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Abstract. We present a pedagogical discussion of the the Hirsch-Fye and Continuous time Quan-
tum Monte Carlo (QMC) algorithms which may be used to study a correlated cluster embedded in
an uncorrelated host, or used to solve the cluster problem in dynamical mean field theory (DMFT)
or its cluster extensions. The basic algorithms are discussed, together with methods for efficient
measurments and the modifications required by the self-consistency of the DMFT.
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1. INTRODUCTION

The Hirsch-Fye and Continuous time Quantum Monte Carlo (QMC) algorithms are
powerful and adaptable methods which may be used to study models of impurity clusters
embedded in a host. As such, they are ideal cluster solvers for the embedded impurity
problem at the heart of the Dynamical Mean Field and Dynamical Cluster Approxima-
tions.

In this chapter, we will illustrate to different QMC methods using Hubbard model
Hamiltonian [1] as an example

H = H0 +H1 (1)

with

H0 = −t ∑
〈 j,k〉σ

(c†
jσ ckσ + c†

kσ c jσ )+∑
j

ε(n j↑+n j↓)

H1 = U ∑
j

n j↑n j↓ , (2)

where c†
jσ (c jσ ) creates (destroys) an electron at site j with spin σ , niσ = c†

iσ ciσ , and t
sets a unit of energy.

We will sketch the Hirsch-Fye QMC in Sec. 2 and the weak coupling continuous time
QMC algorithm in Sec. 3. Since both methods can be considered as expansions about
the free electron limit, Wick’s theorem applies to both, so similar methods for making
and conditioning measurements described in Sec. 4 can be used for both HFQMC and
CTQMC.
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2. HIRSCH-FYE QMC

To derive the Hirsch-Fye algorithm, we start with the Hamiltonian

H = H0 +H1, (3)

where H0 is a noninteracting Hamiltonian and H1 describes the interaction on a cluster
(or impurity). Our derivation of the equations follows the one presented by Hirsch and

FIGURE 1. Hamiltonian breakup for the Hirsch-Fye derivation. H0 describes both the host and non-
interacting degrees of freedom of the cluster (impurity), while H1 describes the interactions on the cluster.

Fye for the impurity problem [2, 3], but we extend the derivation to cluster embedded
problems [4]. Let’s assume for now that the interaction on the cluster is local

H1 = U ∑
i∈C

(ni↑−
1
2
)(ni↓−

1
2
) . (4)

The summation in Eq. 4 is taken over the cluster, C , sites.
By dividing the imaginary time (the inverse of the temperature) β = 1

T into L slices,

∆τ =
β
L

, (5)

the partition function can be written as

Z = Tr(e−βH) = Tr

(
L

∏
l=1

e−∆τH

)
. (6)

From the Suzuki-Trotter formula

e−∆τH = e−∆τH0/2e−∆τH1e−∆τH0/2 +O(∆τ3) , (7)

one derives

Z = Tr(e−βH)≈ Tr

(
L

∏
l=1

e−∆τH0/2e−∆τH1e−∆τH0/2

)
(8)
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which has leading errors proportional to ∆τ2 (since the Suzuki-Trotter formula was
applied L times and L ∼ 1/∆τ). Then due to the periodic property of the trace, it is
easy to see that this is the same as the Trotter decomposition

Z = Tr(e−βH)≈ Tr

(
L

∏
l=1

e−∆τH0e−∆τH1

)
(9)

with leading errors still proportional to ∆τ2.
We introduce the identity operator in the occupation number basis

I = ∑
m
|m〉〈m| (10)

between exponents of operators at adjacent imaginary time slices. The partition function
becomes

Z = ∑mL,mL−1,..m1〈mL|e−∆τH0e−∆τH1|mL−1〉〈mL−1|e−∆τH0e−∆τH1|mL−2〉
...〈m1|e−∆τH0e−∆τH1 |mL〉 (11)

With the identity due to Hirsch [5]

e−∆τU(ni↑ni↓− 1
2 (ni↑+ni↓)) =

1
2 ∑

si=±1
eαsi(ni↑−ni↓) , (12)

with
coshα = e∆τU/2 . (13)

it is possible to introduce an auxiliary binary (±1) field (called Hirsch-Hubbard-
Stratonovich field, or HHS field) at every cluster site and at every time point. Thereby,
the interacting problem described by Eq. 11 is replaced by a summation over all possible
auxiliary field configurations of noninteracting terms. Eq. 12 can be proven by applying
both the left and right hand sides on the four possible vectors (empty site, one electron
up, one electron down and double occupied site) which span the local Hilbert space.

FIGURE 2. The Hirsch-Hubbard-Stratonovich transformation Eq. 12 maps an interacting systems of
electrons onto a system of non-interacting electrons interacting with a time and space dependent Ising-like
fields which coupling to the z-component of the electron spin.
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For each HHS field configuration {s}, we have a noninteracting problem composed
of electrons scattering off a space and time dependent Ising-like field (c.f. Fig. 2).
Therefore, by defining

Oσ (s) =




I 0 0 ... e−∆τKeV L
σ (s)

e−∆τKeV 1
σ (s) I 0 ... 0

0 e−∆τKeV 2
σ (s) I 0 ...

...

... ... ... e−∆τKeV L−1
σ (s) I




, (14)

with
H0 = ∑

i, j,σ
c†

iσ Ki jc jσ (15)

and

V l
σ (s)i j =

{
ασsilδi, j i ∈ C
0 i 6∈ C

, (16)

where sil represents the value of HHS field at site i and time l, it is possible to write
Eq. 11 as

Z = Tr{s}
[
detO↑(s) detO↓(s)

]
(17)

Note that every matrix element shown in Eq. 14 is in fact a N×N sub-block, N being
the dimension of the K matrix defined in Eq. 15. Thus O is a (N×L)× (N×L) matrix.

The matrix O is the inverse of the one-particle Green’s function

G−1
σ (s) = Oσ (s) . (18)

By defining
Til; jl′ = δl−1,l′δi, j (19)

and

V l
σ (s)il; jl′ =

{
ασsilδl,l′δi, j i ∈ C
0 i 6∈ C or j 6∈ C

, (20)

Eqs. 14 and 18 can be written as

G−1
σ = I−Te−∆τKeVσ . (21)

In Eq. 21 and in the following equations we omit writing the explicit HHS dependence
for simplicity reasons. By multiplying Eq. 21 at right with e−Vσ (which is diagonal) the
following equation is obtained

G−1
σ e−Vσ = e−Vσ −Te−∆τK. (22)

Eq. 22 is used to establish a relation between the Green’s functions G′ and G which
correspond to two different field configurations {s} and respectively {s′}

G′−1
σ e−V ′σ −G−1

σ e−Vσ = e−V ′σ − e−Vσ . (23)
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Using
A−1−B−1 = C ⇐⇒ A = B−BCA , (24)

the following equation is obtained

eV ′σ G′
σ = eVσ Gσ + eVσ Gσ (e−Vσ − e−V ′σ )eV ′σ G′

σ (25)

After some easy manipulations, Eq. 25 can be written as

G′
σ = Gσ +(Gσ − I)(eV ′σ−Vσ − I)G′

σ . (26)

Another useful equation is

Gσ G′−1
σ = I− (Gσ − I)(eV ′σ−Vσ − I) , (27)

obtained by multiplying Eq. 26 at right with G′−1
σ . Eq. 27 will be used in the QMC

process for calculating the transition probability form one configuration to another and
Eq. 26 for updating to the new configuration when the transition is accepted.

FIGURE 3. The original Hirsch-Fye algorithm involved local flips of the HHS fields.

The QMC algorithm implies generating different field configurations with a probabil-
ity proportional to their weight, given by (see Eq. 17)

W (s) = detG−1
↑ (s)detG−1

↓ (s). (28)

In the QMC process, the HHS field configuration is updated by proposing local (in both
the cluster site and time index) flips of the HHS field (Fig. 3). We consider such two
configurations (s and s′) that differ only by a flip at point m, where m denotes both
a cluster site and a time (i.e. m ≡ il, i ∈ C ). The ratio between the weights of these
configurations is

R =
W (s′)
W (s)

=
detG−1

↑ (s′)detG−1
↓ (s′)

detG−1
↑ (s)detG−1

↓ (s)
. (29)

The ratio R determines the acceptance probability of the new configuration, according to
either the Metropolis or the heat bath rule. If the proposed configuration was accepted,
the new Green’s function should be updated accordingly to Eq. 26. This implies the
following

G′
pn = Gpn +(Gpm−δpm)(eσα(s′m−sm)−1)G′

mn (30)

G′
mn = Gmn +(Gmm−1)(eσα(s′m−sm)−1)G′

mn (31)

G′
mn =

Gmn

1− (Gmm−1)(eσα(s′m−sm)−1)
, (32)
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FIGURE 4. Whereas the HF Hamiltonian has degrees of freedom on the cluster and in the effective
medium, the algorithm may be restricted to interacting (cluster) sites only.

which results in

G′
pn = Gpn +

(Gpm−δpm)(eσα(s′m−sm)−1)
1− (Gmm−1)(eσα(s′m−sm)−1)

Gmn . (33)

R =
W (s′)
W (s)

= ∏
σ

detG′−1
σ (s′)detGσ (s) = ∏

σ
[1− (Gσ mm−1)(eσα(s′m−sm)−1)]. (34)

Eq. 34 results directly from Eq. 27. Note that only the Green’s function defined between
clusters sites is required for the QMC procedure. This is also enough for measuring the
cluster observables and for determining the irreducible quantities as self-energy, Σ, and
two-particle vertices, Γ’s.

In order to initialize the QMC process, first the HHS fields are set to zero and Gσ is set
to Gσ . Here, Gσ is the noninteracting Green’s function (i.e. the one obtained when U = 0)
if we mean to simulate a finite size cluster, or its the cluster excluded Green’s function
(i.e. the one obtained when we subtract the self energy from the cluster) if we mean to
simulate an embedded cluster. Afterwards, by turn, the value of HHS field is changed
to 1 or −1 at all space-time points and the Green’s function is updated in accordance
to Eq. 33. The obtained Green’s function is used to initialize the QMC procedure. A
“sweep” of the QMC procedure consists of proposing a flip of the HHS field for every
time slice, calculating (Eq. 34) the ratio R between the weights of the proposed and the
present configuration and accepting the flip according to the Metropolis or the heat-bath
algorithm. After a certain number of warm-up sweeps through the space-time points
(usually between twenty and one hundred), the system reaches equilibrium and the
measurements can start. It is a good idea to consider a few update sweeps between the
measurements, in order to eliminate the correlation between them.

Numerical round-off errors accumulate in the Green’s function during the updating
process, e.g. Eq. 33. In order to eliminate them, after a certain number of iterations
the Green’s function should be refreshed. This is done first by setting Gσ to Gσ and
afterwards updating it (using Eq. 33) to the corresponding HHS field.
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2.1. Combining HFQMC with Quantum Cluster Methods

The Hirsch-Fye algorithm naturally produces Green’s functions in Matsubara (imag-
inary) time. However, the self-consistency cycle of quantum cluster methods like the
DMFA and DCA require imaginary frequency Green’s functions. Thus the algorithm re-
quires Fourier transforms from both the imaginary frequency to the imaginary time and
from the imaginary time to the imaginary frequency. The transform from frequency to
time is given by

G(τ) =
1
β

∞

∑
n=−∞

G(iωn) e−iωnτ (35)

and the inverse one, from time to frequency, by

G(iωn) =
∫ β

0
dτ G(τ) eiωnτ . (36)

The Matsubara frequencies for the fermionic Green’s function are defined as

ωn =
(2n+1)π

β
. (37)

Due to the finite ∆τ , the numerical implementation of these transformations requires
special care. We will discuss both cases next.

Transform from frequency to time. In Eq. 35 the frequency summation is taken from
minus to plus infinity. The contribution at large (both positive and negative) frequency
is important, thus a truncation of the sum is not possible. The trick is to subtract
and add back a function which has at large frequency the same asymptotic behavior
as the Green’s function. For example, if f (iωn) fulfills this condition, Eq. 35 can be
approximated by

G(τ)≈ 1
β

nc

∑
n=−nc

(G(iωn)− f (iωn))e−iωnτ +
1
β

∞

∑
n=−∞

f (iωn) e−iωnτ , (38)

where nc is a cutoff number chosen large enough to have negligible numerical errors.
In order to determine the Green’s function behavior at large frequency we integrate

Eq. 36 by parts

G(iωn) = 1
iωn

G(τ)eiωnτ |β0 − 1
iωn

∫ β
0 G′(τ)eiωnτdτ = (39)

= 1
iωn

G(τ)eiωnτ |β0 − 1
(iωn)2 G′(τ)eiωnτ |β0 +O((iωn)−3) .

We find that, for cutoff values of about ≈ 500, it is necessary to consider the asymptotic
behavior of G up to second order in ω−1

n . If only the first order term in ω−1
n is considered,

in order to get negligible numerical errors the cutoff number nc should be of order 106.
Thus, the second order term in Eq. 39 has a major practical importance and therefore
f (iωn) should be taken as

f (iωn) =
a1

iωn
+

a2

(iωn)2 (40)
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with
a1 =−G(β−)−G(0+) = G(0−)−G(0+) (41)

and
a2 = G′(β−)+G′(0+) =−G′(0−)+G′(0+) . (42)

The last sum in Eq. 38 can be easily calculated by using the following relations

1
β

∞

∑
n=−∞

e−iωnτ

iωn
=

{ 1
2 τ < 0

−1
2 τ > 0

(43)

and
1
β

∞

∑
n=−∞

e−iωnτ

(iωn)2 =
{ −1

4(β +2τ) τ < 0
−1

4(β −2τ) τ > 0
. (44)

The first of these relations (Eq. 43) is the well known Fourier transform of a noninter-
acting Green’s function [6]

1
β

∞

∑
n=−∞

e−iωnτ

iωn−E
=

{
1

eβE+1
e−Eτ τ < 0

−(1− 1
eβE+1

)e−Eτ τ > 0
. (45)

with the energy pole E = 0. Eq. 44 results from differentiating Eq. 45 with respect to E
and setting E = 0 afterwards.

The coefficients a1 and a2 in Eq. 40 can also be easily determined. Starting with the
Green’s function definition

Gi j(τ) =−Tτ〈c j(τ)c†
i 〉 , (46)

where i and j are space or momentum indices and using Eq. 41, a1 becomes

a1 = 〈c†
i c j〉+ 〈c jc

†
i 〉= δi j . (47)

Considering
dc j

dτ
= [H,c j] (48)

the coefficient a2 is
a2 =−〈c†

i [H,c j]〉−〈[H,c j]c†
i 〉 , (49)

and can be evaluated to
a2 = Ki j +KHF

i j . (50)

Ki j was defined in Eq. 15 and represent the bilinear (noninteracting) part of the Hamilto-
nian. KHF

i j results from the interacting part of the Hamiltonian when the corresponding
Hartree-Fock factorization is done.
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Transform from time to frequency.. The difficulties associated with this transform
are related with the fact that in the QMC process the Green’s function is calculated and
stored only in a discrete set of points τi evenly spaced by ∆τ . This implies a periodic
Fourier transform with the period equal to the Nyquist critical frequency

ωc =
π

∆τ
, (51)

which is evidently unphysical, since the Green’s function goes as ω−1
n at large fre-

quency (see Eq. 39). Besides that, due to the fact that part of the spectral density at
high frequency (| ω |> ωc) is translated into the low frequency domain (| ω |< ωc), a
phenomenon called aliasing [7], the Fourier transform is inaccurate even at frequencies
smaller than the Nyquist frequency.

In order to cure [8] the pathology discussed above we again take advantage of our
knowledge of the Green’s function behavior at high frequency. A function which has
the right large frequency asymptotic behavior is the Green’s function Gp obtained from
second order perturbation theory (or any other method which becomes exact at high
frequency). The Fourier transform can be written as

G(iωn) = Gp(iωn)+
∫ β

0
dτ(G(τ)−Gp(τ))eiωnτ . (52)

It is important that the last term in Eq. 52 does not produce spurious high frequency
contributions. Therefore before integration the Akima spline [9] is used to interpolate
G(τ)−Gp(τ). The Akima spline produces smooth curves and therefore acts as a low-
pass filter and eliminates the high frequency noise.

3. CONTINUOUS TIME QUANTUM MONTE CARLO

1

1 2

3 3

1 2 +...+ +

FIGURE 5. In contrast to HFQMC which employs a path-integral formalism, CTQMC uses QMC to
stochastically sample the graphs in the partition function.

In this subsection, we will derive a Continuous time QMC (CTQMC) algorithm for
the Hubbard model, Eq. 2 following closely the derivation by Rubtsov [10]. In contrast to
the path integral formalism of HFQMC, CTQMC employs the same tricks used to derive
Feynman-Dyson perturbation theory (the interaction representation, the time-ordered
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S-matrix expansion, Wick’s theorem, etc.) to stochastically generate diagrams for the
partition function.

Starting with
exp(−β (H0 +H1)) = exp(−βH0)S(β ) (53)

where

S(β ) = Tτ exp
(
−

∫ β

0
H1(τ)dτ

)
(54)

where Tτ is the time-ordering operator, and

H1(τ) = eτH0H1e−τH0 (55)

is the quartic part of H in the interaction picture.
Specializing now on the Hubbard model, Eq. 2, the partition function becomes

Z = Z0 ∑
k

(−U)k

k!

∫
· · ·

∫
d1 · · ·dk

〈
Tτn↑(1) · · ·n↑(k)

〉
0

〈
Tτn↓(1) · · ·n↓(k)

〉
0 (56)

where 1 → (x1,τ1), etc. and 〈〉0 indicates a thermodynamic average with respect to
exp(−βH0). Since H0 is noninteracting, we can apply the Wick’s theorem to evaluate the
expectation values in Eq. 56 (see, for instance, [6]), by evaluating and summing over all
closed Feynman graphs, see for example Fig. 6. For each order in k, there are k! graphs

FIGURE 6. An example of a third-order (k = 3) CTQMC graph. Many graphs may be drawn to third
order in U , one example is shown.

that can be drawn for each of the up and down electrons. Note that the graphs can include
both connected and disconnected parts, as shown in the figure. According to Wick’s
theorem, each graph corresponds to a product of non-interacting Green’s functions G0

(i.e. Green’s functions from the solution of H0 only) with arguments determined by the
vertex labels, etc., and sign determined by the number of line crossings. For example,
the graph shown is

G0(2,3)G0(3,2)G0(1,1)G0(3,2)G0(2,1)G0(1,3) (57)

where G0 with the same argument are to be interpreted as having the right time argument
slightly greater. I.e. G0(1,1) = G0(x1τ1;x1τ1+). There will be 36 such graphs for each
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k = 3 vertex configuration, and the number of graphs will increase with order like
k!2. Fortunately, we may conveniently represent them as the product of up and down
determinants detD↑(k)detD↓(k), where

Dσ (k) =




G0
σ (1,1) G0

σ (1,2) · · · G0
σ (1,k)

G0
σ (2,1) G0

σ (2,2) · · · G0
σ (2,k)

G0
σ (3,1) G0

σ (3,2) · · · G0
σ (3,k)

. . .

. . . .

. . . .
G0

σ (k,1) G0
σ (k,2) · · · G0

σ (k,k)




(58)

where, in lieu of an external field the bare Green’s function does not need a spin label,
G0

σ (k,2) = G0(k,2). Note that Dσ (k) is a k× k matrix.
In CTQMC, the sum of integrals in the Eq. 56 is evaluated using an importance

sampling Monte Carlo algorithm. Suppose the cluster has N sites and L = β/∆τ time
locations (in the end we may let ∆τ → 0). We will consider Monte Carlo moves of
adding vertices at a random location in space-time or subtracting existing vertices.
By combining such moves, we can clearly access all possible vertex configurations.
Consider two configurations, one with k and the other with k + 1 vertices, then the
weights W of these two configurations are given by the integrand of Eq. 56, or, in terms
of the Dσ (k),

Wk = (−∆τU)k detD↑(k)detD↓(k) (59)

Wk+1 = (−∆τU)k+1 detD↑(k +1)detD↓(k +1)

If we let the probability to add and remove a vertex be Pa and Pr respectively, (these
numbers determine the probability that we call the subroutine which tries to add or
subtract a vertex, and Pa +Pr = 1), then the detailed balance condition requires that

Pa
1
L

1
N

WkPk→k+1 = Pr
1

k +1
Wk+1Pk+1→k (60)

Here 1
L

1
N is the probability to choose a position in time and space for the vertex you

intend to add while 1
k+1 is the probability to choose one vertex you intend to remove

of from the existing k + 1 ones. If we accept or reject this change using a Metropolis
algorithm [11], then we need the Metropolis ratio R.

Suppose we propose to add vertex, then

R = Pk→k+1/Pk+1→k =−UβN
k +1 ∏

σ
detDσ (k +1)/∏

σ
detDσ (k) (61)

We need an efficient way to calculate the ratio of determinants

detDσ (k +1)/detDσ (k) = detDσ (k +1)Mσ (k) (62)
= det(I +(Dσ (k +1)−Dσ (k))Mσ (k))
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where Mσ (k) = Dσ (k)−1, and we must pad the matrices Mσ (k) and Dσ (k) with an extra
row and column in the k + 1 location with all zeroes, except for a 1 in the k + 1, k + 1
location.

det(I +(Dσ (k +1)−Dσ (k))Mσ (k)) = det (63)


1 0 · · · G0
σ (1,k +1)

0 1 · · · G0
σ (2,k +1)

0 0 · · · G0
σ (3,k +1)

. . .

. . . .

. . . .
G0

σ (k +1, i)M(k)i,1 G0
σ (k +1, i)M(k)i,2 · · · G0

σ (k +1,k +1)




A cofactor expansion (first on the last column and then on the last row) yields

detDσ (k +1)/detDσ (k) = G0
σ (k +1,k +1)−G0

σ (k +1, i)M(k)i jG0
σ ( j,k +1) (64)

with an implied sum over repeated indices. Clearly, the matrices M are important for the
update, and they, not D are stored. The change is accepted if R is greater than a random
number between zero and one. Then, we need an equation used to update M which may
be derived using the Inversion by Partitioning described in Numerical Recipes [7].

Mσ (k +1) =




. . . −λ−1L1k+1

. . . −λ−1L2k+1

. Mσ
′ . −λ−1L3k+1

. . .

. . . .
−λ−1Rk+1,1 −λ−1Rk+1,2 · · · −λ−1




(65)

where the first k by k section is filled by the matrix

Mσ
′
i j = M(k)i j +Lik+1λ−1Rk+1, j (66)

and
Ri j = G0

σ (i,n)M(k)n j Li j = M(k)inG0
σ (n, j) (67)

and λ is given by Eq. 64.
If we propose to remove vertex at location n, then to determine whether to accept the

move, we need

detDσ (k−1)/detDσ (k) = det((Mσ (k)−Mσ (k−1))Dσ (k−1)+ I) (68)

Again, using a cofactor expansion, it is easy to show that this is just Mσ nn. Then if

R =
−k

UβN ∏
σ

detDσ (k−1)/∏
σ

detDσ (k) (69)
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is greater than a random number between zero and one, we accept the change and must
update Mσ using

Mσ i j(k−1) = Mσ i j(k)−Mσ in(k)Mσ n j(k)/Mσ nn(k) (70)

One natural question is to ask whether this QMC is convergent, which would require
that the average value of k be finite.

〈k〉 =
Z0

Z

∞

∑
0

(−1)k

k!
k
∫ β

0
dτ1 · · ·dτk 〈TτH1(τ1) · · ·H1(τk)〉0 (71)

= −Z0

Z

∞

∑
0

(−1)k

k!
k
∫ β

0
dτ1 · · ·dτkdτ 〈TτH1(τ1) · · ·H1(τk)H1(τ)〉0

= −
∫ β

0
dτ 〈H1(τ)〉

= −β 〈H1〉
where the brackets 〈〉 denote the average with respect to full interacting Hamiltonian
(Eq. 1), which is also the average value of Monte Carlo measurements. The last line
in Eq. 72 follows if H1 is independent of τ . Since 〈H1〉 is extensive, this means that
〈k〉=−βN 〈h1〉 where h1 is the average potential energy per site.

As will be described below in Sec. 4.1, the minus sign problem emerges when the
Metropolis ratio R is not positive definite. It is easy to see from Eqs. 61 and 69 that
when U < 0 there is no minus sign problem since the up and down determinants the
same and real, so their product is positive. However, the minus sign problem can be
severe when U > 0 since the sign of the sampling weight will fluctuate as k changes by
±1. Some tricks can be used to control the sign problem. For example, at half filling
where there is particle-hole symmetry, we rewrite the interaction as

H1 = U ∑
i

(
n↑i−

1
2

)(
n↓i−

1
2

)
(72)

then the particle-hole transformation c j↓ → c†
j↓ changes the sign of U eliminating the

sign problem. Away from half filling, this trick is useless. However, here we introduce
an additional Ising-like auxiliary field si = ±1 on each site and rewrite the interaction
as:

H1 =
U
2 ∑

i,si

(
n↑i−

1
2
− siα

)(
n↓i−

1
2

+ siα
)

(73)

At least in 0 or 1 dimension, the choice α > 1/2 eliminates the sign problem. The cost is
that the Ising field is now associated with each point in space-time and must be sampled
using the QMC algorithm.

Since Wick’s theorem applies to the configurations of CTQMC, most measurements
are simply accomplished by forming the appropriate Wicks contractions of the Green’s
function

G↑(i, j) =−
〈

Tτc↑(i)c†
↑( j)

〉
. (74)
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FIGURE 7. An example of a third-order (k = 3) CTQMC graph with the Rubtsov auxiliary field used
to suppress the minus sign configuration. Now each vertex also carries a field si = ±1 which must be
updated along with the vertex locations in the QMC.

corresponding to a configuration of vertices (and auxiliary fields when appropriate).

G↑(i, j) =−Z0

Z ∑
k

(−U)k

k!

∫
· · ·

∫
d1 · · ·dk

〈
Tτc↑(i)c†

↑( j)n↑(1) · · ·n↑(k)
〉

0〈
Tτn↓(1) · · ·n↓(k)

〉
0 (75)

However, this formula is very similar to the one we encountered when we added a vertex.
In fact,

G↑(i, j) = detD↑(k +1)/detD↑(k) (76)

where the k× k matrix D↑(k) is given by Eq. 58 and

D↑(k +1) =




G↑0(1,1) G↑0(1,2) · · · G↑0(1,k) G↑0(1, j)
G↑0(2,1) G↑0(2,2) · · · G↑0(2,k) G↑0(2, j)
G↑0(3,1) G↑0(3,2) · · · G↑0(3,k) G↑0(3, j)

. . . .

. . . . .

. . . . .
G↑0(k,1) G↑0(k,2) · · · G↑0(k,k) G↑0(k, j)
G↑0(i,1) G↑0(i,2) · · · G↑0(i,k) G↑0(i, j)




(77)

We obtain the familiar form for

G↑(i, j) = G↑0(i, j)−G↑0(i, p)M↑pqG↑0(q, j) . (78)

Of course, a similar equation holds for G↓.
All other measurements are then formed from Wick’s contractions of these Green’s

functions, as described in standard many-body texts [6]. This is worth illustrating for
one example, such as the transverse component of the spin susceptibility.

χ±(i, j) =−
〈

Tτc†
↑(i)c↓(i)c

†
↓( j)c↑( j)

〉
(79)
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The form for this is strikingly similar to what we did above for G↑(i, j), the main
difference being that we now have both spin components

χ±(i, j) =
Z0

Z ∑
k

(−U)k

k!

∫
d1 · · ·dk

〈
Tτc†

↑(i)c↑( j)n↑(1) · · ·n↑(k)
〉

0〈
Tτc†

↓( j)c↓(i)n↓(1) · · ·n↓(k)
〉

0
(80)

So the estimator is

χ±(i, j) =
〈(

G↑0( j, i)−G↑0( j, p)M↑pqG↑0(q, i)
)

(
G↓0(i, j)−G↓0(i, p)M↓pqG↓0(q, j)

)〉
QMC

(81)

Similar estimators may be formed from G↑(i, j) and G↓(i, j) for the longitudinal spin
and pair susceptibilities. These will be discussed below.

In order to initialize the QMC process, the number of vertices can be simply set to
zero. Subsequent Monte Carlo steps will tend to add vertices until the configuration is
thermalized. Alternatively, one can take any other k vertex configuration and use Gσ to
construct the Dσ matrices (which are then inverted to obtain Mσ matrices). Here, Gσ is
the noninteracting Green’s function (i.e. the one obtained when U = 0) if we mean to
simulate a finite size cluster, or its the cluster excluded Green’s function (i.e. the one
obtained when we subtract the self energy from the cluster) if we mean to simulate an
embedded cluster.

Numerical round-off errors accumulate in the Mσ matrices during the updating pro-
cess, Eqs.66 and 70. In order to eliminate them, after a certain number of iterations they
should be refreshed. This may be done by recalculating the Dσ matrices and inverting
for the Mσ .

3.1. Combining CTQMC with Quantum Cluster Methods

Quantum cluster methods generally require the Green’s function in terms of Matsub-
ara frequency and wavevector, G(k, iωn). However, unlike HFQMC, there is no difficulty
in performing the Fourier transform in CTQMC. In fact, this measurement may be made
efficiently directly in terms of Matsubara frequency and wavevector, simply by perform-
ing a double Fourier transform of the Green’s function estimator in Eq. 78

G↑(Ki) = G↑0(Ki)−G↑0(Ki)M↑(Ki)G↑0(Ki) . (82)

where now K = (K, iωn) is a frequency-wavevector label, and M↑ is

M↑(Ki) = M↑(K, iωn) = ∑
i, j

exp
(
iK · (Xi−X j)− iωn(τi− τ j)

)
M↑i j (83)

where i and j label the space-time locations of the vertices.
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4. MAKING AND CONDITIONING MEASUREMENTS

The natural byproduct of the QMC algorithm are the Green’s functions. These may
be used to make measurements of most one and two-particle properties using standard
diagrammatic techniques. In doing so, several points must be remembered:

• In the HF QMC algorithm, the Hubbard-Stratonovich transformation reduces the
problem to one of free electrons moving in a time-dependent Hubbard-Stratonovich
field. In the CTQMC, an interaction representation together with an S-matrix ex-
pansion is used. Thus, for each field configuration in the HFQMC or any vertex con-
figuration in the CTQMC, measurements may be formed by summing all allowed
Wick’s contractions. The full interacting quantity is recovered by QMC averaging
this over all configurations.

• It is important to use all allowed Wick’s contractions, both connected and discon-
nected, in this series.

• If your Hamiltonian is invariant under translations in space and time, and you are
performing a simulation in an unbroken symmetry phase, it is important to average
your measurement over all time and space differences in order to achieve the lowest
variance estimator..

• It is also important to average over other symmetries of the Hamiltonian, which
may not be preserved by the CTQMC or HFQMC algorithms (e.g. spin symmetry).

For example, consider the local impurity magnetic correlation function

χii(τ) ≈ 〈
S+

i (τ)S−i (0)
〉

(84)

≈
〈

C†
i↑(τ)Ci↓(τ)C†

i↓(0)Ci↑(0)
〉

≈ T
2N ∑

iσ

∫ β

0
dτ ′

〈
Gσ (xi,τ + τ ′;xiτ ′)G−σ (xiτ ′;xiτ + τ ′)

〉
QMC

where the QMC subscript means that the Monte Carlo average over the Hubbard-
Stratonovich fields or vertex configurations is still to be performed. Note that in the last
step in Eq. 85 we form all allowed Wick’s contractions and average over all equivalent
time differences, spins, and sites to reduce the variance of this estimator.

At this point the measurements for CTQMC and HFQMC differ. For CTQMC we
essentially have a continuum of Matsubara time, so the time integral in Eq. 85 may
be completed very accurately. However, in HFQMC care must be used to reduce the
time-step error. Due to time translational invariance, the integral over τ ′ is not terribly
sensitive to ∆τ error, so we approximate as a sum using a rectangular approximation.
For τ > 0

χ(τl)≈ 1
2L ∑

σ ,l′

〈
Gσ (i, ind(l + l′); i, l′)G−σ (i, l′; i, ind(l + l′))

〉
QMC , (85)

where ind(l) is the smaller nonnegative value of either l or l− L. For τ = 0 the fact
that in HFQMC we always store Gσ (l′, l′) = Gσ (τl′ +0+,τl′) requires us to modify the
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measurement

χ(τ = 0)≈ 1
2L ∑

σ ,l′

〈
Gσ (l′, l′)

(
G−σ (l′, l′)−1

)〉
QMC . (86)

Finally the susceptibility may be calculated by

χ(T ) =
∫ β

0
dτχ(τ)≈∑

l
s f (l)∆τχ(τl) , (87)

where the Simpson factor s f (l) = 2∆τ/3 (4∆τ/3) for odd (even) l is used to reduce the
systematic error of the integral.

As a final example, consider the cluster particle-particle Green’s function matrix
χc(q,K,K′) (K = (K, iωn)) which in the cluster space-time takes the form

χc(X1,X2,X3,X4) =
〈

Tτc↑(X1)c↓(X2)c
†
↓(X3)c

†
↑(X4)

〉
. (88)

Here Xi is in the space-(imaginary)time notation Xi = (Xi,τi), where the points Xi are
on the corresponding reciprocal cluster of K in real space.

Since the storage associated with this quantity is quite large, it cannot be measured
for many times. Thus the measurement in CTQMC and HFQMC are quite similar.
First, using Wick’s theorem, its value is tabulated for each field configuration and then
transformed into the cluster Fourier space. Second, we Monte Carlo average over these
configurations. After the first step, the expression for the above two-particle Green’s
function in the cluster momentum-frequency space becomes

χc(Q, in↑n;K, iωn;K′, iωn′) =

〈
∑

X1,X4

eiK′X1Gc↑(X1,X4)e−iKX4

∑
X2,X3

ei(Q−K′)X2Gc↓(X2,X3)e−i(Q−K)X3

〉

QMC

. (89)

where K is the momentum-frequency point K = (K, iωn).
The measurements of Gc↑ and Gc↓. However, the sums (integrals) over τ in Eq. 89

require special consideration. Since the Green’s functions change discontinuously when
the two time arguments intersect, the best applicable integral approximation is the
trapezoidal approximation. Using this, we will run into Green’s functions Gc(X,τ;X,τ)
with both time and space arguments the same. In the HFQMC algorithm, this is stored as
Gc(X,τ+;X,τ) (i.e. it is assumed that the first time argument is slightly greater than the
second) and in CTQMC, the other time ordering is assumed; however, if we replaced the
equal time Green’s function to be the average {Gc(X,τ+;X,τ) +Gc(X,τ;X,τ+)}/2 =
Gc(X,τ+;X,τ)− 1/2 = Gc(X,τ ;X,τ+)+ 1/2 then a trapezoidal approximation of the
integrals results. If we call the matrix Gc, with 1/2 subtracted (added) from its diagonal
elements as appropriate for HFQMC (CTQMC), as Ĝc (note that we can treat one of the
three independent momenta involved in χc as a variable Q outside the matrix structure),
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then we can write the two-particle Green’s function in a matrix form

χcı j(Q) = (90)〈(
F†

Q=0Ĝc↑FQ=0

)
ı j

(
F†

QĜc↓FQ

)∗
ı j

〉

QMC
,

where (FQ)i j = ∆τe−i(K j−Q).Xi−iω jτi where we have chosen ı and j to index the cluster
momentum-frequency space.

This measurement may be performed efficiently if the product of three matrices in
each set of parenthesis is tabulated as two sequential matrix-matrix products and stored
before the direct product between the terms in parenthesis is calculated. When done this
way, the calculation time required for this process scales like (NL)3 rather than (NL)4 as
would result from a straight-forward evaluation of the sums implicit in Eq. 90. Greater
efficiency can be obtained if we perform the Fourier transforms as a two-step process;
i.e. first doing the transform in time and then in space. Then the measurement scales
like (N +L)(NL)2, of course, these reductions in FLOPs require an increase in memory
needed to store the intermediate results.

CTQMC presents the possibility of measuring these two-particle susceptibilities di-
rectly in the cluster momentum-frequency space without the need to perform the discrete
Fourier transform in Matsubara time presented in Eq. 89. Again, this measurement may
be made efficiently again performing a double Fourier transform of the Green’s function
estimator Eq. 78

G↑(Ki,K j) = G↑0(Ki)δi j−G↑0(Ki)M↑(Ki,K j)G↑0(K j) . (91)

and M↑ is

M↑(Kn,Km) = M↑(Kn, iωn;Km, iωm;) (92)

= ∑
i, j

exp(iKn ·Xi− iωnτi))M↑i j exp
(−iKm ·X j + iωmτ j)

)

where i and j label the space-time locations of the vertices. The last step is the numer-
ical bottleneck. However,using the methods described above of performing the Fourier
transforming steps and storing the intermediate result, this step may be performed in
O2(L+N)k2) FLOPs. The estimator of the cluster particle-particle then becomes

χc(Q,K,K′) =
〈
G↑(K′+Q,K +Q)G↓(−K′,−K)

〉
QMC . (93)

4.1. The minus sign problem

The minus sign problem emerges when the metropolis ratio R is not positive definite.
In this case, it can no longer be interpreted as a ratio of probabilities, and the algorithm,
as presently described, fails. To deal with this problem, we associate the sign S of each
configuration {si} with the measurement m and not the sampling weight W . That is

〈m〉 =
∑{si}m({si})W ({si})

∑{si}W ({si}) (94)
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=
∑{si}m({si})S({si})|W ({si})|

∑{si} S({si})|W ({si})|

=
∑{si}m({si})S({si})|W ({si})|/∑{si} |W ({si})|

∑{si} S({si})|W ({si})|/∑{si} |W ({si})|
= 〈mS〉|W | /〈S〉|W | (95)

So we may use the absolute value of |W | as the sampling weight as long as we measure
the product of the sign and measurement and divide by the average sign. This method
will work as long as the average sign is reasonably large, but when 〈S〉|W | becomes small,
the measurement becomes undefined.
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FIGURE 8. Comparison of the average sign from a HFQMC DCA and finite-size simulation (FSS) of
the 2D Hubbard model when N = 16, U = 4t = W/2 versus temperature (left) and filling (right).[4]
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FIGURE 9. Comparison of the average sign from a CTQMC and HFQMC DCA simulation of the
two-dimensional Hubbard model. (Left) Average sign versus inverse temperature for 4-site cluster with
U = W = 8t and different fillings. (Right) the average sign for 16-site cluster with U = W = 8t versus α
from Eq. 73 at fixed filling and temperature.

The average sign obtained from a simulation of the 2D Hubbard model is shown in
Fig. 9. The average sign from HFQMC and CTQMC are similar but the CTQMC result
is slightly worse. The figure on the right shows that increasing the value of α from
Eq. 73 does not help to increase the average sign significantly and it also increases the
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error bar on the sign measurement due to an increase in the average order 〈k〉. The error
bar increases, since the average order 〈k〉 increases like α2 for large α as may be seen
from Eq. 72, or here (for some site i).

〈k〉 = −β 〈H1〉

= −Nβ

〈
∑
si

(
n↑i−

1
2
− siα

)(
n↓i−

1
2

+ siα
)〉

(96)

On the other hand, the average sign obtained from a simulation of the 1D Hubbard
model is shown in Fig. 10. Whereas the average sign from HFQMC depends weakly
with cluster size that from CTQMC actually increases strongly with increasing cluster
size. Also studied is an additional coupling between chains tperp/t which is a hopping
between equivalent sites on adjacent chains. A finite tperp/t causes the average sign to
increase strongly.
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FIGURE 10. Comparison of the average sign from a CTQMC and HFQMC DCA simulation of the one-
dimensional Hubbard model. The average sign of HFQMC depends weakly on the cluster size; whereas
the average sign of CTQMC increases strongly with increasing cluster size.

We find that the average sign depends on many things, fillings, dimensionality model
parameters, etc. It is difficult to predict a priori whether the average sign will be
problematic.

4.2. CTQMC and real time measurements

In this section, we briefly discuss a possibility to extend CTQMC to measure real
time Green’s functions or even treat the systems out of thermal equilibrium. We start
with the same Hubbard model Hamiltonian [2], which has no time dependent terms,
and proceed to derive expressions for partition function and real time Green’s functions.
In this formalism, the partition function can be expressed as an expansion of contour
ordered exponent:

Z = Z0

∞

∑
k=0

(−i)k

k!

∫

c
dt1 . . .

∫

c
dtk 〈TcH1(t1) . . .H1(tk)〉0 (97)
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where
H1(t) = eiH0tH1e−iH0t (98)

is the interaction (quartic) part of Hamiltonian in the interaction representation and Tc

FIGURE 11. The contour for measuring the real time Green’s function.

is the contour-ordering operator. The integrals are performed along the contour c, shown
in Fig. 11. By writing out the contributions to the partition function coming from lowest
orders in expansion (Eq. 97), one can see that all the terms containing H1(t) on real parts
of contour cancel out exactly and thus the partition function in this case is the same as in
Matsubara formalism. We now consider the expansion for the contour ordered Green’s
function:

Gc(t, t ′) =
〈

Tcc(t)c†(t ′)
〉

(99)

= −i
Z0

Z

∞

∑
k=0

(−i)k

k!

∫

c
dt1 . . .

∫

c
dtk

〈
Tcc(t)c†(t ′)H1(t1) . . .H1(tk)

〉
0

In this case, however, the contributions containing H1(t) on real parts of contour do not
cancel out (as one can easily check by writing out k = 1 term in the expansion). The
application of Wick’s theorem yields CTQMC diagrams that contain vertices on both
imaginary as well as real parts of contour (See Fig. 12). Thus, the partition function
and the Green’s function have dominant contributions coming from entirely different
regions in the k-dimensional space spanned by time coordinates along the contour. As
a consequence, it appears impossible to use the partition function as a sampling weight
in Monte Carlo algorithm to measure the Green’s function. It is still possible to use the

FIGURE 12. An example (k = 4) diagram for contour ordered Green’s function for spin up electrons.
The light continuous and darker dotted lines represent the propagators for spin up and spin down electrons,
respectively.

Green’s function itself as a weight in the Monte Carlo importance sampling, and then
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measure it’s value as a distribution in the space of it’s arguments (t, t ′). Since Green’s
function in this case would be a complex number, it’s modulus would be taken for the
sampling weight instead. The sign problem would now translate into the phase problem,
if the average value of the phase of the Green’s function gets too small. By looking at
Eq. 100 we see that the phase problem is likely to be very severe due to a factor of (−i)
attached to every vertex on the real part of the contour (unless one finds again a way
to introduce an auxiliary field that remedies this problem). In any case, the oscillatory
nature of real time Green’s function implies that the phase problem would most likely
restrict measurements of Green’s function to small values of its real time arguments.

5. CONCLUSION
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