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The phase diagram of the two-channel Kondo lattice model is examined with a quantum Monte
simulation in the limit of infinite dimensions. Commensurate (and incommensurate) antiferromag
and superconducting states are found. The antiferromagnetic transition is very weak and cont
The superconducting transition is discontinuous to an odd-frequency channel-singlet and spin-
pairing state. [S0031-9007(97)02626-4]

PACS numbers: 75.30.Mb, 71.27.+a, 75.10.Dg
g
nt
n
v

g

o
he
y

nd
ie

-
he
v

ti-

ly

t
ap

f

he
in
er
tin
d
tiv
bl
se
on
ou
o

o
ed

e
g

of

n-
s.
el
s

a
g

ch
l-
s
el
do

ce
s
ng

te

rs

o

ing
s
is

n

Despite strong local Coulomb correlations and a hu
electronic effective mass (100–1000-fold enhanceme
a number of heavy fermion materials display highly u
usual superconductivity (HFSCs) [1]. Indeed, the hea
electrons themselves pair (as evidenced by the scalin
the specific heat jump at the transition temperatureTc with
the normal state specific heat). Unconventional superc
ducting order parameters (pair wave functions) with eit
spatial [2] or temporal nodes (so called “odd-frequenc
pairing) [3–7] avoid the strong Coulomb interaction a
so are favored for interpreting these systems. This v
is supported by observation of (i) power laws in low tem
perature physical properties [1,2], in contrast with t
activated behavior of conventional (nodeless) pair wa
functions of, e.g., aluminum, and (ii) the complex mul
phase superconductivity of UPt3 and U12xThxBe13 (and
possibly UBe13 itself) [1,2,8]. The superconductivity
coexists with antiferromagnetism (AFM) (AFM-usual
commensurate) in UPt3, URu2Si2, UPd2Al 3, and UNi2Al 3

[1], and competes with AFM in CeCu2Si2 [9]. Finally, at
least in UBe13 [10] and CeCu2Si2 [9], the “normal metal-
lic state” is clearlynot described as a Fermi liquid. In
each of these materials aboveTc, the linear specific hea
rises with decreasing temperature, the resistivity is
proximately linear inT , and the residual resistivity atTc

is high (typically 80 100 mV cm in the best samples o
UBe13).

In this paper, we provide the first calculations of t
phase diagram for the two-channel Kondo lattice in
finite spatial dimensions. We find second order antif
romagnetic and first order odd-frequency superconduc
phase transitions. Coexistence of commensurate (an
commensurate) antiferromagnetism with superconduc
ity is, in principle, possible. We present several possi
routes to account for the multiple superconducting pha
observed in real materials. Taken together with the n
Fermi liquid paramagnetic phase discussed in previ
publications [11], and earlier suggestions that the tw
channel lattice may describe UBe13 and other heavy
fermion systems [8], our work establishes that the tw
channel Kondo lattice model possesses the key ingr
ents needed to explain HFSC.
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Motivation.—A possible model for some heavy
fermion compounds is the two-channel Kondo lattic
which consists of two identical species of noninteractin
electrons antiferromagnetically coupled to a lattice
spin 1y2 Kondo moments [8]. This model displays
non-Fermi liquid behavior because of the overcompe
sation of the Kondo spins by the conduction electron
This was first pointed out in the single site two-chann
model by Nozières and Blandin [12]; the impurity plu
extended conduction screening clouds yield a net spin 1y2
character. This yields a degenerate ground state with
non-Fermi liquid excitation spectrum. This overscreenin
also effects an interchannel pairing mechanism [8], whi
in the impurity problem favors spin-singlet channe
singlet odd-frequency superconducting fluctuation
[5–7]. We find that this overscreening generates nov
antiferromagnetic superexchange between the Kon
spins on the lattice. Taken together with the RKKY
exchange, this favors antiferromagnetism in the latti
model close to half-filling of the two channels. In thi
paper we will elucidate the nature of the superconducti
and magnetic transitions on the lattice.

Model.—The Hamiltonian for the two-channel Kondo
lattice is

H  J
X
i,a

Si ? si,a 2
tp

2
p

d

X
kijl,a,s

scy
i,a,scj,a,s 1 H.c.d

2 m
X

i,a,s

c
y
i,a,sci,a,s , (1)

wherec
y
i,a,s sci,a,sd creates (destroys) an electron on si

i in channela  1, 2 of spin s, Si is the Kondo spin on
site i, andsi,a are the conduction electron spin operato
for site i and channela. The sitesi form an infinite-
dimensional hypercubic lattice. Hopping is limited t
nearest neighbors with hopping integralt ; tpy2

p
d. All

energies are measured in units of the scaled hopp
integral tp. Thus, on each site the Kondo spin mediate
an interaction between the two different channels. Th
problem is nontrivial, and for the region of interest i
which J . 0 and T ø J, tp it is describable only with
nonperturbative approaches.
© 1997 The American Physical Society
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Formalism and Simulation.—Metzner and Vollhardt
[13] provided a simplified method for solving such pro
lems in a nontrivial limit. They observed that the reno
malizations due to local two-particle interactions beco
purely local for the coordination number tending to infi
ity. In consequence, most standard lattice models ma
mapped onto the solution of an effective correlated i
purity coupled to a self-consistently determined bath
medium (see [14] for further details and references).

We solve the effective impurity problem for Eq. (1
by using the quantum Monte Carlo (QMC) algorithm
Fye and Hirsch [15], modified for the two-channel Kond
model [16]. We simulated the model for several filling
N s0 , N # 1d and exchange interaction strengthsJ
sJ  0.75, 0.625, 0.5, 0.4d. Error bars on the measure
quantities are less than 6% for the results presen
here. A sign problem encountered in the QMC proc
prevented us from studyingJ $ 0.8 and N # 0.5 since
lower temperatures are required to access the physic
interesting regime.

The QMC simulation naturally produces both one- a
two-particle properties. The local spin susceptibilityxL

was obtained by measuring the three-by-three matrix
the local susceptibility, including both the Kondo spin a
conduction band spin fluctuations.x was then inverted to
calculate the associated irreducible vertex function and
corresponding lattice susceptibility in the usual way [17

The situation for the superconductivity is more com
plicated. Only the two conduction channels contribu
to the pair-field susceptibility. We can then loo
for pairing instabilities in singlet and triplet channe
for both spin and channel. Motivated by impuri
model results [5,6], we have restricted our attention
the particle-particle propagator diagrams as shown
Fig. 1. It is possible to make two independent co
binations of these diagrams, viz.,x6sivn, ivm, $qd 
x11sivn, ivm, $qd 6 x12sivn, ivm, $qd, from which we
construct a quartet of spin and channel, singlet and tri
pair-field susceptibilities given by

PSsCss $q, T d  T
X
nm

f2sivndx2sivn, ivm, $qdf2sivmd ,

(2)

PStCts $q, T d  T
X
nm

f1sivndx1sivn, ivm, $qdf1sivmd ,

(3)

FIG. 1. Particle-particle interchannel opposite spin diagra
which contribute to the pair-field susceptibility. Here1 and 2
label the channel, and" and# the spin. Summing over$k and $k0

yields x11 andx12.
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PStCss $q, T d  T
X
nm

x2sivn, ivm, $qd , (4)

PSsCts $q, T d  T
X
nm

x1sivn, ivm, $qd . (5)

Here f6sivnd are odd functions of Matsubara frequenc
used to project out the odd-frequency pairing, and, f
example,PSsCss $q, T d is the spin-singlet channel-single
pair-field susceptibility for a pair with center-of-mas
momentum$q.

To determine the form off6sivnd, we have employed
the pairing matrix formalism of Owen and Scalapino [18
We have represented eachx6 in a two-particle Dyson
equation and extracted the irreducible vertex functio
G6. The resulting pairing matrices are

M6sivn, ivm, $qd 
q

x
0
6sivn, $qd G6sivn, ivmd

3

q
x

0
6sivm, $qd , (6)

where x0
6sivn, $qd are the particle-particle diagrams in

Fig. 1 without vertex corrections.f6sivnd is the eigen-
vector corresponding to the dominant eigenvalue ofM6

(that with the largest absolute value).
Results.—In this model, antiferromagnetism is driven

by both RKKY interactions and a novel type of supere
change. The latter arises from hopping between adjac
spin 1y2 screening clouds, whose overall spin is dete
mined by the conduction electrons; the Pauli principle fo
bids hopping unless neighboring spins in the same chan
are antiparallel. As a result, for largeJ, the superex-
change goes as,stpd2yJ. For conduction band fillings
close to N  1, both the RKKY (evaluated at neares
neighbor sites) and the superexchange favor antiferrom
netism (the RKKY exchange remains antiferromagne
until N & 0.5), and an antiferromagnetic transition result
as shown in Fig. 2. Because of the screening of the lo
moments by the conduction spin, the transition is ve
weak, as measured by the full susceptibility. Specifical
xAF is not significantly enhanced over the bulk susceptib
ity xF until T * TN . However, thef-electron contribu-
tion to the susceptibility shows a protracted scaling regio
Note that screening affects nonlinear feedback which
duces the susceptibility exponentg from the mean-field
valueg  1. g increases with dopingsN , 1d, and the
transition becomes incommensurate asTN ! 0.

To explore superconductivity, it is necessary to find th
frequency form factorsf6 discussed previously. As the
temperature is lowered, the dominant eigenvalue first b
comes large (divergent) and negative, and then abrup
switches to a large and positive value at the transitio
This happens first inM2, and the corresponding eigen
vector of M2 is plotted in the inset to Fig. 3. It can
be fit quite accurately to the formTy2vn as shown by
the solid line, which corresponds to the form factor o
Ref. [4]. Thus, we usef2sivnd  Ty2vn to project
out the odd-frequency pair-field susceptibilities shown
1997
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FIG. 2. AntiferromagneticxAF and ferromagneticxF suscep-
tibilities of the two-channel Kondo lattice withJ  0.75 and
N  1.0. Inset: the local moment contribution to the susce
tibility x

f
AFsT d, which displays a protracted scaling region we

fit by 1yx
f
AF sT d . asT 2 TN dg . Strong conduction screen

ing of local moments is indicated by (i)xAF fi x
f
AF sT d and

(ii) g , 1.

Figs. 3 and 4. [Other form factorsfsivnd  tanhsT0yvnd
and sgnsvnd produce qualitatively similar results.]

The first transition is found in the spin-singlet channe
singlet pairing combination, as shown in Fig. 3. (No
that this pair state is even in parity, so that the od
frequency condition enforces the Pauli principle, in co
trast with the odd-parity and odd-frequency spin-sing
pairs of the single-channel case [3,4].) To interpret t
result, remember that the inverse pair-field susceptibility
proportional to the curvature of the free energyfsDSsCsd
as a function of the pairing order parameter1yPSsCs ~

d2fsDSsCsdydD
2
SsCs. Thus, ifPSsCs , 0 a thermodynamic

FIG. 3. Odd-frequency (spin-singlet, channel-singlet) pa
field susceptibility. At T  Tp  0.041 # Tc, PSsCssT d
becomes negative for both zone-center and zone-corner p
indicating a discontinuous transition to a paired state. Ins
the dominant zone-center eigenvector [or form factorf2

of Eqs. (2)–(5)] of the pairing matrixM2 vs Matsubara
frequency;f2 . 0.5Tyvn as in Ref. [4].
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instability of the system is present. The associated tra
tion cannot be continuous, since this requires the free
ergy in order parameter space to become flat (i.e.,PSsCs

diverges) so that the order parameter may change con
ously. Thus, we identify this as a discontinuous transiti
Furthermore, ifPSsCssTpd  0, thenT p is a lower bound
to the transition temperature since, whenPSsCssT 2 T p 
02d  02, the curvature offsDSsCsd is divergent and nega
tive; i.e., the free energy displays a downward cusp wh
would compel the order parameter and the free energ
change discontinuously atTp, which involves an infinite
energy at the transition. Hence, the actual transition
curs at a temperatureTc . T p.

Several remarks are in order about this unusual su
conductivity: (a) Figure 3 suggests that the transition
degenerate at the zone center and the zone corner, an
fact, PSsCs vanishes simultaneously over the whole zon
and hence this is alocally driven transition. This degener
acy will be lifted in finite dimensionality as the superflu
stiffnessYs (analogous to spin stiffness in a magnet) m
vanish in infinite d. For finite d with Yss $q  0d . 0
s, 0d, a local free energy minimum will be found a
$q  0 s $q fi 0d. (b) The vanishing of the local pair sus
ceptibility here atT p contrasts with the impurity mode
in which it diverges logarithmically asT ! 0 [5,6]. (c)
The excitation spectrum of such a transition may well
highly exotic [4].

As shown in Fig. 4, the ground state of the system m
be superconducting or magnetic, which may coexist
compete. Detailed exploration within the ordered pha
will answer this question definitively, as the present wo
only indicates the presence of transitions. In general
perconductivity will occur first (at the highest transitio
temperature) away from half-filling, and antiferroma
netism will occur first near half-filling. However, for val
ues ofJ . 0.75, we found that superconductivity occu

FIG. 4. Phase diagrams of the two-channel Kondo lattice
various values ofJ. The solid lines are fits to the data
The antiferromagnetic transition becomes incommensurate
TN ! 0. The temperatureTp ø CT0 is a lower bound to the
first order superconducting transition temperature (cf., Fig.
hereC  0.43sJ  0.5d, 0.51sJ  0.625d, 0.58sJ  0.75d.
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first even at half-filling (the minus sign problem preclud
a systematic study for these values ofJ so they are not
presented in Fig. 4). We also found thatTp ø CsJdT0,
with CsJd ø 0.5 and weakly dependent onJ. In contrast,
TN appears to depend upon bothJ andT0.

Speculation and Interpretation.—We offer two com-
patible interpretations of the resultTp ø 0.5T0. First,T0 is
the local dynamic energy scale, and thus this result un
scores the local origin of the pairing. Second,T ø 0.5T0
is also the temperature at which the slope of the real
of the self-energy becomes one [11], so that the quasi
ticle renormalization factor diverges. This result sugge
that, when the system cannot form a Fermi liquid due
a large residual scattering rate (with concomitant resid
entropy), it forms a superconducting state to quench
entropy. The antiferromagnetic transition temperature,
the other hand, depends upon bothJ (through the intersite
exchange) andT0 (through moment screening and supere
change). As noted above, we cannot determine whe
these states coexist without a detailed exploration wit
the ordered phases. At half-filling, where the antifer
magnetism produces an insulating phase, clearly the
perconductivity will be suppressed forJ # 0.75.

Our results offer a number of routes to be explored
explaining the complex superconducting phase diagra
of UPt3 and U12xThxBe13: (1) Competition between
phases with a multipoint irreducible star:As mentioned
above, forYs , 0 in finite d, $q fi 0 pairs are favored,
quite likely at the Brillouin zone corner for such a bipa
tite lattice. For lattices with frustration, such as hexag
nal UPt3 and fcc UBe13, multipoint irreducible stars may
be needed to describe staggered order parameters w
can then have multiple phases [19]. (2)Competition be-
tween different$q values: As noted above,T p, the lower
bound for the first order superconducting transition te
perature, is independent of$q in our calculations. Thus
multiple phases may thus correspond to superconduc
transitions with different$q values. (3)Possible instability
of spin-tripletychannel-triplet pairing: At yet lower tem-
peratures than those identified in Fig. 4, we observe a
change in the pair-field susceptibility associated with s
triplet-channel triplet odd-frequency pairing. Hence it
possible that the competition between this triplet-trip
and the singlet-singlet odd-frequency pairing may expl
the complex phase diagrams.

In conclusion, we note that this superconducting tra
sition can agree with experiment only if it is weakly fir
order; this is plausible given the rapid change in free
ergy curvature at the order parameter origin. Detailed
vestigations in the ordered phase will resolve this iss
and whether any of the above scenarios can describe
complex phase diagrams of UPt3 and U12xThxBe13.
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