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Magnetoresistance in the Two-Channel Anderson Lattice
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The paramagnetic phase of the two-channel Anderson lattice model in the Kondo limit is invest
in infinite spatial dimensions using the noncrossing approximation. The resistivity exhibits a K
upturn with decreasingT , followed by a slow decrease to a finite value atT ­ 0. The decrease reflects
lattice coherence effects in concert with particle-hole symmetry breaking. The magnetoresistance
an approximate scaling relation, decreasing towards coherent Fermi liquid behavior with incre
field. The magnetic field induces a Drude peak in the optical conductivity. [S0031-9007(97)027

PACS numbers: 75.30.Mb, 71.27.+a, 75.10.Dg
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Heavy fermion (HF) materials [1] have been under
vestigation for two decades. Characteristic of these m
rials is a100 1000 fold enhanced electronic specific he
coefficientgsTd ­ CsTdyT and very large and strongl
temperature dependent resistivityrsT d (of the order of
100 mV cm). In most of these intermetallic compoun
magnetic and/or superconducting ground states are fo
The physics of these interesting anomalous metals is
lated to strongly correlated electrons in4fy5f orbitals.
Some of these systems are well described as Lan
Fermi liquids of massive quasiparticles.

Recently, a number of non-Fermi liquid (NFL) HF a
loys have been found which display, e.g., logarithmica
divergentgsT d [2]. The superconducting HF compoun
UBe13 also has NFL behavior ing, possesses a very larg
residual resistivity (ø100 mV cm) at the superconduct
ing transition even in high quality samples (as determin
by a largeTc and sharp resistive transition). Such NF
behavior is consistent with a two-channel Kondo mo
description of the physics, such as has been propose
UBe13 on symmetry grounds [3]. In this picture,electri-
cal quadrupole momentsof the twofold nonmagneticG3

ground state of theU ion are screened by orbital motio
of the conduction electrons. Because the magnetic
ment of the electrons is a spectator to this process, th
are two screening channels. Reversal of spin and orb
indices allows for a two-channel magnetic Kondo effe
for a Ce31 ion in a cubic environment [4]. The two
channel Kondo impurity model for these cases [3,5] h
been investigated essentially exactly with different te
niques [6]. However, little is known about the corr
sponding lattice model [7,8].

In this paper we present a solution of one-parti
properties of the two-channel Anderson lattice (TC
model in infinite spatial dimensions. To obtain th
solution of the effective two-channel single impuri
problem, the noncrossing approximation (NCA) [9]
used. Although this method fails to solve the infini
dimension single channel Anderson lattice at temperatu
less than the lattice Kondo temperatureTp [10], it works
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well in the low temperature region of the two-chann
impurity model [3,4,11]. The calculated resistivityrsT d
agrees well with recent quantum Monte Carlo (QMC
results [8]. For lower temperatures than accessible
QMC, however, we find a decrease inrsT d for decreasing
T . A strong negative magnetoresistivity at temperatu
below the resistivity maximum in an applied magnet
field indicates a recovery of Fermi-liquid behavior. A
the same time, an onset of a Drude peak in the opti
conductivity is found which is absent in the zero fie
solution. We briefly discuss the possible relevance
these results to experiment at the end.

Theory.—The two-channel Anderson lattice Hamilton
ian under investigation reads

Ĥ ­
X

aki,jl

tp

p
d

c
y
iascjas 1

X
is

EsXsid
s,s

1
X
isa

V hcy
iasXsid

a,s 1 H.c.j. (1)

X are the usual Hubbard operators,d being the spatial
dimension, i the lattice site,tp the reduced hopping
matrix element of the conduction electron between nea
neighbors which carry a spins, and a channel indexa ­
s1, 2d. The conduction electrons couple via hybridizatio
matrix elementV to the ionic many-body states on
each lattice site. The symmetry breaking magnetic fie
enters by a Zeeman term inEs ­ ´f 1 gjmbjsH. The
Zeeman splitting of the conduction electrons only resu
in a shift of the band centers and turns out to be
small correction. WhenjEa 2 Es j is much larger than
the hybridization widthG0 ­ prV2, the model can be
mapped onto a two-channel Kondo model [3] via th
Schrieffer-Wolff transformation.

The local approximation for the Anderson lattice [10
is exact in the limit d ! ` [12] and can capture the
important physical effects of real (d ­ 3) materials. The
method proceeds with an appropriate rescaling of
effective hopping. We choose onef site as aneffective
impurity site which is self-consistently embedded in a
effective medium that includes the contributions fro
© 1997 The American Physical Society
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the rest of the lattice. In a single impurity problem
only the bare medium one-particle self-energy enter
given byD0

asszd ­ N21
s

P
k dassk, zd ­ N21

s

P
k V 2sz 2

´kasd21. In thed ­ ` lattice the localf-Green’s function
(GF) has to be equal to thek-summed lattice GF

1
Ns

X
k

1

1 2 F̃asszd fdassk, zd 2 D̃asszdg
­ 1 , (2)

where D̃asszd is the self-consistent one body self-
energy of the local “impurity” propagator̃Fasszd ­
kkX̂ sid

a,sjX̂sid
s,all szd. The effective hybridization width

G̃assvd ­
Im
p D̃assv 2 idd then enters the local two-

channel effective impurity problem. The self-energy o
the conduction electrons is given by

Sasszd ­
V 2F̃asszd

1 1 F̃asszdD̃asszd
. (3)

In the single channel case, the fact that theT matrix
T̃ szd ­ V 2F̃szd is at the unitarity limit (for z, T !

0) leads to Fermi-liquid behavior of the conduction
band self-energy, viz.2ImSssv 1 i01d ~ aT2 1 bv2.
Since the value of theT matrix at the chemical potential
and T ! 0 is smaller than the unitarity limit in the
two-channel case Eq. (3) tells us immediately that th
corresponding conduction band self-energy for the exa
solution in the paramagnetic phase of the lattice has to
finite. This has been recently called anincoherent metal
[7,8]. The physical origin is the following: the local spin
is overcompensated by two conduction electron spin
On each lattice site a residual free thermodynamical
fluctuating degree of freedom (DOF) acts as a scatte
for conduction electrons. A residual entropy of1y2 logs2d
per site is associated with this DOF which has bee
interpreted as a free Majorana fermion [13]. The finit
self-energy yields a finite value forrsT ! 0, H ­ 0d.
Since in a translationally invariant system a vanishin
dc resistivity is expected forT ! 0, this indicates that
the paramagnetic state isnot the ground state of the two-
channel Anderson lattice.

In the absence of a magnetic field the NCA equation
of the effective impurity are equivalent to a resonant lev
system with an effective Anderson width̃G0 ­ 2G0. The
so-called NCA “pathology” in the local GF becomes th
physical Abrikosov-Suhl resonance (ASR) in the two
channel case [3–5]. In limit of infinite spinN and channel
M degeneracy with a fixed ratioNyM the NCA becomes
exact [11], and gives exact leading susceptibility and ne
leading resistivity exponents for allN , M, includingN ­
M ­ 2 for which amplitudes are also in good agreemen
[4,11]. The effective local GF is given by the convolution

F̃assivnd ­
1

Z̃f

I
C

dz
2pi

e2bzP̃aszdP̃ssz 1 ivnd, (4)

where Z̃f is the effective local partition function. Even
though higher order vertex corrections [14] will modify
the spectral distribution, the leading physical effect an
s,
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the correct thermodynamics are captured correctly with
the NCA. Since the saturation value of the effective si
T matrix is half the unitary limit, no pseudogap deve
ops in the quasiparticle spectrum as in the one-chan
lattice [15].

In infinite spatial dimensions the vertex corrections
the two-particle propagators vanish [12] and the condu
tivity itself is a 1yd correction which can be calculated by
evaluating the lowest order bubble diagram [16], given b

ssadsvd ­ A
Z `

2`
dv0 f fsv0d 2 fsv 1 v0dg

v

3
Z `

2`
d´r0s´d

X
s

ImGscd
assv0 2 id, ´d

3 ImGscd
assv0 1 v 2 id, ´d , (5)

where A ­ pe2a2tp2
NshdVold21 ­ tpv2

py4p, r0s´d is
the bare Gaussian density of states,Gscd

asszd the con-
duction electron GF, anda the lattice constant of the
d-dimensional hypercube. Thef electrons do not con-
tribute to the conductivity since the hybridization is as
sumedk independent. The dc conductivity is obtained b
the limit sdcsT d ­ limv!0 ssv, T d.

Results.—We numerically obtained a self-consistent so
lution of the lattice problem. The error in the norm o
P̃szd reaches0.01%, the sum rule for the self-energy is
obeyed within 0.02%, and the maximum iterative di
ference of effective hybridization widths is bounded b
maxhjG̃ns´d 2 G̃n21s´djj , 1028. All energies, if not
otherwise stated, are measured in the original Anders
width G0. We chosé f ­ Es 2 Ea ­ 23G0 in the ab-
sence ofH and tp ­ 10G0 with a band center atv ­ 0.
TK ­ 0.016G0. In Fig. 1 rsT , Hd normalized to the es-
timatedT ! 0 value of the QMC data [8] is shown for
different values of the applied magnetic field measur
in units of HK ­ kBTK ygmB. We have fixed the lat-
tice scaleT0 ­ 1.3TK by matching to the QMC resistiv-

FIG. 1. Resistivity for the TCA vs temperature for differ-
ent magnetic fields. We have normalized to the estimat
rsT ­ 0d values of the QMC data, temperature for the sam
parameters. The open symbols are the QMC results for diff
ent J in the two-channel Kondo lattice model.
2001
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ity data. The agreement with the higher temperature d
for the Kondo lattice—the open symbols—is excelle
Nevertheless, the resistivity has a maximum and slow
decreases with decreasing temperature, as expected fr
lattice calculation. While forH ­ 0 a positive intercept
occurs atT ­ 0 consistent with an infinitely degenerat
ground state, a crossover to Fermi-liquid behavior is
pected in an applied field. A simple explanation of th
is that the field lifts the degeneracy of the ground doub
making the problem formally equivalent to the spin 1y2
Anderson lattice model in the extreme mixed valent regi
(empty orbital lower than occupied orbital). This will hav
a Fermi-liquid normal state. Note that thersT , Hd lin-
early extrapolates to a negative value. This results fr
being in the crossover regime above an expectedT 2 be-
havior. Although the NCA cannot access to the Ferm
liquid regime forH . 0 andT ! 0 [10], we can access
the crossover regime. Evaluation of the constants forA in
Eq. (5), assuming a lattice constant of 5 Å and two ele
trons per unit cell in a three dimensional lattice, gives
resistivity prefactor ofø12.6 mV cmyG

2
0 which leads to a

resistivity maximum ofø250 mV cm using our absolute
maximum of20G

2
0 . This is very close to the experimen

tally found value ofø190 mV cm for UBe13 [17].
Motivated by the experimental data forrsT , Hd for

UBe13 [18], we have attempted to scale ourrsT , Hd data
with the ansatzDryr ­ frsT , Hd 2 rsT , 0dgyrsT , 0d ~

ffHysT 1 Tpdbg. While for the impurity model, we
expect T p ­ 0, b ­ 1y2, we find approximate scaling
for T p ­ 0.006TK , b ­ 0.39, as plotted in Fig. 2. The
inset of the figure shows the imaginary part of th
conduction electron self-energyScsvd (3) for H ­ 0
shown for two different temperatures. It shows a sh
of the maxima away from the chemical potential in th
metallic regime. Very close tov ­ 0 a very small onset
of coherence is observed forT ! 0, but the relaxation
rate remains of the order of2G0.

We have calculated the complex frequency depend
optical conductivity ssv, T d ­ s1sv, T d 1 is2sv, T d,
with s1sv, T d displayed in Fig. 3. WhenH ­ 0 and
T & TK , the qualitative features are similar to tho
reported earlier [8], with a low frequency pseudogap a
a large charge fluctuation peak (here atø0.9G0). With
decreasing temperatures the optical conductivity devel
a pseudogap, and as a result spectral weight is transfe
to high frequencies to satisfy thef-sum rule [19]. This
spectral weight shift to higher frequencies is seen clea
in the figure by comparing theT ­ 10TK and T ­ TK

curves (note that the logarithmic plot overemphasiz
the area of the pseudogap). At low temperatures
small increase inssvd can be observed whenv ! 0.
Nevertheless, no clear Drude peak is seen even forT ­
0.01TK , one decade lower than the observed maximum
1yss0, T d. However, in a magnetic field ofH ­ HK a
low frequency “Drude” peak develops again, consiste
with the return to Fermi-liquid behavior suggested
rsT , Hd. Note that in the single channel Anderson latti
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FIG. 2. MagnetoresistancefrsT , Hd 2 rsT , 0dgyrsT , 0d vs
scaling variablex ­ HysT 1 0.006TK d0.39. Inset: Imaginary
part of the conduction band self-energy vs frequency in
vicinity of the chemical potentialm ­ 0 for two different
temperatures.

a clear Drude peak develops already a little below
maximum in1yss0, Td.

With the phenomenological ansatzsoptsvd ­
v2

pys4pd hGoptsvd 2 ivf1 1 lsvdgj21 the dynami-
cal optical relaxation rateGoptsvd and the dimensionless
mass enhancement factorlsvd have been determined. I
Fig. 4(a) Goptsvd is plotted for the same parameters
in Fig. 3. While for temperaturesT . 0.1TK Goptsvd
is nearly frequency independent for low frequencies,
the lowest temperatureGopts0d has decreased reflectin
the decrease of the dc resistivity. The low frequen
behavior has an exponent slightly lower than forn ­ 1.
We emphasize thedifference between ImScsvd and
Goptswd: the first is a trueone-particle relaxation rate;
the second, however, reflects the two-particle nat
of the energy absorption process associated with e
trical charge transport. Generally, only for a Ferm
liquid at very low temperatures and frequencies sho

FIG. 3. Optical conductivity per channel in units ofv2
py4p

vs frequency for covering three decades in temperature.
dash-dotted line is calculated withT ­ 0.01TK , H ­ HK . In
the inset the corresponding curves for the single channel P
for the two highest temperatures are shown in the same uni
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FIG. 4. Relaxation rateGoptsvd in units of G0 (a) per
channel for the two-channel Anderson lattice measured ver
vyTK and (b) QMC data for the two-channel Kondo lattic
(parameter:J ­ 4G0, T0 ­ 0.281G0).

Gopt ­ 2ImScsvd. In an applied magnetic fieldH ­ HK

and low temperaturesT ­ 0.01TK the optical relaxa-
tion rateGopts0d shows the expected trend to Fermi-liqui
behavior. Figure 4(b) shows the QMC calculation o
Goptsvd for the two-channel Kondo lattice at particle
hole symmetry. A strict quantitative comparison wit
NCA results is not possible because: (i)T0 and the Kondo
interaction J overlap to within an order of magnitude
in the QMC calculations (T0 is well separated from
high energy scales here), and (ii) because the partic
hole symmetry removes the nonmonotonicity experienc
in the NCA calculations. Modulo these concerns, th
separate calculations agree qualitatively in the overlapp
temperature and frequency regions.

Comparison to experiment.—As mentioned earlier,
rsT , H ­ 0d is reminiscent in form and magnitude o
UBe13 [17]. The magnetoresistance also resembles tha
UBe13, though our scaling form is different in detail [18]
However, a strict comparison is not possible, since a
suming a quadrupolar Kondo model applies to UBe13, we
should rather splitjail states (order H) and quadratically
split jsil stated (Van Vleck processes). Other recent da
suggest a possible U31-U41 configuration degeneracy
which is lifted by Th substitution [20]. We defer the nec
essary intermediate valence calculation to a future wo
In this case, a crossover from NFL to Fermi-liquid physic
is still expected. OurssT , vd, Goptsvd calculations are
very compatible with data for the alloys Y0.8U0.2Pd3 and
Th12xUxPd2Al 3 [21], as well as the compound UBe13

[22]. Because of the incoherent normal metal phase,
expect little qualitative difference between these mo
dilute alloys and the lattice. For UBe13, the existing
optical data only go to50 cm21 . s5 6dkBTK in fre-
quency [22,23], and it is clearly desirable to extend the
measurements to lower frequencies. We remark th
for Th12xUxPd2Al 3, if a hexagonal quadrupolar Kondo
us
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picture applies, ac-axis magnetic field will split thejsil
levels [5], permitting comparison to our calculations.
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