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Magnetoresistance in the Two-Channel Anderson Lattice
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The paramagnetic phase of the two-channel Anderson lattice model in the Kondo limit is investigated
in infinite spatial dimensions using the noncrossing approximation. The resistivity exhibits a Kondo
upturn with decreasing@, followed by a slow decrease to a finite valuefat= 0. The decrease reflects
lattice coherence effects in concert with particle-hole symmetry breaking. The magnetoresistance obeys
an approximate scaling relation, decreasing towards coherent Fermi liquid behavior with increasing
field. The magnetic field induces a Drude peak in the optical conductivity. [S0031-9007(97)02707-5]

PACS numbers: 75.30.Mb, 71.27.+a, 75.10.Dg

Heavy fermion (HF) materials [1] have been under in-well in the low temperature region of the two-channel
vestigation for two decades. Characteristic of these matempurity model [3,4,11]. The calculated resistivip(T')
rials is a100-1000 fold enhanced electronic specific heat agrees well with recent quantum Monte Carlo (QMC)
coefficienty(T) = C(T)/T and very large and strongly results [8]. For lower temperatures than accessible by
temperature dependent resistivipfT) (of the order of QMC, however, we find a decreasedir’) for decreasing
100 ©€) cm). In most of these intermetallic compoundsT. A strong negative magnetoresistivity at temperatures
magnetic and/or superconducting ground states are founelow the resistivity maximum in an applied magnetic
The physics of these interesting anomalous metals is rdield indicates a recovery of Fermi-liquid behavior. At
lated to strongly correlated electrons 4if /5f orbitals. the same time, an onset of a Drude peak in the optical
Some of these systems are well described as Landawonductivity is found which is absent in the zero field
Fermi liquids of massive quasiparticles. solution. We briefly discuss the possible relevance of

Recently, a number of non-Fermi liquid (NFL) HF al- these results to experiment at the end.
loys have been found which display, e.g., logarithmically Theory—The two-channel Anderson lattice Hamilton-
divergenty(T) [2]. The superconducting HF compound ian under investigation reads

UBe 3 also has NFL behavior iy, possesses a very large . o 0

residual resistivity £100 «Q cm) at the superconduct- H= ) Ja CiaoCiao + ZE(TXU,U

ing transition even in high quality samples (as determined o)) 7

by a largeT. and sharp resistive transition). Such NFL + Z V{C?MXS)[, + H.cl. (1)
behavior is consistent with a two-channel Kondo model ica '

description of the physics, such as has been proposed far are the usual Hubbard operators,being the spatial
UBe;3 on symmetry grounds [3]. In this picturelectri-  dimension, i the lattice site,* the reduced hopping
cal quadrupole momentsf the twofold nonmagnetid’s  matrix element of the conduction electron between nearest
ground state of thé/ ion are screened by orbital motion neighbors which carry a spis, and a channel index =
of the conduction electrons. Because the magnetic ma-,2). The conduction electrons couple via hybridization
ment of the electrons is a spectator to this process, thematrix elementV to the ionic many-body states on
are two screening channels. Reversal of spin and orbitadach lattice site. The symmetry breaking magnetic field
indices allows for a two-channel magnetic Kondo effectenters by a Zeeman term £, = ¢; + glu,locH. The
for a C€* ion in a cubic environment [4]. The two- Zeeman splitting of the conduction electrons only results
channel Kondo impurity model for these cases [3,5] hasn a shift of the band centers and turns out to be a
been investigated essentially exactly with different techsmall correction. WhenE, — E,| is much larger than
niques [6]. However, little is known about the corre- the hybridization widthl'y = 7pV?, the model can be
sponding lattice model [7,8]. mapped onto a two-channel Kondo model [3] via the
In this paper we present a solution of one-particleSchrieffer-Wolff transformation.
properties of the two-channel Anderson lattice (TCA) The local approximation for the Anderson lattice [10]
model in infinite spatial dimensions. To obtain theis exact in the limitd — « [12] and can capture the
solution of the effective two-channel single impurity important physical effects of read (= 3) materials. The
problem, the noncrossing approximation (NCA) [9] is method proceeds with an appropriate rescaling of the
used. Although this method fails to solve the infinite effective hopping. We choose orfesite as areffective
dimension single channel Anderson lattice at temperaturampurity site which is self-consistently embedded in an
less than the lattice Kondo temperataré[10], it works  effective medium that includes the contributions from
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the rest of the lattice. In a single impurity problem the correct thermodynamics are captured correctly within
only the bare medium one-particle self-energy entersthe NCA. Since the saturation value of the effective site

givenbyA® (z) = N; 'Y, dao(k,z) = N7' Y, VX (z — T matrix is half the unitary limit, no pseudogap devel-
eras) ', Inthed = o lattice the localf-Green’s function  ops in the quasiparticle spectrum as in the one-channel
(GF) has to be equal to tHesummed lattice GF lattice [15].
| | In infinite spatial dimensions the vertex corrections in
— Z = = =1, (2) the two-particle propagators vanish [12] and the conduc-
N T 1= Fao(@)dao(k,2) = Ao (2)] tivity itself is a 1/d correction which can be calculated by

where A,,(z) is the self-consistent one body self- evaluating the lowest order bubble diagram [16], given by

energy of the local “impurity” propagatof, ,(z) = @) * Lf(@) = flo + o)]
(XD 1XD ) (). The effective hybridization width & (@) :A] dw

w

ao(®) = DX, (0 — i) then enters the local two- oo o
channel effective impurity problem. The self-energy of X depo(e) ZU ImGY) (0" — i8,¢)
the conduction electrons is given by -
VzFao‘ 4 X (c) ! + )
2ao(z) = @) 3) ImG ) (0" + © — i8,¢), (5)

L+ Fao(2)Aao(2) where A = me?a®t* N(hdVol)™' = t*wlz,/477, pole) is

In the single channel case, the fact that thenatrix ~ the bare Gaussian density of state®)(z) the con-
T(z) = V2*F(z) is at the unitarity limit (for z, T — duction electron GF, and the lattice constant of the
0) leads to Fermi-liquid behavior of the conduction d-dimensional hypercube. Thg electrons do not con-
band self-energy, viz=Im3,(w + i0%) « aT? + bw?.  tribute to the conductivity since the hybridization is as-
Since the value of th@ matrix at the chemical potential sumedk independent. The dc conductivity is obtained by
and T — 0 is smaller than the unitarity limit in the the limitou(7T) = lim,—oo(w,T).
two-channel case Eq. (3) tells us immediately that the Results—We numerically obtained a self-consistent so-
corresponding conduction band self-energy for the exadtition of the lattice problem. The error in the norm of
solution in the paramagnetic phase of the lattice has to bB(z) reaches).01%, the sum rule for the self-energy is
finite. This has been recently called Bitoherent metal obeyed within 0.02%, and the maximum iterative dif-
[7,8]. The physical origin is the following: the local spin ference of effective hybridization widths is bounded by
is overcompensated by two conduction electron spingnaX|l’,(s) — I',—i(e)[} < 107%. All energies, if not
On each lattice site a residual free thermodynamicallyptherwise stated, are measured in the original Anderson
fluctuating degree of freedom (DOF) acts as a scattera¥idth T'o. We chosesy = E, — E, = =3I in the ab-
for conduction electrons. A residual entropylg®log(2)  sence of and+* = 10T’y with a band center ab = 0.
per site is associated with this DOF which has beedx = 0.016. In Fig. 1 p(T, H) normalized to the es-
interpreted as a free Majorana fermion [13]. The finitetimated7 — 0 value of the QMC data [8] is shown for
self-energy vyields a finite value fop(I — 0,H = 0).  different values of the applied magnetic field measured
Since in a translationally invariant system a vanishingn units of Hx = kzTx/gup. We have fixed the lat-
dc resistivity is expected fol' — 0, this indicates that tice scaleTy = 1.3Tx by matching to the QMC resistiv-
the paramagnetic state mot the ground state of the two-

channel Anderson lattice. 1.000 0I=40

In the absence of a magnetic field the NCA equations N
of the effective impurity are equivalent to a resonant level +— TCAH=00
system with an effective Anderson widfly = 2I,. The o ercatosn
so-called NCA “pathology” in the local GF becomes the R TeAn=0T Hy
physical Abrikosov-Suhl resonance (ASR) in the two- 0.500 > S

channel case [3—5]. Inlimit of infinite spid and channel

M degeneracy with a fixed rativ /M the NCA becomes
exact [11], and gives exact leading susceptibility and nexi
leading resistivity exponents for all, M, includingN =

M = 2 for which amplitudes are also in good agreement 0.000 ‘ . . .
[4,11]. The effective local GF is given by the convolution 0.010 0.100 1.000  10.000

P(TYP (0

~ : 1 dz “BiE ~ ) T/T,
Fa(r(lwn) = 3 4 'Pa(Z)PO'(Z + lwn)’ (4) L. .
Zy Jc 2mi FIG. 1. Resistivity for the TCA vs temperature for differ-

Where 7, is the effective local partition function. Even ent magnetic fields. We have normalized to the estimated
f p - p(T = 0) values of the QMC data, temperature for the same

though higher order vertex corrections [14] will modify parameters. The open symbols are the QMC results for differ-
the spectral distribution, the leading physical effect ancentJ in the two-channel Kondo lattice model.
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ity data. The agreement with the higher temperature data 0.00 £ ,

for the Kondo lattice—the open symbols—is excellent. Ta &—8T=0.09T,

Nevertheless, the resistivity has a maximum and slowly e "R TR0
- -0.20 | A A—AT=02T, |

decreases with decreasing temperature, as expected from 10.0 : °r «+«—<T=025T,

lattice calculation. While fold = 0 a positive intercept < — 0.0IT, A o =0T,

occurs atl’ = 0 consistent with an infinitely degenerate % 040 HoT ] - ]

ground state, a crossover to Fermi-liquid behavior is ex- < S

pected in an applied field. A simple explanation of this —0.60 | g =3 °

is that the field lifts the degeneracy of the ground doublet, 001 oo 0.1

making the problem formally equivalent to the spifi2l o/l

Anderson lattice model in the extreme mixed valentregime %o ™ 200 300 200

(empty orbital lower than occupied orbital). This will have H/(T+0.006T,)"”

a Fermi-liquid normal state. Note that th&T, H) lin- FIG. 2. Magnetoresistancd p(T. H) — g)(T,O)]/p(T, 0) vs

early extrapolates to a negative value. This results frongca”ng variablec = H/(T + 0.006T)°%. Inset: Imaginary

being in the crossover regime above an expedtéde- part of the conduction band self-energy vs frequency in the
havior. Although the NCA cannot access to the Fermi-icinity of the chemical potentialy = 0 for two different

liguid regime forH > 0 andT — 0 [10], we can access temperatures.
the crossover regime. Evaluation of the constantsfior
Eq. (5), assuming a lattice constant of 5 A and two elec-

trons per unit cell in a three dimensizonal lattice, gives aq clear Drude peak develops already a little below the
resistivity prefactor of=12.6 x( cm/I'y which leadstoa maximum in1/c (0, T).

resistivity maximum of~250 ) cm using our absolute  with the phenomenological ansatzop(w) =
maximum of20I';. This is very close to the experimen- w[27/(477){1"0pt(w) —iw[l + A(w)]}""' the dynami-
tally found value of~190 € cm for UBe; [17]. cal optical relaxation rat&,,(w) and the dimensionless
Motivated by the experimental data fer(7T,H) for  mass enhancement factdfw) have been determined. In
UBe;3 [18], we have attempted to scale qui7', HH) data  Fig. 4(a) T, (w) is plotted for the same parameters as
with the ansatzAp/p = [p(T.H) — p(T.,0)]/p(T.0) = in Fig. 3. While for temperature§ > 0.1Tx Topi(w)
fLH/(T + T*)P]. While for the impurity model, we s nearly frequency independent for low frequencies, at
expectT” =0, B = 1/2, we find approximate scaling the lowest temperatur&,,(0) has decreased reflecting
for 7% = 0.006Tx, B = 0.39, as plotted in Fig. 2. The the decrease of the dc resistivity. The low frequency
inset of the figure shows the imaginary part of thepehavior has an exponent slightly lower than for= 1.
conduction electron self-energi (o) (3) for H =0 \we emphasize thelifference between It .(w) and
shown for two different temperatures. It shows a shiftropt(w); the first is a trueone-particle relaxation rate;
of the maxima away from the chemical potential in thisthe second, however, reflects the two-particle nature
metallic regime. Very close ta = 0 a very small onset of the energy absorption process associated with elec-
of coherence is observed fat — 0, but the relaxation trical charge transport. Generally, only for a Fermi
rate remains of the order afl’y. liquid at very low temperatures and frequencies should
We have calculated the complex frequency dependent
optical conductivity o(w,T) = o1(w,T) + ioy(w,T),
with o(w, T) displayed in Fig. 3. WherH = 0 and 3.0
T < Tk, the qualitative features are similar to those
reported earlier [8], with a low frequency pseudogap and
a large charge fluctuation peak (here=e.91y). With
decreasing temperatures the optical conductivity develops
a pseudogap, and as a result spectral weight is transferrec§
to high frequencies to satisfy thesum rule [19]. This ©
spectral weight shift to higher frequencies is seen clearly 1.0
in the figure by comparing th& = 107Tx and T = Tk
curves (note that the logarithmic plot overemphasizes
the area of the pseudogap). At low temperatures a
small increase inr(w) can be observed whea — 0. 00 =001 0010  0.100 1000 10.000
Nevertheless, no clear Drude peak is seen everf fer o/T,
0.01Tk, one decade lower than the observed maximum in

1/0(0,T). However, in a magnetic field of = Hx a FIG. 3. Optical conductivity per channel in units aff,/47r
o . K s frequency for covering three decades in temperature. The

“ ” H H V
low frequency “Drude” peak develops again, C0"‘S'Stenhash-dotted line is calculated with = 0.01Tx, H = Hg. In

with the return to Fermi-liquid behavior suggested inthe inset the corresponding curves for the single channel PAM
p(T,H). Note that in the single channel Anderson latticefor the two highest temperatures are shown in the same units.
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picture applies, a-axis magnetic field will split théo i)
levels [5], permitting comparison to our calculations.
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(parametery = 41y, T, = 0.281T).
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