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1 Review of Equilibrium Green function formal-

ism

In this section, we will review the Equilibrium Green function formalism

and use it to introduce some of the nomenclature which we will require

for the non-equilibrium formalism. We will introduce a time-ordered

Green function on the special contour C i. This will the basis for the

following discussion of non-equilibrium Green functions.

1.1 Equilibrium Green functions

In a non-equilibrium theory the distribution function f will become

an independent quantity. Therefore, in addition to the retarded and

advanced Green functions, we need the correlation functions

G>(x1, t1;x2, t2) = −i〈ψ(x1, t1)ψ
†(x2, t2)〉 (1)

G<(x1, t1;x2, t2) = +i〈ψ†(x2, t2)ψ(x1, t1)〉 (2)

They are related to the time-ordered Green function

Gc(x1, t1;x2, t2) = −i〈Ttψ(x1, t1)ψ
†(x2, t2)〉

= −iΘ(t1 − t2)〈ψ(x1, t1)ψ
†(x2, t2)〉+ iΘ(t2 − t1)〈ψ†(x2, t2)ψ(x1, t1)〉

= Θ(t1 − t2)(G
>(x1, t1;x2, t2) + Θ(t2 − t1)G

<(x1, t1;x2, t2)

Note that the retarded Green function can also be expressed by the two

correlation functions

Gr(x1, t1;x2, t2) = Θ(t1 − t2)(G
>(x1, t1;x2, t2)−G<(x1, t1;x2, t2)) (3)
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Ga(x1, t1;x2, t2) = −Θ(t2−t1)(G>(x1, t1;x2, t2)−G<(x1, t1;x2, t2)) (4)

and Gr −Ga = G> −G<.

In thermal equilibrium these functions depend only on the time-

difference t = t1−t2. Introducing a Fourier transform (here we suppress

the dependence on variables x1,x2 for the moment)

G(ω) =

∫ +∞

−∞
eiωtG(t)dt (5)

one obtains the important relation between the two correlation func-

tions

G>(ω) = −eβωG<(ω) (6)

and the spectral function

A(ω) = i[Gr(ω)−Ga(ω)] = i[G>(ω)−G<(ω)] (7)

we find

G<(ω) = if(ω)A(ω), G> = −i(1− f(ω))A(ω) (8)

where f(ω) = 1/ (exp(βω) + 1) is the Fermi function.

1.2 Perturbation theory for equilibrium Green functions

In order to calculate the Green function with help of a perturbation

theory we split the Hamiltonian into H = H0 + V where H0 describes

a non-interacting electron system. Going over to the interaction repre-

sentation the unitary operator for the time evolution between times t0
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Figure 1: The contour C used for the perturbation theory in the time-evolution

and t becomes

e−iH(t−t0) = e−itH0S(t, t0)e
iH0t0, S(t, t0) = T exp

(−i
∫ t

t0

VI(t
′)dt′

)
(9)

where OI(t) = exp(iH0t)O exp(−iH0t). Here the time t0 is some arbi-

trary reference time. We can set t0 = 0. However, for later use in the

case of a time dependent interaction it has to be chosen earlier than

the switch-on time of the time-dependent interaction (i.e., t0 → −∞).

For fixed time t1, t2 we then obtain

〈ψ(t1)ψ
†(t2)〉 = 〈eiH0t0S(t0, t1)ψI(t1)S(t1, t2)ψ

†
I(t2)S(t2, t0)e

−iH0t0〉
(10)

which can also be written as

〈ψ(t1)ψ
†(t2)〉 = 〈eiH0t0TCSCψI(t1)ψ

†
I(t2)e

−iH0t0〉, SC = T exp
(−i

∫

C

VI(τ)dτ
)

(11)

where C is the contour shown in Fig.1 and the time ordering operator

T orders the interaction operators contained in S in the direction of

the contour at the right places before, between, and behind the fermion

operators at the fixed times t1, t2.
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Figure 2: The contour Ci used for the perturbation theory including expansion of the

statistical operator

Finally we have to expand also the statistical operator, which can

be expressed by

e−βH = e−i(t0−iβ)H0S(t0 − iβ, t0)e
it0H0 (12)

Then

〈TCiψ(t1)ψ
†(t2)〉 =

〈TCiSCiψI(t1)ψ
†
I(t2)〉0

〈TCiSCi〉0 (13)

where now C i is the contour shown in Fig. 2 and 〈〉0 means a thermal

average performed with the statistical operator ρ0 = e−βH0/Z0.

The time ordering contained in S means that a perturbation theory

for the Green function can be formulated easily only for a Green func-

tion with time-ordered operators. Therefore we define a time ordered
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Figure 3: Contour C i used for the perturbation expansion of the time-ordered Green

function

Green function on the contour C i:

G(τ1, τ2) =




−i〈ψ(τ1)ψ

†(τ2)〉 for τ1 >c τ2

+i〈ψ†(τ2)ψ(τ1)〉 for τ1 <c τ2

(14)

where we distinguish between times τi on different parts of the contour

(see Fig. 3).

Then for G the following perturbation expansion holds:

G(τ1, τ2) = −i〈TCiSCiψI(τ1)ψ
†
I(τ2)〉0

〈TCiSCi〉0 (15)

It is related to the real-time Green functions introduced above by

G(τ1, τ2) =





Gc(t1, t2) for τ1, τ2 ∈ C1

G>(t1, t2) for τ1 ∈ C2, τ2 ∈ C1

G<(t1, t2) for τ1 ∈ C1, τ2 ∈ C2

Gc̄(t1, t2) for τ1, τ2 ∈ C2

(16)
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The last being an antitime-ordered Green function. The retarded and

advanced Green functions can be obtained from G> and G< in the usual

way.

In thermal equilibrium it is possible to simplify this contour consid-

erably: As in thermal equilibrium all Green functions depend only on

the time difference we can replace C i by a contour Cth which runs from

t0 to t0 − iβ, where we can set the real times two zero without loss

of generality. One then defines a time-ordered Green function on the

imaginary axis. The physical retarded and advanced Green functions

are then obtained by an analytical continuation in frequency space.

This is the Matsubara technique.

2 Introduction to Non-Equilibrium Green Func-

tion Formalism

2.1 Green functions with time dependent perturbation

A non-equilibrium situation is obtained if we add to the Hamiltonian H

of the system a time-dependent perturbation H ′
t describing for instance

the interaction with an external time-dependent field:

Ht = H +H ′
t (17)

with H = H0 + V . We assume that the time dependent interaction

H ′
t vanishes for times t < t0. The time dependent interaction can be

treated by a perturbation expansion in a similar way as the internal
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Figure 4: Contours Ci and C used for the double perturbation expansion of the

non-equilibrium time-ordered Green function

interaction. The final result for the Green function can be written as a

double expansion:

G(τ1, τ2) = −i〈TCiSCiSCψ0(τ1)ψ
†
0(τ2)〉0

〈TCiSCiSC〉0 (18)

where

SCi = exp
(
−i

∫

Ci

dτVI(τ)
)

(19)

SC = exp
(
−i

∫

C

dτH ′
τ,I(τ)

)
(20)

and both interaction operators are Heisenberg operators constructed

with H0. Note that H ′
τ,0 contains an implicit time dependence through

the external field. Here the contour C starts and ends at t0, while the

contour C i starts at t0 and ends at t0 − iβ.

The principal significance of this result is that for the time-ordered

Green function on the contour Ci the usual perturbation expansion

in form of Feynman graphs as in the case of equilibrium Green func-

tion can be applied. In particular if the Hamiltonian H0 is bilinear in

Fermionic operators Wick’s theorem can be applied. It states that in

each order of the perturbation theory the result for the Green func-
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tion can be expressed by products of single particle Green functions of

the non-interacting system. The same holds for the statistical opera-

tor. Therefore the denominator cancels against non-connected graphs

in the numerator, leaving us with an expansion containing only con-

nected graphs. For these, finally, a Dyson equation can be formulated,

which will be the basis of the following discussion.

2.2 Dyson equation

In order to be specific let us assume a time-dependent interaction of

the form

H ′
t =

∫
dxψ†(x)U(x, t)ψ(x) (21)

then the time-ordered Green function on the contour fulfills the follow-

ing Dyson equation

G(1, 2) = G0(1, 2) +

∫
d3G0(1, 2)U(3)G(3, 2) (22)

+

∫
d3

∫
d4G0(1, 3)Σ(3, 4)G(4, 2)

where (i) is a short-hand notation for (xi, τi) and
∫
di =

∫
dx

∫
Ci dτi.

We did not specify the internal interaction further. It is contained in

the (irreducible) self-energy Σ. The self-energy can be calculated and

expressed by single-particle Green functions in any specific case. In

principle the time-integrations have to be performed on the contour Ci.

A simplification occurs if we put t0 → −∞. Then the contribution from

the path t0 to t0− iβ can be neglected, if the internal interactions wash
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Figure 5: Relation between real times and times on the different branches of the

Keldysh contour

out the memory of initial conditions. Then for the internal integrations

we may use the contour C (Fig. 5) extending from −∞ to +∞ (part

C1) and back (part C2). This will be called the Keldysh contour in the

following.

There still remains the problem of expressing the integrations of

products of different functions by integrations over the usual time axis

−∞ < t < +∞. This will be the task of the following section.

2.3 Langreth rules, Keldysh formalism

In the Dyson equations appear integrations over the contour of products

of two and three functions. Let us start with the investigation of a

folding of two functions of the form (here we suppress the dependence

on the spatial variables)

C(τ1, τ2) =

∫

C

dτ3A(τ1, τ3)B(τ3, τ2) (23)

Our aim is to express this integral on C by integrals over the simple

time-axis −∞ < t < +∞. The result depends on the choice of variables
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on the contour. If we are interested, for instance, in C<(t1, t2) we place

as in Fig. 5 τ1 on C1 and τ2 on C2 and evaluate the integrals on the

contour. Then we obtain:

C<(t1, t2) =

∫ +∞

−∞
dt

[
Ar(t1, t)B

<(t, t2) + A<(t1, t)B
a(t, t2)

]
(24)

For a derivation of this result we split the integrals:

C<(t1, t2) =

∫

C1

dτA(τ1, τ)B(τ, τ2) +

∫

C2

dτA(τ1, τ)B(τ, τ2) (25)

On C1 the function B is a function B< while A = Ac. On C2 the

function A is a function A> while B = B c̄. Then for the first integral

we obtain
∫

C1

dτA(τ1, τ)B(τ, τ2) =

∫ +∞

−∞
dtAc(t1, t)B

<(t, t2) (26)

=

∫ t1

−∞
dtA>(t1, t)B

<(t.t2) +

∫ +∞

t1

dtA<(t1, t)B
>(t, t2)

For the second integral we find
∫

C2

dτA(τ1, τ)B(τ, τ2) =

∫ −∞

+∞
dtA>(t1, t)B

c̄(t, t2) (27)

= −
∫ t2

−∞
dtA>(t1, t)B

>(t, t2)−
∫ +∞

t2

dtA>(t1, t)B
<(t, t2)

Using the relations Ar(t1, t2) = Θ(t1 − t2)(G
>(t1, t2) − G<(t1, t2)) and

Aa(t1, t2) = −Θ(t2− t1)(G>(t1, t2)−G<(t1, t2)) we can show the equiv-

alence of the two results.

In a similar way we can show

C>(t1, t2) =

∫ +∞

−∞
dt

[
Ar(t1, t)B

>(t, t2) + A>(t1, t)B
a(t, t2)

]
(28)
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and

Cr(t1, t2) =

∫ +∞

−∞
dtAr(t1, t)B

r(t, t2), Ca(t1, t2) =

∫ +∞

−∞
dtAa(t1, t)B

a(t, t2)

(29)

In the Dyson equation we also encounter a folding of the form

C(τ1, τ2) =

∫

C

dτA(τ1, τ)U(τ)B(τ, τ2) (30)

this is transformed into

C<(t1, t2) =

∫ +∞

−∞
dt

[
Ar(t1, t)U(t)B<(t, t2) + A<(t1, t)U(t)Br(t, t2)

]

(31)

For a product of three functions we obtain similar rules, for instance,

let

D(τ1, τ2) =

∫

C

dτ3dτ4A(τ1, τ3)B(τ3, τ4)C(τ4, τ2) (32)

then

D< =

∫
dt

[
ArBrC< + ArB<Ca + A<BaCa

]
(33)

The rules for foldings of products can also be cast into matrix multi-

plication form (Keldysh matrices) by writing:

Â =


A

r AK

0 Aa


 and Û = Uτ3 (34)

where AK(1, 1′) = A>(1, 1′) + A<(1, 1′). Then in the above example

D̂ = ÂB̂Ĉ (35)

The rules needed to calculate the other self energy terms can be found

in the review by Rammer and Smith.
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As an example let us study the linear response of the density of

free conduction electrons in a scalar potential. Here the self-energy is

absent and we have the equation:

δG(x1, τ1;x2, τ2) =

∫

C

dτ3

∫
dx3G0(x1, τ1;x3, τ3)U(x3, τ3)G0(x3, τ3;x2, τ2)

(36)

The density is directly described by the function n(x, t) = −iG<(x, t;x, t).

For this quantity we obtain

δn(x, t) =

∫
dx3

∫ +∞

−∞
dt3

[
Gr

0(x− x3, t− t3)U(x3, t3)G
<
0 (x3 − x, t3 − t)

G<
0 (x− x3, t− t3)U(x3, t3)G

a
0(x3 − x, t3 − t)

]
(37)

where we already have used that the equilibrium Green functions de-

pend only on the difference of arguments.

For a time-dependence of the scalar potential of the form

U(x, t) = δU exp(iq · x− iΩt) (38)

and going over to a Fourier representation

G0(x, t) =
1

N

∑

k

∫
dω

2π
G0(k, ω) exp(ik · x− iωt) (39)

we find

δn(x, t) = −iδU exp(iq · x− iΩt)
1

N

∑

k

∫
dω

2π

[
Gr

0(k + q, ω + Ω)G<
0 (k, ω)

G<
0 (k + q, ω + Ω)Ga

0(k, ω)
]

Now we use the equilibrium relation:

G<(k, ω) = if(ω)A(k, ω) = 2πif(ω)δ(ω−εk+µ), Gr,a(k, ω) =
1

ω − εk + µ± iδ
(40)
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Figure 6: Electronic transport due to an applied field E , is limited by inelastic colli-

sions with lattice defects and phonons.

and obtain

δn(x, t) =
1

N

∑

k

f(εk − µ)− f(εk+q − µ)

Ω + εk − εk+q + iδ
U(x, t) (41)

Here we recover the well-known Lindhard function.

3 Kinetic equations: The Boltzmann Equation

3.1 The Conventional Derivation

The nonequilibrium (but steady-state) situation of an electronic current

in a metal driven by an external field is described by the Boltzmann

equation. This differs from the situation of a system in equilibrium

in that a constant deterministic current differs from random particle

number fluctuations due to coupling to a heat and particle bath. Away

from equilibrium (E 6= 0) the distribution function may depend upon

15



t - dt

r -      dt
dr
dt

k -      dtdk
dt

r
k

t

hk = -eE
·

Figure 7: In lieu of scattering, particles flow without decay

r and t as well as k (or E(k)). Nevertheless, when E = 0 we expect the

distribution function of the particles in V to return to

f0(k) = f(r,k, t)|E=0 =
1

eβ(E(k)−EF ) + 1
(42)

To derive a form for f(r,k, t), we will consider length scales larger

than atomic distances, but smaller than distances in which the field

changes significantly. In this way the system is considered essentially

homogeneous with any inhomogeneity driven by the external field. Now

imagine that there is no scattering (no defects, phonons), then since

electrons are conserved

f(r,k, t) = f

(
r− vdt,k +

eE
h̄
dt, t− dt

)
(43)

Now consider defects and phonons (See Fig. 8) which can scatter

a quasiparticle in one state at r − v dt and time t − dt, to another

at r and time t, so that f(r,k, t) 6= f
(
r− vdt,k + eE

h̄ dt, tdt
)
. We will

express this scattering by adding a term.

f(r,k, t) = f

(
r − v dt,k + eE dt

h̄
, t− dt

)
+

(
∂f

∂t

)

S

dt (44)
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Figure 8: Scattering leads to quasiparticle decay.

For small dt we may expand

f(r,k, t) = f(r,k, t)− v · ∇rf + eE · ∇k
f

h̄
− ∂f

∂t
+

(
∂f

∂t

)

S

(45)

or

∂f

∂t
+ v · ∇rf − e

h̄
E · ∇kf =

(
∂f

∂t

)

S

Boltzmann Equation (46)

3.2 Towards Transport in the Green Function Approach

We can give a more microscopic derivation of the Boltzmann equation

employing the Green function approach. As above, we will assume

that U(x, t) is slowly dependent on x and t. Then it is expected that

also e.g. the density n(x, t) = −iG<(x, t;x, t) slowly depends on these

variables. We therefore introduce the so-called Wigner coordinates

T = (t1 + t2)/2, t = t1 − t2, X = (x1 + x2)/2, x = x1 − x2 (47)

and express the Green functions G(x1, t1;x2, t2) by these coordinates

G(x, t,X, T ) := G(X +
x

2
, T +

t

2
;X− x

2
, T − t

2
) (48)

In equilibrium G(x, t,X, T ) depends only on the difference variables x

and t and falls off or oscillates rapidly in these variables, while in non-

equilibrium the dependence in X and T is induced by the perturbation

U(X, T ).
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In equilibrium we have introduced a Fourier transform with respect

to the difference variables

G<(k, ω) =

∫
dt

∫
d3xe−ik·x+iωtG<(x, t) (49)

Previously in this lecture we found that the function G<(k, ω) can be

written as

G<(k, ω) = iA(k, ω)f(ω) (50)

where f(ω) is the Fermi function and A(k, ω) = −2ImGr(k, ω) is the

spectral function, and

Gr(k, ω) =
1

ω − εk + µ− Σ(k, ω)
(51)

In the absence of internal interactions (Σ = 0) we have A(k, ω) =

2πδ(ω − εk + µ).

In the presence of a perturbation U(X, T ) a similar representation

holds:

G<(k, ω,X, T ) = iA(k, ω,X, T )F (k, ω,X, T ) (52)

with

A(k, ω,X, T ) = −2ImGr(k, ω,X, T ) (53)

and a generalized distribution function F (k, ω,X, T ).

In the quasiparticle approximation we assume that the electrons

don’t decay (or are very long lived) and that they have a well defined

dispersion ω(k). In this case F does not depend on ω separately and

can be replaced by a simpler distribution function f(k,X, T ). For this

18



function we obtain the Boltzmann equation which is of the form

(∂f
∂T

+
∂ε(k)

∂k

∂f

∂X
− ∂U(X, T )

∂X

∂f

∂k

)
= I{f} (54)

with a scattering term I{f}, which in the case of impurity scattering

is given by

I{f} = −2πc
∑

p

|V (k− p)|2δ(εk − εp)(f(k,X, T )− f(p,X, T )) (55)

In the remainder of this lecture we plan to show how this quasiclassical

Boltzmann equation can be derived within the frame of a more general

non-equilibrium theory.

3.3 Derivation of kinetic equations

We start from the Dyson equation in integral form on the Keldysh

contour:

G(1, 2) = G0(1, 2) +

∫
d3G0(1, 3)U(3)G(3, 2)

+

∫
d3

∫
d4G0(1, 3)Σ(3, 4)G(4, 2) (56)

or

G(1, 2) = G0(1, 2) +

∫
d3G(1, 3)U(3)G0(3, 2)

+

∫
d3

∫
d4G(1, 3)Σ(3, 4)G0(4, 2) (57)
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From this we obtain for the retarded Green function on the time-axis

Gr(x1, t1;x2, t2) = Gr
0(x1, t1;x2, t2)

+

∫
dt3

∫
dx3G

r
0(x1, t1;x3, t3)U(x3, t3)G

r(x3, t3;x2, t2)
∫
dt3

∫
dt4

∫
dx3

∫
dx4G

r
0(x1, t1;x3, t3)Σ

r(x3, t3;x4, t4)G
r(x4, t4;x2, t2)

or using an abbreviated notation

Gr = Gr
0 + {Gr

0UG
r}+ {Gr

0Σ
rGr} (58)

where {} denotes a convolution in space and time with the same argu-

ments as above.

For the lesser function G< we get a more complicated equation:

G< = G<
0 +{Gr

0UG
<+G<UGa}+{Gr

0Σ
rG<+Gr

0Σ
<Ga+G<

0 ΣaGa} (59)

Similar equations are obtained if we start from the other form of the

Dyson equation.

We now will transform the Dyson integral equation into a Dyson

equation in differential form. Note that for non-interacting conduction

electrons we have the following equation of motion for the Fermionic

operator

i
∂ψ(x, t)

∂t
= H0(x)ψ(x, t) (60)

Therefore we obtain for the Green functions the equations of motion

[
i
∂

∂t1
−H0(x1)

]
Gr,a

0 (x1, t1;x2, t2) = δ(t1 − t2) (61)
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[
i
∂

∂t1
−H0(x1)

]
G<

0 (x1, t1;x2, t2) = 0 (62)

where H0(x) is the Hamiltonian for non-interacting electrons. For free

conduction electrons in a constant potentialH0(x) = −∇2
x/2m−µ. The

δ-function in the equation of motion for Gr,a
0 is due to the step-function

in the definition. Similar equations hold if we differentiate with respect

to the second time

[
−i ∂
∂t2

−H0(x2)
]
Gr,a

0 (x1, t1;x2, t2) = δ(t1 − t2) (63)

[
−i ∂
∂t2

−H0(x2)
]
G<

0 (x1, t1;x2, t2) = 0 (64)

Then we obtain the equations of motion for Gr:

[
i
∂

∂t1
−H0(x1)− U(x1, t1)

]
Gr

0(x1, t1;x2, t2) = δ(t1 − t2)

+

∫ +∞

−∞
dt

∫
d3xΣr(x1t1;x, t)G

r(x, t;x2, t2)

and a similar equation for Ga, while for G< (or G>) we obtain the two

equations

[
i
∂

∂t1
−H0(x1)− U(x1, t1)

]
G<

0 (x1, t1;x2, t2) = (65)
∫
dt

∫
d3xΣr(x1t1;x, t)G

<(x, t;x2, t2) +

∫
dt

∫
d3xΣ<(x1t1;x, t)G

a(x, t;x2, t2)

[
− i

∂

∂t2
−H0(x2)− U(x2, t2)

]
G<

0 (x1, t1;x2, t2) = (66)
∫
dt

∫
d3xGr(x1, t1;x, t)Σ

<(x, t;x2, t2) +

∫
dt

∫
d3xG<(x1, t1;x, t)Σ

a(x, t;x2, t2)
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In principle this is closed set of equations for the Green functions as soon

as one has a well-defined expression for the self-energies. However, due

to the many variables these equations of motion are very complicated.

3.4 Gradient expansion

Now we introduce the Wigner coordinates

T = (t1 + t2)/2, t = t1 − t2, X = (x1 + x2)/2, x = x1 − x2 (67)

and express the Green functions by these coordinates

G(x, t;X, T ) := G(X +
x

2
, T +

t

2
;X − x

2
, T − t

2
) (68)

Note that

∂

∂T
G(x, t;X, T ) =

( ∂

∂t1
+

∂

∂t2

)
G(x1, t1;x2, t2) (69)

therefore a kinetic equation with respect to T is obtained if we subtract

the two equations 65 and 66

(
i
∂

∂t1
+ i

∂

∂t2
−H0(x1) +H(x2)− U(x1, t1) + U(x2, t2)

)
G<(x1, t1;x2, tt)

= {ΣrG< + Σ<Ga −GrΣ< −G<Σa}(70)

where the products on r.h.s. of Eq. 70 are convolutions in space and

time. If the variation of U is sufficiently slow we can make a gradient

expansion

U(x1, t1)− U(x2, t2) ' x
∂U(X, T )

∂X
+ t

∂U(X, T )

∂T
(71)
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This expansion (the factors t and x) can be better handled if we go over

to a Fourier representation with respect to the fast difference variables

x, t:

A(k, ω,X, T ) =

∫
dt

∫
d3xe−ik·x+iωtA(x, t,X, T ) (72)

then e.g.
∫
dt

∫
d3xe−ik·x+iωtxA(x, t,X, T ) = i

∂

∂k
A(k, ω,X, T ) (73)

and the Fourier transform of the l.h.s. of Eq. 70 becomes

(
i
∂

∂t1
+i

∂

∂t2
−H0(x1) +H(x2)− U(x1, t1) + U(x2, t2)

)
G<(x1, t1;x2, tt)

→ i
( ∂

∂T
+
∂ε(k)

∂k

∂

∂X
− ∂U(X, T )

∂X

∂

∂k
+
∂U(X, T )

∂T

∂

∂ω

)
G>(k, ω,X, T )

where we have slightly generalized the Fourier transform of the Hamil-

tonian H0 into a dispersion ε(k). Here we encounter already all the

terms, except for the last term, which are contained in the driving

term of the Boltzmann equation. Defining

L :=
( ∂

∂T
+
∂ε(k)

∂k

∂

∂X
− ∂U(X, T )

∂X

∂

∂k
+
∂U(X, T )

∂T

∂

∂ω

)
(74)

the equation of motion for the Green function G< now reads

iLG<(k, ω;X, T ) = {ΣrG< + Σ<Ga −GrΣ< −G<Σa} (75)

Before we discuss the r.h.s. of Eq. 75, let us introduce an ansatz for

the function G< which is similar in structure as in equilibrium:

G<(k, ω,X, T ) = iA(k, ω,X, T )F (k, ω,X, T ) (76)
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where iA = Gr − Ga is the spectral function and F is a generalized

distribution function. Within the gradient expansion the retarded and

advanced Green function are easily calculated from Eq. 3 and the cor-

responding equations of motion

Gr(k, ω,X, T ) =
1

ω − εk + µ− U(X, T )− Σ(k, ω,X, T )
(77)

A(k, ω,X, T ) = −2ImGr(k, ω,X, T ) (78)

This result is remarkably simple. In order to obtain the Boltzmann

equation we make a further approximation by neglecting the self-energy

in the retarded Green function. Then we obtain the quasi-particle

approximation:

A0(k, ω,X, T )) = 2πδ(ω − εk + µ− U(X, T )) (79)

Of course, in this approximation the frequency ω of the distribution

function F (k, ω,X, T ) is no longer an independent variable. therefore

in the quasiparticle approximation

G<(k, ω, T,X) = A0(k, ω,X, T )f(k,X, T ) (80)

Note that A0 (as any function y(ω − εk + µ− U(X, T )) is an eigen-

function of the differential operator of the Boltzmann equation:

LA0(k, ω,X, T )) = 0 (81)

Therefore

iLG<(k, ω,X, T ) = −A0Lf(k,X, T ) (82)
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Now we turn to the scattering term, the r.h.s. of Eq. 75. The gradient

expansion of convolutions can be performed systematically. For

C(x1, t1;x2, t2) =

∫
dx′dt′A(x1, t1;x

′, t′)B(x′, t′;x2, t2) (83)

one obtains

C(k, ω,X, T ) =A(k, ω,X, T )B(k, ω,X, T )

− i

2

(∂A
∂T

∂B

∂ω
− ∂A

∂ω

∂B

∂T
− ∂A

∂X

∂B

∂k
+
∂A

∂k

∂B

∂X

)

Therefore, in the lowest approximation we write

{ΣrG< + Σ<Ga −GrΣ< −G<Σa}(k, ω,X, T ) =

=
(
G<(Σr − Σa)− (Gr −Ga)Σ<

)
(k, ω,X, T )

where we have replaced the convolutions by simple products. Then we

obtain

A0Lf(k,X, T ) = −
(
G<(Σr − Σa)− (Gr −Ga)Σ<

)
(k, ω,X, T ) (84)

3.5 Self energy from impurity scattering

In the case of scattering from randomly distributed impurity scattering

with an impurity scattering potential V (q) the self energy is given in

Born approximation

Σr(k, ω,X, T ) = c
∑
p

|V (k− p)|2Gr(p, ω,X, T ) (85)

This holds in a similar way also for the other Green functions. This form

of the self-energy can be obtained from the corresponding Feynman
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graph expansion which holds on the Keldysh contour. Inserting now

the ansatz for the G< function into the scattering term we find

A0(k, ω,X, T )Lf(k,X, T ) = −c
∑
p

A0(k, ω,X, T )A0(p, ω,X, T )

|V (k− p)|2(f(k,X, T )− f(p,X, T ))

Finally we integrate over ω to obtain

Lf(k,X, T ) = −2πc
∑
p

|V (k−p)|2δ(εk− εp)(f(k,X, T )− f(p,X, T ))

(86)

This is the classical Boltzmann equation. The first term on the r.h.s.

is the out-scattering term, the second term is the in-scattering term.

The importance of this result is the validity of this equation for the

distribution function also far from equilibrium. Their is no explicit ref-

erence to the temperature in the equation. It is contained only in the

initial conditions, where f(k,X, T ) = f0(εk − µ) is the Fermi function.

The δ-function which expresses energy conservation is due to the quasi-

particle approximation of the spectrum function. Due to this approx-

imation typical quantum effects which are contained in the frequency

dependence of the distribution function get lost. There seems to be an

inconsistency in the treatment of the self energy: we have neglected

the self energy in the spectral function completely, while keeping it (in

lowest order in the gradient expansion) in the scattering term. This

defect can be cured partially by separating from the self energy those

terms which lead to a renormalization of the single-particle excitation
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spectrum and those which lead to scattering.

Copies of these notes, supporting materials and links are available

at http://www.physics.uc.edu/∼jarrell/Green . Much of the material

came from standard texts and urls linked on the site.
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