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Abstract. We present a pedagogical and critical overview of the two-channel Kondo model and
its possible relevance to a number of non-Fermi-liquid alloys and compounds. We survey the
properties of the model, how a magnetic two-channel Kondo effect might obtain for Ce3+ ions in
metals, and a quadrupolar Kondo effect for U4+ ions in metals. We suggest that the incoherent
metal behaviour of the two-channel Kondo-lattice model may be useful in understanding the
unusual normal-state resistivity of UBe13 and speculate that the residual resistivity and entropy
of the two-channel lattice paramagnetic phase might be removed by either antiferromagnetic (or
antiferroquadrupolar) ordering or by a superconducting transition to anodd-frequencypairing
state.

1. Introduction

Since the discovery of heavy-fermion superconductivity in 1979 [1], there have been
numerous theoretical efforts to explain this mysterious phenomenon (for reviews see
references [2–7]). The name results from a superconducting phase transition in which
electrons with effective masses hundreds of times the free-electron value pair. That is to
say, the electrons nearly localize (infinite effective mass) and yet at the end of the day at
sufficiently low temperatures conduct electricity perfectly! Moreover, the superconductivity
is clearly ‘exotic’ in character: there are compelling reasons to believe that the electron
pairs are in non-trivial angular momentum states about their centre of mass, unlike the
conventional superconductors such as aluminium or lead [8]. The materials which display
this physics are rare-earth or actinide intermetallic compounds such as CeCu2Si2 and UBe13

which possess tightly bound 4f or 5f electronic orbitals and localized moments on the
Ce or U sites as well as ‘light’ conduction states contributed by the surrounding ligands.
Because the f orbitals are both strongly correlated—it costs several electron volts to multiply
occupy an f site—and possess strong magnetic tendencies which are normally an anathema
to electron pairing, this superconductivity is truly remarkable. Indeed, in several materials
superconductivity and magnetismcoexist, unlike in the cuprate superconductors! Clearly,
the intense interest in these materials over now nearly two decades of study is richly
deserved.

An apparently separate area of research in strongly correlated materials which has
attracted many workers is the study of non-Fermi-liquid metals, which arose recently in
the context of the high-temperature superconductors [9–11]. To put this in context, the
so-called quasiparticle description of Landau’s Fermi-liquid theory [12] has shaped the
way we view the ordinary metallic state. In Landau’s phenomenological approach, a
1:1 mapping of non-interacting electron states to interacting electron states is assumed
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Figure 1. The susceptibility and specific heat of Th1−xUxRu2Si2. These data show clear
evidence of log divergence inχ , C/T for low T . Single-ion scaling is also evident, above
∼0.5 K, indicating an impurity origin to the NFL physics. After references [53, 54].

asymptotically close to the Fermi energy. The states can then be described in terms of
quasiparticles, or dressed electrons, which have an enhanced effective mass and magnetic
moment through their interactions with other quasiparticles in the surrounding medium.
Much of the intuition is then built on these coherent quasiparticle states. It is crucial,
however, for the description to work, that the energy width of the quasiparticle excitations
vanish more rapidly than their energy position as the Fermi level is approached. This
ensures the coherence. On general grounds in such a Fermi liquid the quasiparticle decay
rate vanishes asT 2 in three dimensions. A test of this is to measure the electrical
resistivity which is proportional to the decay rate, roughly speaking. Because all theories
of superconductivity and other instabilities (such as spin-density waves) in a metal are
based upon a quasiparticle assumption, the discovery of non-Fermi-liquid metals would
provide a basis for a possible paradigm shift. More exciting still would be the discovery of
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superconductivity in such materials!
Fortunately, the high-temperature superconductors provide just such a possibility [9]!

Anderson noted that in many of the cuprate superconductors (near optimalTc-values as it
turns out), the quasiparticle decay rate vanishes linearly in the temperature judging from
resistivity measurements [10]. A linear-in-ω low-temperature scattering rate is also observed
with optical conductivity measurements, which would not arise, for example, from the high-
temperature linear-in-T scattering of phonons in a conventional metal (where it merely
represents the increasing population of thermal phonons). These results alone imply a
breakdown in the Fermi-liquid picture. Besides Anderson’s approach, the ‘marginal Fermi-
liquid’ phenomenology [11] was developed to correlate the disparate anomalous data. In this
approach, it is assumed that the spin and charge susceptibilities have an unusual form, in that
they are approximately momentum independent and vanish linearly inω/T for frequencies
ω 6 kBT /h̄ whereT is the temperature. In contrast, the spin and charge susceptibilities
of a Fermi liquid are strongly momentum dependent and have a low-frequency behaviour
which becomes independent of temperature asT → 0. This hypothesis gives rise, with
certain assumptions, to the linear-in-T scattering rate, concomitant with an effective mass
which diverges logarithmically as the Fermi energy is approached.

Table 1. Non-Fermi-liquid heavy-fermion alloy systems. This table lists the relevant properties
of all non-Fermi-liquid heavy-fermion alloy systems for which a two-channel Kondo model
description may be appropriate. The columns for specific heat, susceptibility, and resistivity
indicate the low-temperature behaviour. All have logarithmic-in-T specific heat coefficients
over an extended temperature range. The coefficientsA, B listed in the resistivity column are
assumed positive. The column under ‘Single ion?’ answers whether single-ion scaling has been
observed.

Alloy TK C/T χ(T ) ρ(T ) Single ion? References

Y1−x (Th1−y ,Uy )xPd(∗)
3 ∼ 40 K lnT 1 − aT 1/2 1 − AT Yes [13, 42, 45]

Th1−xUxRu2Si(∗)
2 12 K lnT ln T 1 + BT 1/2(?) Yes [53]

(H ‖ c)
Th1−xUxPd2Si(∗)

2 12 K lnT ln T 1 + BT 1/2(?) Yes [54]
(H ‖ c)

La1−xCexCu2Si(∗)
2 ∼ 10 K lnT ln T 1 − AT Approximate [55]

Th1−xUxM2Al 3 ∼ 20 K lnT ln T (?) 1 − AT ? [13, 58]
Th1−xUxBe13 ∼ 10 K lnT 1 − aT 1/2 1 + BT 1/2 or No [59, 60, 61]

1 + AT

An exciting development of the past few years is that a number of heavy-fermion
alloys have been discovered to have non-Fermi-liquid properties as well [13]. These
include the systems Y1−x(Th1−y ,Uy)xPd3, Th1−xUxRu2Si2, Th1−xUxPd2Si2, Th1−xUxBe13,
La1−xCexCu2Si2, Th1−xUxM2Al 3 (M = Ni, Pd), UCu5−xPdx , and CeCu6−xAux . All of these
materials display specific heat coefficients which over an extended range of temperatures
appear to behave as− ln(T ), and resistivities which have leading low-temperature variation
that is often linear inT , but decidedly non-Fermi-liquid like. The magnetic susceptibility
is also non-Fermi-liquid like, often varying as 1− AT 1/2, or logarithmically, at low
temperatures. Figure 1 displays the susceptibility and specific heat of Th1−xUxRu2Si2,
and figure 2 displays the resistivity of Y1−x(Th1−y ,Uy)xPd3. Properties of these systems are
summarized in table 1.

Three main scenarios have been put forward in an effort to understand the physics of
these systems.



9828 D L Cox and M Jarrell

Figure 2. The resistivity of Y0.8(Th1−yUy )0.2Pd3. The resistivity is approximately linear
for all concentrations, and the low-temperature behaviour is approximately independent of the
concentration. After reference [45].

(1) Proximity to a quantum critical point.When a critical point such as that associated
with a ferromagnetic or antiferromagnetic transition is tuned to zero temperature by some
external parameterR such as pressure or dopant concentration, this is known as a ‘quantum
critical point’. For temperatures directly above theT = 0, Rc point, non-Fermi-liquid
behaviour is expected in thermodynamic and transport properties [14] (NFL phenomenology
can also be present near a quantum spin-glass transition—see [15]). Phenomenologically,
this seems to be the most relevant scenario for CeCu6−xAux , as is discussed elsewhere in
this Special Issue.

(2) Distribution of Kondo temperatures. If the material is highly disordered, this
can result in a distribution of Kondo temperature scales. Each scale determines the
temperature at which Fermi-liquid behaviour will set in around a single magnetic impurity
antiferromagnetically coupled to conduction electrons (assuming an effective spin-1/2
impurity magnetic moment). Averaging over such a distribution can produce thermodynamic
and transport properties which look non-Fermi-liquid like due to the broad range of effective
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Fermi temperatures [16]. Essentially, the unquenched moments contribute the NFL physics.
Based upon the experimental observation of a broad distribution of internal fields through
NMR on UCu5−xPdx (x = 1, 1.5), this appears to be a likely scenario to explain the
phenomenology of this material.

(3) The two-channel Kondo model. Nozières and Blandin introduced the multi-channel
Kondo model in 1980 [17, 18]. In this model,M degenerate channels of conduction
electrons couple with identical exchange integrals to a spin-SI impurity. WhenM > 2SI ,
a non-trivial non-Fermi-liquid critical point governs the low-temperature properties of the
system. It has been argued extensively elsewhere that the most likely observable version
of this model for rare-earth and actinide systems is theM = 2, SI = 1/2 model, and there
are strong reasons to argue for its relevance to the alloys Y1−xUxPd3, Th1−xUxRu2Si2,
Th1−xUxPd2Si2, Th1−xUxBe13, La1−xCexCu2Si2, and Th1−xUxM2Al 3. The model is also
relevant to various mesoscopic devices, one of which shows non-Fermi-liquid transport
properties believed to be due to so-called two-level-system Kondo defects in the device
[20]. The lattice version of the two-channel Kondo model has been argued to be relevant
to the concentrated heavy-fermion system UBe13 [18], which shows clear NFL behaviour
above its superconducting phase transition, as first pointed out in reference [3], and examined
more recently in reference [21]. (An alternative approach to locally driven NFL behaviour
for both impurities and the lattice appears in the work of Siet al [19].)

In this paper, intended as a pedagogical overview rather than a report of new results,
we lay out the arguments and evidence for the relevance of scenario (3) above to the non-
Fermi-liquid heavy-fermion systems. (A lengthy technical review of the two-channel Kondo
effect and its relevance to real materials is in preparation and will be published elsewhere
[22].) A brief outline is as follows: in section 2 we briefly review the two-channel Kondo
model and describe how this can arise in the context of the quadrupolar Kondo effect for
tetravalent uranium ions and the magnetic Kondo effect for trivalent Ce ions. In section 3
we survey the data on existing heavy-fermion alloy systems which support at least a partial
interpretation in terms of the two-channel Kondo effect. In section 4, we turn to reviewing
an approach to the two-channel Kondo lattice which is based upon taking the limit of infinite
spatial dimensions. This gives a paramagnetic phase which is an ‘incoherent metal’, namely,
a finite residual resistivity and entropy result despite a finite density of states at the Fermi
energy. This result has possible relevance to the heavy-fermion superconductor UBe13,
which has an anomalously large residual resistivity atTc together with strong evidence for
‘cleanliness’. A critical discussion of the oversimplifications in this model will be provided,
particularly focusing on the assumption of ‘global’ channel symmetry. Finally, in section
5, we conclude and provide speculation on the possibility of superconductivity in the two-
channel Kondo lattice and its possible relation to the heavy-fermion superconductors.

Before proceeding to the discussion of the two-channel Kondo physics, some general
comments about non-Fermi-liquid and Fermi-liquid metals are in order. The Fermi-liquid
paradigm has been hugely successful, and such noted scientists as P W Anderson have
likened it to the Standard Model of particle physics [23]. This comparison not only honours
the great success of the Fermi-liquid theory, but evokes depression among many condensed-
matter physicists due to the intellectual tyranny exerted by that very success. In such a
climate, it is no surprise that many condensed-matter physicists desire to go beyond our
‘standard model’ as eagerly as our particle physics counterparts long to move past theirs.

Enthusiasts for the Fermi-liquid paradigm are quick to point out that since no obvious
order parameter characterizes the normal-state physics of high-temperature superconductors
or heavy-fermion materials, there is no sharp distinction between a Fermi-liquid normal
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state and a non-Fermi-liquid normal state. These can only be separated by a crossover,
and therefore the most ardent Fermi-liquid practitioners will proclaim a victory of sorts
over upstart advocates of non-Fermi-liquid physics. Indeed, a common point of view for
UBe13 (and the cuprates) is that superconductivity merely intervenes before the onset of
a coherent Fermi-liquid state. In the case of UBe13, application of magnetic fields which
completely suppress the superconductivity reveal no tendency to Fermi-liquid behaviour
down to approximately 200 mK (the specific heat behaves approximately logarithmically
with temperature in a 12 T field from 200 mK to 3 K [21]). While one cannot rule out
Fermi-liquid behaviour setting in at some yet lower temperature, the data beg the question
‘even if a Fermi-liquid state eventually sets in below say, 100 mK, once we apply magnetic
field, of what relevance is this to a superconducting transition at 0.9 K in zero field?’

It seems to us that such debates obscure a point of commonality between Fermi-
liquid physics and non-Fermi-liquid physics that is best described in renormalization
group language: the physically relevant meaning of a Fermi-liquid or non-Fermi-liquid
normal state is that of an unstable fixed point which governs the physics of the system
in an intermediate-temperature regime prior to the onset of an ordered ground state
(superconducting, magnetic, etc) [24]. Such fixed points are characterized by their excitation
spectra, and their conceptual power is augmented by quantitative utility: these excitations
can be fed into calculations of transport properties or superconducting gap equations,
for example, in the case of the Fermi liquid where electronic quasiparticles describe the
spectrum. In the case of the Fermi-liquid fixed point, some forty years of experience plus
recent explicit renormalization group treatments [24] have driven home the existence and
usefulness of this particularunstablefixed point. However, even for the most apparently
stable Fermi-liquid metal (e.g., copper) there is ample theoretical reason to believe that some
ordering will prevail at low temperatures (e.g., the Kohn–Luttinger instability). Examined in
this light, the above-mentioned view that ‘nuisance’ superconductivity obscures the Fermi-
liquid fixed point in UBe13 or the cuprates is decidedly a case of putting the cart before the
horse.

In the study of non-Fermi-liquid metals, which is a much younger sub-field of physics
than that of conventional metals, we are still working to see whether such an unstable
fixed point exists, with excitations that arenot specified by electronic quasiparticles. Such
new excitations could give rise to very novel superconducting or magnetic states. It seems
clear in the case of the cuprate superconductors and such heavy-fermion materials as UBe13

and CeCu2Si2 that the interesting physics above and below any phase transition happens
in a region far from any Fermi-liquid fixed point. Thus, the data issue forth a challenge
to theorists to provide descriptions of a conceptual and quantitatively useful new unstable
fixed point (fixed points?) governing the normal state of the system, which matches the
compelling elegance and falsifiability of Landau’s brilliant theory. It is in the spirit of
attempting to answer that challenge that this manuscript proceeds—though honestly, for
any of the above materials, we do not have such a complete and elegant new theory yet.

2. The two-channel Kondo model: non-trivial physics and the origin in real materials

2.1. One- and two-channel Kondo models

Before describing the two-channel Kondo model, it is helpful to briefly describe the physics
of the ordinary one-channel Kondo model. This model assumes the presence of anSI = 1/2
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impurity local moment in a metal with the Hamiltonian

H =
∑
k,σ

εknk,σ + J SI · sc(0) (1)

where the first term corresponds to the conduction electrons with energiesεk and occupancies
nk,σ , σ is the spin, and the second term describes the exchange coupling between the spin-
1/2 local moment (SI ) and the conduction electron spin amplitude at the impurity site
sc(0).

The Kondo effect refers to the formation of a many-body resonance about a local
moment in a metal when the exchange coupling between local and conduction spinsJ
is antiferromagnetic. By using third-order perturbation theory for the conduction electron
t-matrix which describes scattering off of the local moment, Jun Kondo showed in 1964
[25] that the scattering strength actually grows logarithmically as the temperature is lowered.
This perturbation theory approach breaks down when successive terms in the logarithmically
divergent expansion grow to the same size, which happens at a temperature scaleTK given
by

kBTK ≈ EF

( J
EF

)1/2

exp(−EF /J ) (2)

where EF is the conduction electron Fermi energy. Kondo’s calculation actually fore-
shadowed the discovery of asymptotic freedom in quantum chromodynamics and has the
same feature that systematic perturbation theory works well at high energy scales but fails
at low energy scales.

Figure 3. A renormalization group cartoon for the single-channel Kondo model. At high
temperaturesT and short length scalesL, the local moment labelledI is weakly aligned
antiparallel to the conduction electron spin (labelledC). At low temperatures and long length
scalesL, it is bound into a singlet lump of sizeξK ' h̄vF /kBTK as the effective coupling
strength diverges.

In the intervening decades since Kondo’s discovery, we have achieved a complete
understanding of the static and dynamical properties of the simple model of equation (1).
A beautiful physical picture emerged from K G Wilson’s numerical renormalization group
(NRG) treatment of the problem, for which a cartoon picture is depicted in figure 3 [26].
Essentially, the NRG calculation integrates out high-energy, low-length-scale excitations
to determine the effective Hamiltonian at each temperature scale. A unique feature of the
Kondo Hamiltonian is that it is ‘renormalizable’—that is, the form does not change—and no
new couplings are introduced. You simply must specify the effective exchange coupling at
each temperature. This makes the model much like high-energy-physics theories which are
always renormalizable (in fact it is generally a criterion for a theory there!) Wilson’s work
showed that a many-body resonance is indeed formed—in effect, the exchange coupling
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grows to infinite strength as the temperature is lowered. Thus the high-temperature local
moment is wiped out at low temperatures as a many-body singlet state captures one unit of
conduction spin. The size of this lump is of order ¯hvF /kBTK = ξK , the so-called Kondo
coherence length.

It must be noted that this solution (and other approaches, such as conformal field theory
and the Betheansatzmethod) rest upon a mapping to an effective one-dimensional problem.
This mapping follows from the fact that only the s-symmetry partial waves of plane-wave
states couple to the impurity in equation (1); hence, the effective spatial dimension is radial.

This singlet ‘lump’ is polarizable at any finite temperature or energy, and may be excited
to a triplet state. The virtual polarizations of the singlet mediate an effective electron–
electron interaction for the states outside, which are then described by a local version of
Landau’s Fermi-liquid theory, as explained elegantly by P Nozières [27]. The effective
Fermi temperature is set by the Kondo scale, which may be exponentially small compared
to the Fermi temperature of the conduction band alone. The extra specific heat coefficient
and extra magnetic susceptibility per impurity are then proportional to 1/TK . In this light,
the origin of heavy fermions is no mystery: the local moments are provided by partially filled
4f- or 5f-electron shells, and the Kondo effect gives a small effective Fermi temperature
T ∗

F ∼ TK ∼ 1/m∗.
In addition, the Fermi-liquid behaviour shows up in the electrical resistivity. The low-

temperature value is finite since the impurity breaks translational invariance and thus always
disrupts the current; the value reflects a fully resonantπ/2 phase shift for scattering off the
‘lump’. Indeed, the low-lying excitations are in a 1:1 map with those of aπ/2 phase-
shifted one-dimensional free-electron gas, confirming the centralansatzof the Landau
phenomenology microscopically here. AsT is raised from zero, the resistivity diminishes
with a T 2-coefficient, the sign change relative to a periodic system reflecting the impurity
scattering. Apart from the trivial fall-off of the scattering resonance on moving away from
the Fermi level, thisT 2-coefficient does indeed reflect the quasiparticle relaxation in the
local Fermi liquid.

A simple modification to this single-channel Kondo model produces non-Fermi-liquid
behaviour. That of course is the two-channel Kondo model, introduced by Nozières and
Blandin [17] and given by

H =
∑
k,σ,α

εknk,σ,α + J SI ·
∑

α

scα(0) (3)

where α = ± is the channel index. Essentially, we have added an extra copy of the
conduction band in equation (1) to the problem. Putting aside the question of whether
this is physical for the moment, we can view the solution to the model as an interesting
theoretical issue in its own right.

Nozières and Blandin [17] argued that there must be a non-trivial ground state in this
model, something more interesting than a singlet ‘lump’. The technical details of their
argument rest upon a perturbative renormalization group theory regulated by an expansion
in the inverse of the number of channels. However, the physical content may again be made
clear by a numerical renormalization group cartoon (see figure 4). We begin by considering
high temperatures, looking at length scales of the order of one lattice spacing about the
impurity spin. As the temperature is lowered the effective coupling grows, so at the next
length scale, the two channels of conduction spin and impurity bind to form a new effective
spin 1/2 which serves as an impurity to conduction states outside that length scale.

How do these conduction states couple? By a superexchange process, an electron outside
the first length scale may tunnel in, exchanging spin with an electron inside (that tunnels
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Figure 4. A renormalization group cartoon for the two-channel Kondo model. At high
temperatures and short length scalesL, the local moment (I ) is weakly aligned antiparallel
to the two conduction electron channels(C±) of spin. However, the binding process of figure 3
leads to another doublet which is antiferromagnetically coupled to the two channels of conduction
spin outside that length scale. Eventually, this process continues till a fixed-point finite coupling
strength is attained.

out) provided that the inner electron has opposing spin. But the spin of the electrons within
that length scale determine the overall spin of the bound impurity/conduction complex, and
hence the net coupling is antiferromagnetic. Thus the picture at the new length scale is
the same as that of the original. If you lower the temperature again, you get the same
result. If you lower the temperature again, you get the same result again. As long as the
effective exchange couplingJ (T ) tunes to some particular value (which it does) we get a
true critical state asT → 0: as in iron at its Curie temperature, the physics appears the
same at all length scales atT = 0! The effective size of the critical state grows as 1/T

for T → 0. Also, unlike the ordinary Kondo problem, the degeneracy of the impurity spin
is never lifted. At each length scale, a bound spin-1/2 complex sits at the centre and plays
the role of the effective impurity.

Given the development of a non-trivial critical state, it is perhaps no surprise that the
physical properties of the electronic states surrounding this impurity are not of a Fermi-
liquid character. Indeed, from exact treatments based upon the Betheansatzmethod [28]
and conformal field theory [29], it is clear that the extra specific heat coefficientγ and spin
susceptibility per impurity diverge as ln(TK/T )/TK as the temperature tends to zero. That
is, the effective mass tends to infinity at zero temperature! Also, the resistivity saturates to
its zero-temperature limit not with aT 2-law, but with a

√
T -law [30]. It should be noted

that the square-root law shows only below about 0.05TK [31], while the ln(T ) divergence
in the specific heat coefficient and susceptibility appears below about 0.5TK . For a range
of intermediate temperatures 0.05TK 6 T 6 TK the resistivity is approximately linear in
temperature. Finally, the residual degeneracy shows itself in a net residual entropy per
impurity of (kB/2)ln 2, that is a kind of ‘fractional degeneracy’!

In the impurity limit, a crossover to Fermi-liquid behaviour can be induced in two ways
by application of external fields [17, 32–34]. When a ‘spin field’Hs is applied which
couples linearly to the spin of the impurity and conduction electrons, the system will cross
over to the fixed point of a Fermi liquid in the presence of a polarized scatterer [33]. The
crossover scale will beTs = H 2

s /TK [32]. In an applied ‘channel field’ which linearly
splits the spin of the conduction electronsand more importantly the degeneracy of the
exchange integrals, the system will crossover to the ordinary Kondo effect for the more
strongly coupled channel and the other channel will decouple. The crossover scale here is
Tch = 1J 2/TK where1J is the splitting of the exchange integrals [33]. Concomitant
with these crossovers will be a shoving out of the residual entropy into a Schottky-like peak
in C/T [32, 34]. Physical properties will be universal functions ofT/Tα with α = s, ch.
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Figure 5. The finite-size spectrum of the two-channel Kondo model. HereS denotes spin,Sch

channel spin, andQ charge. Energies are measured in units of1E = h̄πvF /L, whereL is the
system size. The low-lying splittings and quantum numbers are not that of a Fermi liquid (after
reference [33]); for example, the charge-± excitation has zero spin independent of boundary
conditions, and the level spacings are fractions of1E.

The excitation spectrum of the two-channel model is decidedly not that of a Fermi
liquid; this point is illustrated in figure 5, where finite-size spectra for one-dimensional
chains of radiusL and hard-wall boundary conditions are illustrated for a two-channel
Fermi gas (the s-wave channel) and for the corresponding two-channel-model fixed point.
Such spectra are obtained by conformal field theory or numerical renormalization group
calculations [29, 33, 35]. The most striking features are: (i) a fractional spacing of the two-
channel model energy levels relative to that of the free-electron gas; (ii) a ‘separation’ of
spin, channel, and charge quantum numbers. In the free Fermi case, addition of an electron
must correspond to addition of charge 1, spin 1/2, and channel spin 1/2. This is obviously
not the case for the two-channel model. There is no 1:1 correspondence of excitations to a
free Fermi gas.

2.2. Possible realizations of two-channel Kondo physics for heavy-fermion materials

This section contains a pedagogical overview of the results of references [18, 36, 37].
The two-channel Kondo effect requires two key ingredients: (i) the existence of local

two-level systems (which may or may not be magnetic in practice) providing an impurity
pseudo-spin 1/2 (SI ); (ii) the existence of local symmetries affording a twofold degeneracy
(apart from magnetic or Kramers’ degeneracy) to conduction electron states which couple
to the impurity. Practically, this means that there must be a symmetry-allowed local quartet
of conduction states to couple to the impurity.

The non-Fermi-liquid physics in heavy-fermion systems is exclusively associated for
now with Ce- and U-based materials. Crystal-field physics tells us how we may obtain
local two-level systems for these ions, as illustrated in figure 6. Consider first a Ce ion
embedded in a host of cubic symmetry. In a metal, Ce tends to be trivalent; that is, the
dominant ground-state quantum weight occurs for states containing the 4f1 configuration.

In free space, the Ce3+ ion would have, according to Hund’s rules, a ground-state angular
momentumJ = 5/2 which transforms according to the matrices of the corresponding
irreducible representation (or irrep) of the full rotation group. In the 24-element point group
of the cubic host, this sixfold degeneracy cannot be maintained, and theJ = 5/2 multiplet
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Figure 6. The crystal-field splitting of Ce3+ and U4+ ions in cubic symmetry. (a) illustrates
the lifting of the sixfold degeneracy of the 4f1 J = 5/2 Hund’s rules ground multiplet of the
Ce3+ ion to yield a magnetic doublet ground state and quartet excited state. (b) illustrates the
lifting of the ninefold-degenerate 5f2 J = 4 Hund’s rules ground multiplet of the U4+ ion to
yield a ground quadrupolar doublet, two excited magnetic triplets, and an excited singlet. In the
Ce3+ case, the doublet lies lowest over half the one-parameter crystal-field space, and in the
U4+ case, the doublet lies lowest over nearly half of the two-parameter space [39].

splits into a doublet (usually labelled07) and a quartet (labelled08). This splitting is said
to arise from the ‘crystalline electric field’, i.e., the external potential of cubic symmetry
arising from the presence of the surrounding ions. In practice, however, hybridization
with surrounding (ligand) electronic orbitals is likely to produce a substantial amount of
the splitting through a second-order perturbation theory shift. If the doublet lies lowest
(which holds, trivially, over half of the one-parameter crystal-field parameter space), then
an effectivemagneticpseudo-spin 1/2 is obtained to describe the low-lying degrees of
freedom of the Ce3+ ion. The magnetic character follows from Kramers’ theorem, which
asserts that odd-electron configurations must have an extra degeneracy due to time-reversal
symmetry. Practically, this means that the degeneracy is lifted and the doublet split linearly
under application of a magnetic fieldh.

In the case of U ions, controversy arises over whether they are predominantly trivalent
or tetravalent, or whether a localized point of view is useful at all [38]. Here we assume
the utility of a localized point of view, and further assume that U ions in metals are
predominantly tetravalent. A U4+ ion has a 5f2 configuration which by Hund’s rules gives
a ground-state angular momentumJ = 4. When embedded into a host of cubic symmetry,
theJ = 4 multiplet will be split into a doublet (labelled03), two magnetic triplets (labelled
04 and05), and a singlet (01). Straightforward analysis of the two-parameter crystal-field
Hamiltonian shows that over about half of the parameter range the03 doublet lies lowest in
energy [39]. In contrast to the Kramers’ doublet of the preceding paragraph, however, this
doublet isnot split linearly in an applied magnetic field. The magnetic moment operator has
vanishing expectation value within the doublet. Instead, the electric quadrupole tensor has
a non-vanishing expectation value. Thezz-component of this operator is given by matrix
elements:

Qzz = e

∫
dr ρU(r)[3z2 − r2] (4)

and the componentQzz ∼ 3J 2
z −J (J +1) has the expectation value±8 in this03 manifold.

(The proportionality ofQzz to 3J 2
z − J (J + 1) follows from the Wigner–Eckart theorem.)
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Note that if this state lies lowest the magnetic susceptibility arises from Van Vleck processes,
i.e., virtual excitations to the excited magnetic triplets.

Next, we turn to the existence of the quartet of conduction states. In this cubic case,
such local quartets will indeed exist. To conceptualize this, imagine hybridizing plane-wave
conduction states with the f orbitals of the Ce3+ or U4+ ion. As a first approximation, we
use the spherically averaged potential, so that onlyl = 3 partial waves of the conduction
states couple to the f states. Thesel = 3 partial waves must further be spin–orbit coupled
into j = 5/2, j = 7/2 partial waves. For simplicity, consider only thej = 5/2 manifold
(which may be shown to have the dominant coupling to the Ce3+ or U4+ ions). Under the
crystal field, this is split into a doublet (07) and quartet (08) of partial waves. The quartet
has the property that it decomposes into the tensor product03 ⊗ 07; that is, it is described
by a combination of ‘orbital’ (03) and ‘spin’ (07) indices. The orbital indices correspond
loosely to ‘stretched’ and ‘squashed’ conduction orbitals about the f site.

To complete the logic, we must consider coupling of the conduction states to the
impurity. This involves considering tensor operators of impurity and conduction states.
In the Ce3+ case, the tensor product07 ⊗ 07 = 01 ⊕ 04, where the operator transforming
as a01 irrep is just the electrical charge operator, and the04 ∼ SI triplet of operators
is the effective spin of the Ce3+ ground doublet. The01 charge operator gives rise to
uninteresting potential scattering terms. The conductionj = 5/2, 07 doublet clearly also
has04 ∼ Sc7(0) tensors, whereSc7(0) represents the net07 symmetry conduction spin at
the origin. The quartet state has the tensor spectrum08 ⊗ 08 = 01 ⊕ 02 ⊕ 03 ⊕ 204 ⊕ 205.
The two sets of04 triplet operators can couple to the impurity spin. One of the04 triplets
may be viewed as a direct sum of two spin-1/2 operatorsSc8α(0) labelled by the orbital
(03) index α; the other may be viewed as a triplet of spin-3/2 operators (S). We shall
discuss the physical origin of these couplings below. Practically, if we for the moment
neglect this second04 triplet, we see that the spin-dependent, symmetry-allowed coupling
from the operators discussed so far is

HKondo = J7SI · Sc7(0) + J8SI ·
∑

α

Sc8α(0) (5)

which has a one-channel coupling (J7) and a two-channel coupling (J8). These couplings
compete, and the Fermi-liquid one-channel fixed point wins asT → 0 if J7 > J8 > 0,
a non-Fermi-liquid two-channel fixed point wins asT → 0 for J8 > J7 > 0, and a non-
Fermi-liquid three-channel fixed point wins ifJ7 = J8 > 0 [36]. This may be thought
of as a ‘dynamical’ selection rule on the feasibility of the two-channel Kondo effect for
Ce3+ ions. Physically, the two-channel coupling means that the08 electrons may screen
the Ce3+ magnetic moment equally well in degenerate ‘stretched’ or ‘squashed’ orbitals.
We illustrate the two-channel screening picture in figure 7(a) for Ce ions.

For the U4+ ion, the product03 ⊗ 03 = 01 ⊕ 02 ⊕ 03, where the01 operator
is again just the U4+ charge, and gives rise to potential scattering, while the02 ⊕ 03

operators describe the pseudo-spin of the03 doublet. Note that an intrinsic anisotropy
exists in this case: physically, the02 operator is a magnetic octupole moment (transforming
as JxJyJz) and the03 doublet corresponds to the electric quadrupole operator doublet
∼[J 2

x −J 2
y , 3J 2

z −J (J +1)]. It turns out that this anisotropy is irrelevant in a renormalization
group sense. We thus denote02 ⊕ 03 as practical pseudo-spin tripletτ I , where theτ i

I are
spin-1/2 matrices in the orbital space of03 states. This pseudo-spin triplet couples to the
02 ⊕ 03 pseudo-spin triplet from the08 ⊗ 08 tensor spectrum, which may be viewed as a
direct product of two pseudo-spin-1/2 operators labelled bymagnetic indexµ (corresponding
to the07 labels in the03⊗07 = 08), namelyτ c8µ(0). Hence, the effective Kondo coupling
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Figure 7. The two-channel screening of Ce3+ and U4+ ground doublets. (a) shows the Ce3+
case in which electrons in stretched and squashed orbitals screen the Ce3+ spin; these orbitals
are degenerate in cubic symmetry, and the orbital index serves as the channel index. (b) shows
the U4+ case in which electrons with up or down spin sit in squashed orbitals to screen the
stretched orbital of the U4+ site. In this case the channel degree of freedom is the magnetic spin,
and the orbital motion of the electrons produces the screening of the U4+ orbital fluctuations.

is of the two-channel form, given by

HKondo = JQτ I ·
∑

µ

τ c8µ(0). (6)

Physically, the two-channel form means that conduction electron orbital motion can
screen the U4+ quadrupole moment equally well for magnetic spin-up and magnetic spin-
down electrons. We illustrate this in figure 7(b).

The fundamental origin of these antiferromagnetic couplings is through the Schrieffer–
Wolff transformation [40] applied to the Anderson model, in which conduction–f coupling
only arises through hybridization. This transformation eliminates virtual charge fluctuations
to excited configurations through second order in the hybridization matrix elementV . The
couplingJ7 is dominated by virtual f0–f 1 fluctuations, and goes asV 2/(E(f 0) − E(f 1)),
whereE(f n) is the energy of the locally charge neutral state containing the f configuration
f n. The couplingJ8 is dominated by virtual fluctuations to the nine03 doublets of the f2

configuration, and is approximatelyV 2/(E(f 2) − E(f 1)). The couplingJQ is dominated
virtual fluctuations from the f2 ground03 doublet to excited magnetic doublets in either f1

or f 3. Note in the Ce3+ case thatE(f 2) − E(f 1) ∼ Uff − [E(f 0) − E(f 1)], whereU is the
Coulomb repulsion (of order 6 eV). AlthoughE(f 0) − E(f 1) ≈ 2 eV, it is still possible for
the two-channel coupling to exceed the one-channel coupling in principle due to the large
number of intermediate f2 states.

We close this subsection with some remarks about generalizing the above models for
Ce3+ and U4+ ions.

(1) Additional couplings. In addition to to the couplings of equations (5) and (6),
additional interactions are possible [37]. First, mixed couplings scattering between07 and08

conduction states are possible for the U4+ 03 case; these are irrelevant in a renormalization
group sense. For the Ce3+ ion, as alluded to above, a trio of effective spin-3/2 operators
may couple to the impurity spin [37, 41]. This interaction is mediated by virtual excitations
to f 2-triplet 04, 05 triplet states, and gives rise to a pair of new fixed points if added
to equation (5), both of which are non-Fermi liquid in character. With the inclusion of
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couplings that mix06, 08 states, the only stable fixed points may be shown to be single-
channel, two-channel, and three-channel ones (remarkably, this latter fixed pointis stable
in that it has a stability region in coupling space of finite measure [37]).

(2) Additional partial waves. In principle, all conduction partial waves of appropriate
crystalline symmetry may couple to the impurity. In practice, only a ‘bonding’ combination
of these partial waves will possess a relevant coupling; all non-bonding combinations have
irrelevant couplings [37].

(3) Other crystal symmetries. The above arguments may be generalized to any U4+

doublets in hexagonal or tetragonal symmetry, and to the09(Sz = ±3/2) magnetic doublet
of Ce3+ ions in hexagonal symmetry. A slight trickiness for these cases is that the conduction
quartet is a direct sum of two doublets. However, the crucial point in each instance is that
flipping the impurity ‘spin’ requires a transition between conduction doublets. In these
instances, the U4+ ion will have ac-axis magnetic moment, and thus can couple to thec-
axis channel spin. However, there is no transverse coupling so the interaction is practically
irrelevant. Note that the operators flipping the pseudo-spin must be quadrupolar in character.
Hence, the quadrupolar Kondo effect is rather robust, in that for any ground doublet in cubic,
hexagonal, or tetragonal symmetry the two-channel Kondo model applies. However, the
magnetic two-channel effect for Ce3+ ions is highly restricted by symmetry, and further by
the ‘dynamic’ selection rule mentioned above [18].

(4) Spin and channel fields. For the quadrupolar Kondo effect in cubic symmetry, the
‘spin’ field will be a uniaxial stress or applied electric field gradient, and the ‘channel’ field
will be magnetic. One subtlety exists here: at higher fields, the induced magnetostriction
will act as a uniaxial stress and lift the degeneracy of the ground non-Kramers doublet. For
simplicity, assume a lowest f3 excited configuration. The crossover between the channel and
spin field for applied magnetic field at a fieldH ∗ can be estimated by equating the exchange
splitting1J(H) ≈ µBHV 2/[E(f 2)−E(f 3)]2 with the magnetostriction-induced splitting of
the quadrupolar doublet given by1Evv = χvvH

2 whereχvv is the Van Vleck susceptibility.
This givesH ∗ ≈ µBV 2/{[E(f 2) − E(f 3)]2χvv}. The splitting of the exchange integrals is
induced in this case by applying the Schrieffer–Wolff transformation to the Zeeman-split
excited magnetic configuration. These labels will be reversed for the magnetic two-channel
Kondo effect in cubic symmetry. In hexagonal and tetragonal symmetry, ac-axis magnetic
field will act as a spin field in all cases, while in-plane uniaxial stresses or electric field
gradients will act as spin fields for the quadrupolar Kondo case, and in-plane magnetic
fields will act as channel fields for the quadrupolar Kondo case. The lone Ce3+ two-channel
Kondo possibility has ‘in-plane’ spin operators which are actuallyoctupolar! Hence, in-
plane uniaxial stresses or electric field gradients will act as channel fields, and suitable
in-plane combinations of magnetic field with uniaxial stress will act as spin fields.

3. Experimental support for the two-channel Kondo effect in heavy-fermion materials

The early days of the single-channel Kondo effect produced a wealth of data, and frightened
away many workers from studying dilute alloys who believed the field to be thoroughly
mined out. Recently, the potential for non-Fermi-liquid behaviour from a dilute alloy has
motivated a surging re-examination of alloy systems, particularly those based upon U ions.
As we shall see, these studies provide some support for the two-channel Kondo physics
argued as possible in the previous section, as well as a number of data which disagree with
at least the simplest version of the model.

Y1−xUxPd3 and related alloys. The key discovery in this direction was that the cubic
system Y1−xUxPd3 displays non-Fermi-liquid behaviour in a concentration range from
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0.0 < x < 0.2 [42]. This discovery helped to ignite the study of NFL physics in heavy-
fermion systems. The NFL physics was demonstrated in the specific heat coefficient, which
shows a logarithmic temperature dependence over a decade and a half of temperature for
x = 0.2. Also, the resistivity shows a nearly linear temperature dependence over a wide
range, and the magnetic susceptibility displays a

√
T temperature dependence. Moreover,

integration of the specific heat forx = 0.2 above 0.5 K reveals an entropy plateau near
R/2 ln 2 per U ion, strongly suggesting thatR/2 ln 2 entropy is present below the lowest
temperatures measured, supported further by the observation of a total ofR ln 2 entropy
in the same temperature range for higherx-values. The uranium ion is clearly tetravalent
in this compound on the basis of the discovery of a phenomenon known as ‘Fermi-level
tuning’ [43]: as the uranium is substituted for the trivalent Y ions, the f level moves further
away from the Fermi surface as measured in photoemission. This corresponds beautifully to
donation of one extra electron per U ion. This produces something of a complication in the
understanding of the data since the Kondo scale then depends crucially on the concentration.
By holding the supply of tetravalent donors fixed through substituting inert Th ions for U
ions, it is possible to go to lower concentrations with essentially the same Kondo scale. In
this way, it has been determined that the non-Fermi-liquid physics is a single-ion effect.

Given the cubic site symmetry, the tetravalence of the U ions, the clear non-Fermi-
liquid behaviour, the apparent two-channel Kondo character of the specific heat coefficient,
and the differing temperature behaviour of the magnetic susceptibility and specific heat
coefficient, an identification of this material as a quadrupolar Kondo system was made. This
identification remains controversial, but received additional experimental support through
two kinds of study: (i) unpolarized neutron scattering which showed two inelastic lines
possessing the right intensity to be described by excited magnetic triplets above a non-
magnetic03 doublet [44]; (ii) alloying experiments on, e.g., La1−xUxPd3 [45]. The La ion,
also trivalent, is considerably larger than the Y ions, so the expanded lattice is expected to
have lower hybridization and a much smaller Kondo scale. Indeed, no Kondo anomaly is
seen in the resistivity in this material. On the other hand, for low concentration, a broadened
Schottky anomaly withR ln 2 entropy is observed.

Below about 0.5 K, the specific heat coefficient of Y0.8U0.2Pd3 samples increases
[13, 42, 46], consistent with the presence of large entropy below this temperature. Assuming
the validity of the quadrupolar Kondo picture, this upturn can have a quite natural
interpretation. Namely, the random placement of U4+ ions produces random electric
field gradients due to the charge difference with the Y3+ ions. These field gradients will
produce a random splitting of the quadrupolar doublets. Estimating the average magnitude
of this field gradient gives about 5 K, and this yields a spin-field crossover temperature
Ts ≈ (5 K)2/40 K = 0.63 K [47], where we usedTK = 40 K estimated from experiment.
Hence it seems plausible that this upturn inC/T represents a spin-field crossover due to
the random field gradients.

Standing against this interpretation are several experimental data. (i) The resistivity
is indeed NFL in character, but has a linear-in-T low-temperature behaviour rather than
saturating with a

√
T -law [13, 42]. (ii) In an applied magnetic field, the specific heat behaves

contrary to expectation, dropping with increased field and displaying a scaling behaviour
incompatible with the simple two-channel Kondo effect [48]. (iii) Ultrasonic measurements
on polycrystalline samples, which can measure the quadrupolar susceptibility through sound
velocity sampling, shows no significant temperature-dependent softening below the Kondo
scale of 40 K in thex = 0.2 samples [49]. (iv) Polarized neutron scattering experiments
do suggest the presence of a quasielastic line corresponding to a magnetic ground state for
x = 0.2 samples andx = 0.45 samples [50].
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In response to (i), as mentioned in section 2.1, the one-impurity resistivity is approx-
imately linear in an intermediate temperature regime. However, the observed linearity only
extends to temperatures of order 0.05TK [31]. With regard to (iii), it should be noted
that grain boundary effects and misorientation may obfuscate straightforward observation of
ultrasound data in polycrystalline samples [51]. Obviously, single-crystal samples would be
preferred here, but it has not proven possible so far to produce these. Finally, with regard
to (iv), while the polarized data forx = 0.45 appear to unambiguously support a magnetic
triplet ground state, such fits are within error bars forx = 0.2. Indeed, the assignment
of a triplet ground state is problematic, because its width would be less than the 4 meV
energy scale obvious from thermodynamics, and it would produce a static susceptibility at
least twenty times larger than the measured values. It therefore seems prudent to investigate
other possibilities, such as a crystal-field-level crossing as a function ofx [52].

Item (iii) is in many respects the strongest argument against a single-ion quadrupolar
Kondo interpretation of the data. On this basis, it was proposed that collective magnetic
effects induced the non-Fermi-liquid behaviour. This received bolstering from the fact that
for x > 0.3 a spin-glass state is indeed observed [13, 42]. Moreover, as mentioned above,
neutron scattering data at higher concentrations support a ground05 magnetic triplet state
[44, 50]. However, the Th-doping experiments mentioned above indicate that single-ion
physics dominates the non-Fermi-liquid behaviour here, and given that the La1−xUxPd3

system which shows no Kondo effect and no non-Fermi-liquid behaviour displays spin-
glass behaviour at the same concentration of U ions, the collective magnetic effects are
probably irrelevant to the NFL physics [13, 42, 45].

Th1−xUxRu2Si2 and Th1−xUxPd2Si2. These are tetragonal systems from which single
crystals can be made. Th1−xUxRu2Si2 has been studied for four concentrations between
x = 0.01 andx = 0.07 [53]. Above about 0.5 K, thec-axis magnetic susceptibility per
U ion is independent of concentration, and log divergent inT , compatible with the two-
channel quadrupolar Kondo effect in tetragonal symmetry. Thec-axis susceptibility is flat in
temperature, consistent with Van Vleck susceptibility. A fit to the Betheansatzcalculation
of χ is good over four decades of temperature. Using the Kondo-scale value ofTK = 12 K
from this fit, a reasonable zero-parameter fit to the specific heat is obtained which then
shows evidence for theR/2 ln 2 residual entropy since the theoretical curve integrates to
this value. However, a problem exists in that the electrical resistivity shows no Kondo
upturn, and while large (of order 40µ� cm per U ion), shows a downturn belowTK . This
downturn is roughly logarithmic in temperature, which at least is non-Fermi-liquid like.
The properties of Th1−xUxPd2Si2 are essentially similar [54].

La1−xCexCu2.2Si2. This system is a plausible candidate for the two-channel magnetic
Kondo effect, given the description above. Forx = 0.1, this system shows logarithmic
divergences in bothχ(T ) andc/T [55]. Moreover, taking the logarithmic slopes to compute
a Wilson ratio, and using the cubic07 effective moment, one obtains the value of 2.7,
to be compared with the theoretical expectation of 8/3 [36]. The reason for taking this
value despite the tetragonality of the crystal is that susceptibility measurements forx = 1
(fully concentrated CeCu2Si2) are isotropic (cubic) in the best superconducting and most
non-Fermi-liquid-like samples [5]. The resistivity is roughly compatible with the two-
channel Kondo effect, though measurements at lower temperatures would be desirable since
calculations suggest that the

√
T -behaviour should set in only below about 0.05TK [31].

Application of a magnetic field increases the entropy at low temperatures [55], in accord
with the simple expectation that polarization of the local moment should lift the residual
degeneracy. Although the measured enhancement falls below that expected for the two-
channel Kondo effect, it is qualitatively different to the drop ofC/T in magnetic field
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expected from the single-channel Kondo effect. Approximate single-ion scaling behaviour
is observed in the specific heat forx = 0.025, 0.1, 0.15, and in the magnetic susceptibility
for x = 0.025, 0.1 [55].

Finally, it has been argued based on thermoelectric power measurements for the
concentrated (x = 1) system that support for a greater f2 ground-state weight is present
in this system (c.f. the dynamic selection rule of section 2.2) [36]. The measured
thermopower goes negative well aboveTK for this system and attains a large value of
about −30 µV K−1 [5]. The relatively high temperature at which this sign changes
suggests that it is not a coherent lattice effect. Within a single-band picture and ignoring
excited crystal-field excitations, a positive thermopower, which is most typical for Ce3+ ions,
indicates dominance of particle scattering and strong f1–f 0 charge fluctuations. A negative
thermopower is possible if hole scattering dominates at low temperatures, which is consistent
with strong f1–f 2 charge fluctuations. However, direct thermopower measurements on
the dilute system indicate that the thermopower is positive [56, 57]. The only possible
‘loopholes’ in the above theoretical argument concern the relevance of excited crystal-field
states in determining the sign of the thermopower and whether multi-band carrier effects
may play a role. These require further detailed examination.

Since clear evidence for irreversibility in the magnetization appears forx = 0.15, it
has been suggested that proximity to a spin glass generates the NFL physics [55, 57]. This
is further bolstered by analysis of the low-temperature specific heat and resistivity which
are claimed to show crossover behaviour consistent with a mean-field theory of a metallic
T = 0 spin-glass transition [57].

Th1−xUxPd2Al3 and Th1−xUxNi2Al3. These two hexagonal systems reveal− ln T

specific heat coefficients at low temperatures and low concentrations (x ' 0.1) ([13] (Pd),
[58] (Ni)). The susceptibility in the Pd-based system for a polycrystalline sample can
be fitted to either− ln T or 1 − A

√
T behaviour at low temperatures. In each case the

resistivity apparently saturates with a linear-in-T law. The U ions in these systems are
probably tetravalent so they are candidates for the quadrupolar Kondo effect in hexagonal
symmetry arising from a non-Kramers doublet. The low-concentration data clearly show
single-ion scaling. Kimet al [58] argue that in the Ni case there is a proximity to a spin-
glass ordering. Nevertheless, given the same crystal structure and the single-ion scaling
observed in Th1−xUxPd2Al 3 [13], it is clear that these systems deserve further careful study
as quadrupolar Kondo candidates.

Th1−xUxBe13. Aliev et al have studied this system extensively [59–62]. At the value
x = 0.9 which is certainly far from dilute, they findC/T ∼ − ln T , χ(T ) ∼ 1 − AT 1/2,
ρ(T ) ∼ 1 + BT 1/2 (with B > 0), all of which fit the two-channel cubic quadrupolar
Kondo picture as discussed in section 2.2. A complication is that in this crystal structure
no dopants appear to leave the volume unchanged which means that the hybridization is
strongly affected by the doping. (Indeed, since the Th ions are larger they expand the lattice
and diminish the hybridization which will lowerTK . The data appear to suggest that this
happens relative to the bulkx = 1 system.) An extensive study of M1−xUxBe13 alloys
by Kim et al [63] revealed that while the specific heat could be significantly altered by
doping, the magnitude of the low-temperature magnetic susceptibility was hardly affected.
This suggests further that the origin of the specific heat and susceptibility are different,
consistent with an interpretation in terms of Van Vleck susceptibility which is important for
the two-channel quadrupolar Kondo effect in cubic symmetry [18]. This point is further
bolstered by the pressure dependence seen in the specific heat being much stronger than
that seen in the magnetic susceptibility [64].

A further consistency with the quadrupolar Kondo effect is the non-linear susceptibility
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(Aliev et al [62]). This was motivated in part by earlier measurements of Ramirezet al [65]
on UBe13 which will be discussed below. In theory, the non-linear susceptibilityχ(3)(T ) is
defined from the magnetization via

χ(3)(T ) = 6[M(H, T ) − χ(T )H ]/H 3. (7)

For a magnetic doublet ground state,χ(3) is expected to be large and negative, as is
easily seen from straightforwardly expanding the Brillouin-function magnetization to obtain
χ(3) ∼ 1/T 3 for localized moments. This would be modified, at low temperature, to
∼1/T 3

0 for a Kondo system. In a more general situation,χ(3) depends upon the orientation
of H . For a purely localized quadrupolar moment system with a cubic non-Kramers03

ground doublet, Morin and Schmitt [66] have shown that for a field along a principal axis,
χ(3) will display a positiveCurie-law divergence, while for a field along a body diagonal
χ(3) will be of Van Vleck character at low temperature andnegative. This result is easily
understood in terms of the magnetoelastic coupling of the03 ground state—principal-axis
fields induce tetragonal distortions which are quadratic inH and split the doublet. There is
no linear coupling however to strains along the body diagonal (matrix elements do exist for
excited states). Hence, the non-linear susceptibility for a principal-axis field is essentially
a measure of the quadrupolar susceptibility. While the quadrupolar Kondo effect would
modify this from a 1/T divergence to− ln T , the divergence would still be present, and the
characteristic anisotropy provides an excellent test of the applicability of the quadrupolar
Kondo model [65].

Aliev et al [62] performed measurements only on polycrystalline samples. Forx = 0.1
they found that the powder-averagedχ(3) is predominantly negative at high temperatures but
passes through a minimum with decreasing temperature and tends towards a sign change
as the temperature is lowered, which is in accord with the expectations of the previous
paragraph. In contrast, when pure UBe13 is measured for similarly prepared polycrystalline
samples,χ(3) is relatively large, negative, and decreases with decreasing temperature,
qualitatively in agreement with a magnetic ground state. Indeed, the polycrystalline data
agrees excellently with the Ramirezet al single-crystal data [65], which exclude the
possibility of large-moment paramagnetic impurities giving rise to thex = 0 χ(3)-results.

On the basis of this work and thepositivecoefficient of
√

T in the x = 0.1 resistivity,
Aliev et al [61, 62] put forward an interesting set of hypotheses. First, thex = 0.1 samples
are in the strong-coupling regime. That is, the coupling strength exceeds that of the non-
trivial fixed point. This can explain the positive coefficient of the resistivity. Second, the
ionic ground state changes as a function of Th doping, being an f306 doublet forx = 0,
and an f203 doublet forx = 0.1. This would require the U ions to be strongly mixed valent
between 3+ and 4+, which is not implausible. This second hypothesis checks with the first
hypothesis because it is precisely in the mixed-valence regime where strong coupling might
plausibly occur (the dimensionless Schrieffer–Wolff exchange can grow to order unity). The
hypotheses are very interesting because the different symmetry ground states would seem
to imply a novel quantum critical point at the precise point inx where the levels cross.

There are three major concerns with the hypotheses.

(1) Taking the Th ions as tetravalent, and the U ions as intermediate between 3+ and
4+ valence, the substitution would add electrons, and this would actually drive the uranium
ions more towards trivalence.

(2) While the non-linear susceptibility for pure UBe13 is strongly temperature dependent,
the susceptibility is not, and hence this interpretation is problematic.

(3) It is not clear that a sufficiently small energy scale can be generated in the mixed-
valent regime for the uranium ions, though some variational treatments of the ion with full
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spherical symmetry suggest that this is possible [67].
(4) It remains to be seen whether strongly broadened excited magnetic triplet levels

on the U4+ site can produce such a non-linear susceptibility result. The idea is that at
x = 0, the broad levels strongly overlap with the ground state and dominate the non-linear
susceptibility; reduced hybridization resulting in narrower excited levels allows the system
to move closer to the ionic limit and the modified Morin–Schmitt results discussed above. A
similar narrowing of the f3 excited configuration in the extreme mixed-valence limit could
yield qualitatively similar effects.

Regardless of these concerns, the hypotheses of Alievet al [61, 62] are very intriguing
and deserve further exploration.

4. The two-channel Kondo lattice

4.1. The model and results for the normal state

The existence of concentrated and ordered heavy-fermion compounds such as UBe13

[21] and CeCu2Si2 [68] which display non-Fermi-liquid behaviour together with
superconductivity makes consideration of the lattice generalization of the two-channel
Kondo model important. The most straightforward extension of equation (3) is

H =
∑
kασ

εkc
†
kασ ckασ + J

∑
R

SI (R) ·
∑

α

Scα(R) (8)

where we assume two degenerate bands throughout the lattice labelled by indexα and the
conduction spin operator is

Scα(R) = 1

2Ns

∑
k,k′,σσ ′

eiR·(k−k′)Sσσ ′c
†
kασ ck′ασ ′ . (9)

Obviously, it is unrealistic to expect two conduction bands to remain degenerate throughout
the entire Brillouin zone; our model is only relevant to the so-called ‘local approximation’
or infinite-dimensional limit [69–77]. In this limit which we have employed for calculating
properties of the model [78], the self-energy becomes rigorously independent of momentum.
We shall discuss the potential problems with this limit for real materials in the next
subsection.

It is reasonable to ask what expectations one might have for the lattice model. In
the normal state of the model, one can expect very different behaviour from that of the
single-channel Kondo lattice. For simplicity, restrict consideration to half-filling. Then
the ordinary Kondo lattice is expected to be an insulator. This can be seen from strong
coupling where bound singlets form at every site, to intermediate coupling where one
may view (in a slave-boson theory) the system as a ‘band’ insulator with two electrons
per cell (local and itinerant). Indeed, in the symmetric Anderson lattice this band insulator
description is accurate [79]. Finally, for weak coupling, intersite interactions drive the model
to an antiferromagnetic insulator, the intersite coupling being a mixture of conduction-spin-
polarization-mediated interactions (RKKY) and superexchange (virtual charge fluctuations).
Moving away from half-filling it is possible to find ‘Fermi-liquid’ regions in the asymmetric
Anderson lattice model relatively close to half-filling [80]. If we raise the degeneracy and
shove the Kondo resonance structure off the Fermi energy, we expect a metal for sufficiently
largeJ .

We can understand these results within the ‘averageT -matrix approximation’ [81, 82],
which seeks to estimate the lattice self-energy from the single-ionT -matrix. This
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approximation is an exact version of the local approximation for the unphysical limit of a
Lorentzian density of states. By combining the Lippmann–Schwinger equation relating the
conduction electron Green’s function andT -matrix with the Dyson equation, and enforcing
the local approximation in keeping only frequency dependence at most, we obtain

6c(ω) = t1(ω)

1 + G0(ω)t1(ω)
(10)

where t1 is the one-particle on-sitet-matrix, and G0 is the local (on-site) unperturb-
ed conduction electron Green’s function. In the special case of particle–hole symmetry,
G0(0) = −iπN(0), while for phase-shift scattering only,

t1(ω) = − sinδ(ω) exp[iδ(ω)]/[πN(ω)].

In this case, the imaginary part of the self-energy at the Fermi energy cancels out and
we have only6c(0) = − tanδ(0)/[πN(0)]. For δ(0) = π/2 expected forSI = 1/2, the
divergence signals formation of an insulating state, while forδ 6= π/2, the phase shift
is simply absorbed in an overall energy shift and a normal-metal state prevails. The latter
situation may be realized in an applied magnetic field in theSI = 1/2 case, or by moving to
higher spin degeneracy (the Coqblin–Schrieffer limit). We note that this is a manifestation
of Bloch’s theorem: at the Fermi energy we simply form coherent quasiparticle states in a
metallic or band insulator phase. The phase shift at every magnetic site simply renormalizes
the underlying lattice potential.

For the two-channel model, application of similar reasoning indicates a big contrast to
the one-channel case. The single-particleT -matrix has the Fermi-level value−i/[2πN(0)]
[30]. Plugging this into equation (10) within the ATA gives

6c(0) ≈ −i

πN(0)
(11)

which is purely imaginary! Hence, we would expect a metallic phase (the density of
excitations at the Fermi energy is finite) but with a finite residual resistivity—the electronic
quasiparticles have anintrinsic linewidth. We call such a state an ‘incoherent metal’ [78, 82]
for the clear reasons that Bloch’s theorem is violated for this state.

The physical understanding of this violation is in terms of the degeneracy of the two-
channel Kondo cloud discussed in section 2.1: until some phase transition arises which
locks in coherence of the degenerate screening clouds around each magnetic site, a residual
entropy persists with a concomitant residual scattering due to disorder in the spin system.
The self-energy is indeed the same at every site, which reflects translational invariance.
Because of the disorder it is clear that this incoherent metal phase is not the true ground state
of the system, and we would expect some ordering to intervene which can restore a zero-
resistance metal atT = 0 or an insulating phase. The situation is, in this sense, not unlike
that of gadolinium metal: the large and temperature-independent resistivity above the Curie
point of this ferromagnet is well understood as arising from spin-disorder scattering off the
disordered Gd moments, which give rise to anR ln 8 entropy per site in the paramagnetic
state. Below the Curie point, as the Gd moments order coherence is restored and the
resistivity is driven to zero.

The ATA is sufficient to guide our thinking, but is not a rigorous approximation for
any reasonable lattice picture due to the lack of self-consistent feedback of the self-energy.
More appropriate is the local approximation mentioned above [77], which becomes rigorous
in infinite spatial dimensions. The infinite-dimensional limit is taken for a nearest-neighbour
hopping model of the conduction states by holdingt∗ = 2t

√
d fixed, wheret is the hopping
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matrix element andd the spatial dimensionality. In this limit, it may be shown that non-site-
diagonal contributions to the self-energy fall off at least as quickly as 1/

√
d with increasing

d. This means that the problem maps to an effective-impurity model: by selecting a single
site of the lattice, solving for the self-energy with a medium density of states specified by
the site-excluded lattice, and self-consistently feeding back the impurity solution into the
lattice a rigorous thermodynamic limit solution is obtained.

Figure 8. The resistivity of the two-channel Kondo lattice in infinite dimensions. The resistivity
is calculated in the paramagnetic phase and is finite due to the spin-disorder scattering effect
described in the text. In the temperature region belowTK , the resistivity is approximately
linear in T , though a different behaviour at lower temperatures cannot be ruled out. This set
of calculations was performed at particle–hole symmetry, and is taken from reference [78]; a
maximum appears possible away from particle–hole symmetry [84].

By employing quantum Monte Carlo methods to simulate the effective-impurity model,
studies have been carried out on the resistivity [78] and conductivity [83] of the two-
channel lattice in infinite spatial dimensions and find just such an incoherent metal phase
in the normal state. We show the resistivity results of reference [78] in figure 8. Over a
wide range of temperatures belowTK (which is determined for the lattice by fitting the local
susceptibility to the exact results of the Betheansatz[32]), it is found that the resistivity
is approximately linear in temperature, and the residual resistivity (extrapolated to zero
temperature) is finite. Using the free-energy formulae in reference [77], it is straightforward
to show that this phase has a residual entropy, which isR ln 2/2 per site in the half-filled
limit. It is found at low temperatures that the electrical conductivity is non-Drude like, with
a peak at a finite frequency [83, 84]. We note that the latticeTK is significantly enhanced
with respect to the single-impurity value; in particular, at half-filling, to leading exponential
order it is found numerically that ln[T lattice

K ]/ln[T impurity

K ] ≈ √
π [78].
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Because of the residual entropy, we do not expect the true ground state of the system
to be the paramagnetic one. It represents an unstable fixed point, but an unstable fixed
point in which the excitation spectrum is decidedly not Fermi-liquid like: the slope of the
real part of the conduction electron self-energy near the Fermi energy is positive, which is
related through the Hilbert transform to the finite imaginary part of the self-energy at the
Fermi level. The standardly defined quasiparticle mass, proportional to 1− ∂ Re6/∂ω|0, is
reduced(it can even go negative), and the width of any possible electronic quasiparticle peak
is hopelessly broad compared to its position. In short, the quasiparticle picture breaks down
[78]. Studies of the phase diagram [85] near half-filling of each channel (band) confirm
that for J 6 0.75t∗, an antiferromagnetic phase is likely which vanishes as a function of
doping nearnc = 0.8, wheren is the occupancy per site of each band. The interaction
driving this is a mix of RKKY and superexchange couplings, as in the single-channel case.
However, here the superexchange is between adjacent doublet clouds and so scales as 1/J
for large J . This phase is commensurate except nearn ≈ nc. Hence, at half-filling, we
expect an antiferromagnetic insulator over most physical coupling strength values. Away
from half-filling we have recently found evidence for a novel superconducting ground state,
which we discuss somewhat further in the conclusions. Full details of the calculation of the
phase diagram of the two-channel Kondo lattice are presented elsewhere [85].

Anders and Jarrell [84] have carried out a study of the effects of applied spin field
on the two-channel lattice in infinite spatial dimensions. To do this they utilized the non-
crossing approximation (NCA) method for solving the effective-impurity problem (for a
description, see references [86, 87]). In accord with the crossover to impurity Fermi-liquid
behaviour, it is found that the resistivity drops significantly and a Drude-like peak is restored
in the optical conductivity. Moreover, an approximate scaling behaviour is found for the
magnetoresistance, which is that [ρ(Hs, T ) − ρ(0, T )]/ρ(0, T ) ∼ f (Hs/(T + T ∗)β), with
β = 0.39, T ∗ = 0.006TK . Interestingly, for zero spin field, this study performed away
from particle–hole symmetry finds a resistivity peak below the temperatures accessible to
the particle–hole-symmetric quantum Monte Carlo results.

4.2. Possible relevance to UBe13

The normal-state resistivity of the heavy-fermion superconductor UBe13 is very unusual
[88, 89]. First, the value at the transition is reproducibly large for the best single crystals
(of the order of 100µ� cm). The best samples also have sharp nuclear magnetic resonance
lines for 9Be nuclei, enough so that the one of thirteen sites which is cubic can be readily
observed [90]. Bolstering this result are data which show sharp resistive superconducting
transitions that persist even in applied magnetic field. These NMR results contrast with
those for the strongly disordered NFL material UCu5−xPdx [16]. Second, the resistivity
is strongly and reversibly depressed with the application of pressure, which is difficult to
understand if it corresponds to any ordinary ‘dirt’ that might be squeezed out irreversibly
with pressure [89]. Pressure also restores curvature to the resistivity and a clear window
of T 2-coefficient opens up [89]. Third, a non-trivial scaling law describes the negative
magnetoresistivity, specificallyρ(T , H)/ρ(T , 0) ∼ f (H/[T +T ∗]β) where different groups
have foundβ = 1, T ∗ = 0 [88] andβ = 0.6, T ∗ = −0.6 K [91].

The large residual resistivity of UBe13 in an evidently clean system finds a natural
explanation in terms of the two-channel Kondo-lattice results described in the previous
paragraph [78]. A likely description is in terms of the quadrupolar Kondo effect, though a
two-channel magnetic Kondo effect cannot be ruled out and would appear more consistent
with non-linear susceptibility data [65]. The fact that the resistivity has a maximum is
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compatible with the NCA results for the two-channel lattice away from half-filling [84].
We note also that inclusion of quadrupolar/magnetic fluctuations is generically expected to
reduce the resistivity (barring special conditions in proximity to an insulating phase), since
these fluctuations will provide a hint of order at lower temperatures which will remove the
residual entropy.

In either the magnetic or quadrupolar two-channel lattice case, a qualitative explanation
of the reduction of the residual resistivity with pressure goes as follows: pressure increases
the hybridization, which in turn increases the overlap between distinct crystal-field states,
driving the uranium ions towards the limit of a single Hund’s rule multiplet. In this
case, variational studies which become exact in the limit of large degeneracy support the
formation of a singlet ground state [67]. This hypothesis may in principle be at least
partially tested by performing Raman scattering in a diamond-anvil cell on a UBe13 sample.
Raman scattering has detected magnetic dipole transitions within the low-lying f-electron
states that agrees with neutron scattering observations [92]. These transitions should display
substantial broadening with the application of pressure.

With regard to the magnetoresistance, it is tempting to compare the approximate scaling
law discerned from the NCA [84] with the UBe13 data [88, 91], but caution is in order since
in the quadrupolar case the properlow-field interpretation of the magnetic field is that it is
a channel field, for which no calculations yet exist. AssumingV/|E(f 2) − E(f 3)| ≈ 0.3
as is reasonable for an 0.3 eV hybridization strength and 1 eV interconfiguration splitting,
and given a measured susceptibility of about 0.012 emu mol−1 (interpreted here as Van
Vleck susceptibility), the crossover fieldH ∗ at which channel-field physics is overtaken by
spin-field physics for the quadrupolar case is about 4 T.

A serious criticism of the application of the simplified lattice model of the previous
subsection to a real material such as UBe13 concerns the unphysical assumption of two
degenerate bands throughout the Brillouin zone. It is well known from the early days
of electronic structure theory that such degeneracies can only arise at special points and
generically only a twofold degeneracy associated with time-reversal symmetry (Kramers’
theorem) can obtain at an arbitrary point in the Brillouin zone. Indeed, we expect the
Kramers’ degeneracy to hold for the electrons in UBe13 though the strong spin–orbit coupling
will make the effective moment dependent uponk. This latter point is only relevant in the
presence of an applied magnetic field. However, it is easy to show with a simple tight-
binding formulation that even in the limit of zero spin–orbit coupling, a lattice of orbitals
with 03 symmetry (assumed to bex2 − y2, 3z2 − r2 for simplicity) cannot yield degenerate
bands except at the cubic zone centre and zone corner points. The origin of this is that the
degeneracy of the local orbitals obtains from the point group symmetry which assumes a
particular local quantization axis. This quantization axis then depends upon the site, and
mixing of orbitals from site to site is possible which producesk-space matrix elements that
vanish only at the zone centre and the zone corner.

It turns out that these effects vanish in infinite spatial dimensions or in a local
approximation in finite spatial dimensions. That is, any effect of the shift of the orbital
quantization axis from site to site must be felt through the momentum dependence of the
self-energy in ways which are not as yet clear, and therefore enters in 1/d corrections to
the theory.

The way to understand this qualitatively is straightforward, as is schematically illustrated
in figure 9. The densities of states of the two bands are distinct and coincide only at the band
edges. However, no splitting can occur for the local-orbital-projected density of states about
a single site, which rigorously must be half of the total density of states. If any differences
occurred, it would indicate a breaking of the point group symmetry. Such a spontaneous
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Figure 9. A schematic view of bands and densities of states for a realistic two-channel
Kondo lattice. We assume a simple cubic lattice in three dimensions and local orbitals of
3z2 − r2, x2 − y2(±) symmetry. (a) shows the two diagonal bands (labelled as 1, 2) ink-space
which can only be degenerate at the zone centre (0) and the zone corner (X). (b) shows the
density of states for the two diagonal bands ofk-space which are distinct in energy. The total
density of states, however, must add to give the total density of states of (c) which is taken from
the locally (on-site-) projected± orbitals. Here, the exact equality of the two different densities
of states is assured by point group symmetry.

symmetry breaking is indeed possible and may be searched for in the numerical calculations
(the possibility of a channel-density-wave ordered state, for example, exists at quarter-filling
in the infinite-dimensional lattice). But it cannot describe the paramagnetic phase. Because
the local density of states determines the entire local Green’s function through spectral
relations, it is clear that in the absence of an applied stress or spontaneous orbital ordering
the banding effects cannot alter the local self-energy. (Note also that the interband matrix
elements of the aforementioned two-orbital tight-binding model will have vanishing weight
in infinite spatial dimension—they have a d-wave symmetry and hence vanish for the same
reason that form factors for d-wave pairing do, for example.)

We offer a speculation that in a three-dimensional lattice the band-splitting effects may be
relevant. The crucial comparison is of the magnitude of the renormalized splitting (dressed
by the self-energy corrections) to the intersite interaction energy and Kondo scale. If the
renormalized band splitting is smaller than the intersite interaction energy, then presumably
some kind of ordering will dictate the ground state, possibly magnetic or quadrupolar (or
superconducting). In the context of applying this model to UBe13, it would appear that
the renormalized band splitting is quite small and that superconductivity dominates intersite
ordering. In the case of UPt3, if one tries to apply this model, intersite coupling probably
wins (as is evident from the magnetic order at 5 K) [93]. If the renormalized band splitting
is larger than the intersite coupling but smaller than the Kondo scale, it may be possible
to develop a heavy Fermi-liquid state, as is observed in the compound PrInAg2 [94]. This
cubic material has 4f2 Pr ions with clear evidence for non-Kramers ground doublets.
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5. Conclusions and directions

In conclusion, we have presented a pedagogical discussion of the two-channel Kondo model
and its possible appearance in heavy-fermion systems. We have provided a critical review
of the relevance of the model to a number of diluted heavy-fermion alloys. We have
overviewed recent results from the theory of the two-channel Kondo-lattice model in infinite
spatial dimensions and pointed out the possible relevance to the heavy-fermion compound
UBe13.

In closing, we would like to offer some brief speculations concerning superconductivity
in heavy-fermion systems. First, we note that the two-channel impurity model has strong on-
site odd-frequency pair correlations leading to a log-divergent local pair-field susceptibility
in the channel-singlet, spin-singlet sector [30] as first stressed by Emery and Kivelson [95].
In such a state electrons avoid each other through a wave function which has atemporalnode
[96–99]. In the lattice setting, odd-frequency pairing has been argued to favour astaggered
superconducting state in which the phase alternates from site to site [98]. Evidence for
just such a tendency has been found in calculations for a diluted one-channel Kondo lattice
in one dimension where left- and right-moving electrons are approximately decoupled so
that the system almost behaves as a two-channel model [100]. This study finds that the
staggered odd-frequency pairing correlation functions have long-distance algebraic decays
significantly enhanced over the non-interacting limit.

Next, we note that the two-channel Kondo model supports a first-order phase transition
to an odd-frequency pairing state in infinite spatial dimensions [85]. Details of this work
are presented elsewhere. The critical temperature of this superconductivity tracks the lattice
Kondo scale almost perfectly, occurring at approximately half ofTK . This state is a singlet in
both spin and channel indices, and the requirement of a temporal node follows simply from
the Pauli principle. The possibility of such a state is anticipated in part by the enhancement
of the corresponding local pair-field susceptibility in the impurity model. However, we
stress that this superconductivity requires a finite concentration of two-channel sites and
proceeds only by an unusual first-order transition in the model. The transition temperatures
throughout the Brillouin zone appear to be degenerate.

Clearly, the transitions of the heavy-fermion superconductors appear to be second
order, in contradiction with the above. Further investigation of the strength of the first-
order transition in the above model, together with some estimation of the effects of finite
dimensionality, are required to help resolve this issue. However, we note the following
properties of the heavy-fermion superconductors which support an interpretation in terms
of a two-channel Kondo-lattice model.

(1) ‘Ubiquity’ . All Ce-based heavy-fermion superconductors [1, 101–103] are found
in the same 1–2–2 crystal structure and in fact two (CeCu2Si2 and CeCu2Ge2 [101]) are
basically identical under pressure. This suggests a common origin to the physics of these
materials. In contrast, there are four different U-based systems in hexagonal (UPt3, UPd2Al 3,
and UNi2Al 3), tetragonal (URu2Si2), and cubic (UBe13) symmetries. It is clear that the
relative difficulty of making diverse Ce-based systems compared with the relative ease of
making U-based systems fits nicely with the picture of robust two-channel Kondo physics
in U-based systems compared with Ce-based systems.

(2) Non-Fermi-liquid alloys and compounds. As compounds, CeCu2Si2 [68] and UBe13

[21] clearly have a superconducting instability arising in a non-Fermi-liquid normal state.
The alloys La1−xCexCu2Si2 [55], Th1−xUxRu2Si2 [53], Th1−xUxPd2Si2 [54], Th1−xUxBe13

[59, 60, 61, 62], Th1−xUxPd2Al 3 [13], and Th1−xUxNi2Al 3 [58] all show non-Fermi-
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liquid behaviour with at least some overlap with the two-channel Kondo-impurity model
as discussed in section 3. This strong correlation of non-Fermi-liquid physics with
superconductivity is certainly intriguing and must be explained by any successful theory
of these materials.

(3) The general absence of a spin response in U-based superconductors.The spin-
and channel-singlet character of the pair-field instability mentioned above suggests that the
magnetic field should break up pairs in these materials if the model is relevant. However,
in UBe13, UPt3, URu2Si2 there is in fact no strong change of the susceptibility in passing
through the transition [90, 104–106], and UBe13 in particular shows no strong evidence
of Pauli limiting in the upper critical field [107], consistent with essentially zero magnetic
moment of the conduction states. In detail, some change ofc-axis susceptibility is observed
in UPt3 which is larger than any change in the basal plane [105]. Also, the upper-critical-
field curve forc-axis fields actually crosses that for in-plane fields at low temperatures. This
has been interpreted in terms of a triplet-pair-field state that has the feature of Pauli limiting
along thec-axis and none in the basal plane [108]. For the quadrupolar Kondo model
applied to these materials, you would expect just these behaviours. In the cubic case of
UBe13, there is no Pauli susceptibility associated with the quadrupolar Kondo ground state,
only a Van Vleck susceptibility associated with transitions to damped excited states. The
Van Vleck susceptibility is dominated by energy transfers at the 15 meV scale, compared
with the 0.1 meV scale of the superconductivity, and so is unlikely to change on passing
through the transition. On the other hand, for the hexagonal material UPt3, it is expected
that the quadrupolar Kondo effect will have ac-axis magnetic response, so pair breaking and
susceptibility reduction (along with Pauli limiting) are possible forc-axis fields. At zeroth
order, we expect no change in the in-plane susceptibility which will be of Van Vleck type
[109]. However, the crystal-field levels are damped in this case, so to the extent that the
density of states of electrons is reduced on entering the superconducting state we can expect
some change of the in-plane susceptibility. Indeed, UPd2Al 3 for both directions of field
displays a Knight-shift drop on entering the superconducting state as sampled by Al Knight-
shift experiments [110]. However, the relative drop for thec-axis (28%) is substantially
larger than that of the basal plane (13%) which is qualitatively consistent with the above
expectations. In CeCu2Si2 where a magnetic description should apply, and Knight-shift
drops are expected, sizeable drops are indeed seen [104].

(4) Multiple phases. Here we simply remark that the possibility of multiple
superconducting phases for staggered odd-frequency pairs has already been discussed
phenomenologically elsewhere [111]. This may apply to the multiple phases of UPt3 and
U1−xThxBe13. Two other possibilities arise in a study of the phase diagram of the model in
infinite dimensions: (i) there may be multiple phases with differentq-vectors, and (ii) there
may be a low-temperature transition to a spin-triplet, channel-spin-triplet odd-frequency pair
state. Detailed numerical investigations will be necessary to answer the question of which
scenario if any can apply to the real materials.
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