kondo model [6]. Notably lacking for dimensions highe
than one are rigorous solutions to microscopic mod
which display non-Fermi-liquid behavior [7].

In this Letter, we present the first rigorous solution of th
two-channel Kondo lattice model in infinite spatial dime
sions. We find that the paramagnetic phase of this mo
is an “incoherent metal” with finite density of states at th
Fermi energy and finite residual resistivity. The excit
tion spectrum is non-Fermi-liquidlike; in particular, ther
is a finite lifetime for electrons at the Fermi energy, an
defined quasiparticle mass, a linear low-temperature e
trical resistivity with a finite residual value, and no dis
continuity inn$k. We find that physical quantities may b
suitably scaled with a lattice Kondo scaleT0 that is signifi-
cantly enhanced over the impurity limit. We discuss t
possible relevance of these results to understand trans
properties of concentrated heavy electron materials.

The two-channel Kondo impurity model consists of tw
identical species of noninteracting electrons antiferrom
netically coupled to a spin 1y2 impurity. Non-Fermi-
liquid behavior results because of the inability to scre
out the impurity spin: it is energetically favorable for bot
conduction electron bands to couple to the impurity whi
gives a spin 1y2 complex on all length scales. As a resu
the ground state is degenerate and the excitation sp
trum non-Fermi-liquidlike. In contrast, the single-chann
Kondo model has a singlet ground state with the imp
rity spin screened out, and a Fermi liquid excitation spe
trum corresponding to the removal of one conduction st
from the system. On extension to the lattice and ignori
the renormalization of the environment around each sp
the array of single-channel model singlets would sim
ply renormalize the potential scattering. In contrast, t
© 1996 The American Physical Society
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array of many body doublets in the two-channel c
would give rise to a dynamical spin-disorder scattering
the absence of any cooperative transition that lent co
ence to the spin array. We might thus anticipate a fin
residual resistivity and other non-Fermi-liquid propert
in the paramagnetic phase [8].

The Hamiltonian for the two-channel Kondo lattice is

H ­ J
X
i,a

Si ? si,a 2
tp

2
p

d

X
kijl,a,s

scy
i,a,scj,a,s 1 H.c.d

2 m
X

i,a,s

c
y
i,a,sci,a,s , (1)

wherec
y
i,a,s (ci,a,s) creates (destroys) an electron on s

i in channela ­ 1, 2 of spin s, Si is the Kondo spin on
site i, andsi,a are the conduction electron spin operat
for site i and channela. The sitesi form an infinite-
dimensional hypercubic lattice. Hopping is limited
nearest neighbors with hopping integralt ; tpy2

p
d; the

scaled hopping integraltp determines the energy un
and is set equal to 1stp ­ 1d. Thus, on each site th
Kondo spin mediates spin interaction between the
different channels. This problem is nontrivial, and, f
the region of interest in whichJ . 0 andT ø J, tp it is
describable only with nonperturbative approaches. Cle
some simplifying method which allows for a solution of t
lattice problem in a nontrivial limit is necessary.

Such a method was proposed by Metzner and Vollh
[9] who observed that the renormalizations due to lo
two-particle interactions become purely local as the co
dination number of the lattice increases. More precis
the irreducible single-particle self-energyS $kszd and there-
fore the irreducible two-particle self-energyG $k,$k1 $qsz, z0 d
both become independent of momentum for large coo
nation number (2d ! `) [10,11]. A further consequenc
of this is that the solution of most standard lattice mod
may be mapped onto the solution of a local correlated
tem coupled to an effective bath that is self-consiste
determined [11–16]. We refer the reader to the ab
references and recent reviews for further details on
method [17].

In order to solve the remaining impurity problem, w
use the Kondo impurity algorithm of Fye and Hirsch [18
modified to simulate the two-channel problem [19].
the quantum Monte Carlo (QMC) approach the probl
is cast into a discrete path formalism in imaginary tim
tl , wheretl ­ lDt, Dt ­ byL, andL is the number of
times slices. The values ofL used ranged from8 to 96,
with the largest values ofL reserved for the largest value
of b since the time required by the algorithm increa
like L3. A sign problem was also encountered in the QM
process which limited our access to very low temperatu

The Euclidean-time QMC results for the local gree
function Gstd were then analytically continued to re
frequencies using the “annealing” maximum entro
method [20]. Here, we start from an exact result
e

r-
e

o

ly

t
l

r-
,

i-

s
s-
y
e
e

,

s

s.

the density of states (DOS) at high temperatures (i.e
Gaussian) and use this as a default model to analytic
continue the highest temperature data. The output
then used as a default model to analytically contin
the data for the next lower temperature, and so on.
the temperature is lowered, only the low-energy featu
change, so very little additional information needs to
added at each temperature. To ensure that we have
best possible results from this procedure, we system
cally improve the precision of the QMC data (by runnin
longer) until the continued spectra stabilize. The sing
particle self-energy may then be obtained by inverti
the relationGsvd ­ 2i

p
p wsssv 1 m 2 Ssvdddd, where

wszd is the complex Fadeev function.
Most of our simulations were limited to the model a

half filling of the conduction bands (N ­ 1.0 for J ­
0.75, 0.625, 0.5, 0.4); however, we have also studied th
system away from half filling (N ­ 0.75 and 0.50) for
two values ofJ (J ­ 0.75 and 0.625). The qualitative
features of the single-particle properties in the param
netic phase of the model do not depend strongly up
filling. Error bars are ill defined for individual points in
analytically continued spectra [20], and are less than
for the other results presented here.

As the temperature is lowered, the local susceptibilit
show evidence of Kondo screening: the screened lo
Kondo momentTxsT d falls like T lnsTd, and the local
Kondo spin-conduction spin correlation indicates a
antiparallel alignment kSi ? si,al , 0; whereas local
spin-spin correlation function between the channels
dicates a weak parallel alignmentksi,2 ? si,1l . 0. By
comparing the susceptibility of the local moment
the impurity susceptibility, we are able to estimate t
Kondo scaleT0 from the defining relationT0xsT0d ­ 0.3.
We find that T0 . 0.85J exps21.01tpyJ d. For com-
parison, in the impurity limit we would anticipate
T

imp
0 . p21y2J exps2

p
p tpyJ d. Hence, T0 is collec-

tively enhanced in the lattice, as found in the one-chan
Anderson lattice problem near half filling [21–23]; w
discuss our enhancement further below.

When the temperature is lowered belowT0, we find
non-Fermi-liquid behavior in the single-particle properti
of the model. For example, in Fig. 1 the derivative
the particle distribution functionnsekd ­ T

P
n Gsek , ivnd

is plotted. dnsekdydek ­ 2T
P

n 1yfivn 2 ek 1 m 2

Ssivndg2 is calculated by numerically evaluating the sum
This saturates to a finite width distribution, in contrast
a Fermi liquid where it would display a dominant delt
function contribution asT ! 0, and a Luttinger liquid
[3] or marginal Fermi liquid [24] where it would have a
singular divergence. Clearly we see no such features
Fig. 1.

In Fig. 2 we show one electron properties of the mod
Figure 2(a) displays the single particle DOS. This h
a finite value asv, T ! 0, with a peak away from the
Fermi energy. Note that suppression ofNsv ­ 0d leads
1613
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FIG. 1. Derivative of the particle distribution functio
nsekd ­ T

P
n Gsek , ivnd when J ­ 0.625 and N ­ 1.0.

In a noninteracting system or one with a Fermi-liquid lo
temperature state,2dns0dydek ~ Z2b and the distribution
should have a width~ T which is the width of the Fermi edg
and is proportional to the scattering rate at the Fermi surf
However, in this case2dns0dydek saturates at lowT and so
does the width of2dnsekdydek , shown in the inset, indicating
that a Fermi liquid has not formed and that scattering r
remains finite whenek ­ m asT ! 0.

to an enhanced effective medium DOS which accou
qualitatively for our collectively enhancedT0 values.

Novel behavior is seen in the real part of the o
electron self-energy which has positive slope atv ! 0
d
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FIG. 2. Single-particle properties of the two-channel Kon
lattice in infinite dimensions whenJ ­ 0.750 and N ­ 1.0.
(a) Single-particle DOS. At high temperaturesT ¿ T0 (not
shown), the DOS is a Gaussian, crossing over to the pe
distribution with relative suppression atv ! 0 for lower
temperatures whenT ø T0. (b) Imaginary part of the self
energy. As the temperature is lowered the self-energy d
not approach a Fermi-liquid form ImSsvd ~ 2T2 2 v2, but
rather appears to approach the nonanalytic form (see
Im Ssvd ~ 2c 1 svd. (c) The real part of the self-energ
ReSsvd is also anomalous since its initial slope is positi
indicating a quasiparticle renormalization factor which
greater than 1.
1614
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[Fig. 2(c)]. For a Fermi liquid, this slope would be neg
tive. The physical content is important:Z ­ 1ys1 2

≠ ReSy≠vd measures the overlap of the quasiparti
wave function with the original one-electron wave fun
tion having the same quantum labels. A positive slo
leads toZ . 1 or Z , 0, indicating a breakdown of th
quasiparticle concept. Concomitant with the finite wid
of 2dnydek is a finite imaginary part to the low temper
ture self-energy [Fig. 2(b)]. This indicates that the on
electron excitations are ill defined on approach to the Fe
surface, again ruling out a Fermi-liquid description. Sin
the low-temperature thermodynamic properties such as
specific heat, uniform magnetic susceptibility, and cha
susceptibility display no evidence for a gap, we believe
observed behavior indicates a new kind of metallic sta

From our numerical results, one can show that the z
temperature self-energy must be nonanalytic. If the s
energy is analytic everywhere on the real axis (and
upper half complex plane), then one may easily show

lim
T!0

Im Ssiv0d
v0

­ lim
T!0

d ReSsvd
dv

Ç
v­0

, (2)

wherev0 ­ pT is the lowest fermionic Matsubara fre
quency along the imaginary axis. However, we fi
that whenT , T0, Im Ssv0dyv0 , 0 and is apparently
divergent; whereas, from Fig. 2(c) it is apparent t
d ReSsvdydvjv­0 . 0. Thus,Ssvd cannot be analytic
at the origin of the complex plane. Given this, and the
parent shape ofSsvd in Fig. 2(b), we postulate the form
Im Ssvd , 2c 1 jvj.

The non-Fermi-liquid behavior also strongly effec
experimentally relevant transport properties of the syst
The electrical resistivity is shown in Fig. 3. We find th
o
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FIG. 3. Resistivity of the two-channel Kondo lattice
rsT dyrs0d is plotted vsTyT0 for various values ofJ. In the
inset, the lowest temperature data (forTyT0 , 1, shown as
open circles) was fit byrsTdyrs0d ­ 1 1 BsTyT0da , with
B ­ 20.4 anda ­ 1.03.
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rsT dyrs0d curves for differentJ values collapse onto
universal scaling curve when plotted againstTyT0. As
shown in the inset,rsT d . rs0d f1 1 BsTyT0dg for T !

0, with B , 0 [25]. We interpret the finite value ofrs0d
together with2Im Ss0, 0d as “spin-disorder scattering
off of the degenerate screening clouds centered a
each local moment spin. Given the finite density
one particle excitations at the Fermi energy, this fin
residual resistivity is indicative of an “incoherent me
phase” brought about by the disordered spin degree
freedom, in qualitative agreement with results obtain
with a Lorentzian bare conduction DOS (which does
self-consistently renormalize) [8]. We conjecture that
antiferromagnetism at half filling will lift the disorde
at each site and produce an insulating state due to
cell doubling.

We have also computed the optical conductivity (n
shown) and find that it displays vanishing Drude weig
at low temperature together with a finite frequen
peaksv , 0.6Jd. Both these features again support o
interpretation in terms of a new kind of non-Fermi-liqu
metallic state.

We find a commensurate antiferromagnetic transit
at half filling for the simple nearest neighbor hoppi
model. We can suppress this phase by adding n
neighbor hopping along each principal axis which w
not alter our conclusions for the paramagnetic pha
The antiferromagnetic order is suppressed away from
filling. The complete phase diagram of the model will
explored in a separate publication.

Finally, we mention the possible applicability of o
results to concentrated heavy fermion systems. Th
systems display resistivity of the formrsT d ø rs0d f1 1

BsTyT0dag for T , T0, with rs0d of order the unitarity
limit and a ø 1. They are UCu52xPdx (with B , 0)
[2], UBe13 (B . 0) [26,27,28], and CeCu2Si2 (B .

0) [29]. While UCu52xPdx is a possible example o
the distribution of Kondo scales scenario [5], UBe13

and CeCu2Si2 are ordered compounds which have be
proposed as possible two-channel lattice systems
Refs. [6b,c]; it is conceivable that1yd corrections can
effect the sign change ofB relative to our results. Anothe
key difference with our model is that we assumeglobal
SUs2djspin 3 SUs2djchannel symmetry, while in the rea
materials these can only be local symmetries.
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