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Abstract

We present a pedagogical discussion of the Maximum Entropy Method
which is a precise and systematic way of analytically continuing Matsubara-
time quantum Monte Carlo results to real frequencies. Here, Bayesian statistics
are used to determine which of the infinite number of real-frequency spectra
are consistent with the QMC data is most probable. Bayesian inference is also
used to qualify the solution and optimize the inputs. We develop the Bayesian
formalism, present a detailed description of the data qualification, sketch an
efficient algorithm to solve for the optimal spectra, give cautionary notes where
appropriate, and present a detailed case study to demonstrate the method.
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1 Introduction

Most quantum Monte Carlo (QMC) simulations produce Green’s
functions G(τ) of imaginary time τ = it. However, real-frequency re-
sults are crucial since most experiments probe dynamical quantities,
including transport, densities of states, nuclear magnetic resonance, in-
elastic scattering, etc. Thus, the inability to extract real-frequency or
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real-time results from Matsubara (imaginary) time QMC simulations
presents a significant limitation to the usefulness of the method. The
relation between G(τ) and A(ω) = − 1

π ImG(ω) is linear and surprisingly
simple

G(τ) =
∫

dωK(τ, ω)A(ω) . (1)

Nevertheless, inversion is complicated by the exponential nature of the
kernel. For example, for a Fermionic single-particle Green’s function
G, K(τ, ω) = e−τω/(1 + e−βω)[1]. For finite τ and large ω the kernel is
exponentially small, so that G(τ) is insensitive to the high frequency
features of A(ω). Equivalently, if we approximate both G and A by
equal-length vectors and K by a square matrix, then we find that the
determinant of K is exponentially small, so that K−1 is ill-defined.
Apparently, there are an infinite number of A that yield the same G.

Previous attempts to address this problem include least-squares fits,
Pade approximants and regularization. In the least squares method,
Schüttler and Scalapino[1] approximated the spectrum with a set of box
functions. The location and weight of these functions was determined
by minimizing the least-squares misfit between the spectrum and the
QMC data. However, as the number of box functions is increased to
better resolve features in the spectrum, the fit becomes unstable and
noisy. In the Pade method[2], G (or rather its Fourier transform) is
fit to a functional form, usually the ratio of two polynomials, which is
then analytically continued formally by replacing iωn → ω + i0+. This
technique works when the data G is very precise, as when analytic
continuing Eliashberg equations, or when the fitting function is known
a priori. However, it is generally unreliable for the continuation of
less-precise QMC data to real frequencies. A more useful approach
is to introduce regularization to the kernel, so that K−1 exists. This
method was developed by G. Wahba[3], and employed by White et
al.[4] and Jarrell and Biham[5]. They used similar methods to minimize
(G−KA)2 subject to constraint potentials which introduce correlations
between adjacent points in A and impose positivity. However, these
techniques tend to produce spectra A with features which are overly
smeared out by the regularization.
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In the Maximum Entropy Method (MEM) we employ a different
philosophy. Using Bayesian statistics, we define the posterior probabil-
ity of the spectra A given the data G, P (A|G). We find the spectra
which maximizes P (A|G) ∝ P (A)P (G|A) with the prior probability
P (A) defined so that A has only those correlations that are required
to reproduce the data G. To define the likelihood function P (G|A), we
take advantage of the statistical sampling nature of the QMC process.

In this chapter, we will present a short pedagogical development of
the MEM to analytically continue QMC data. A more detailed review
has been presented previously[6], and to the extent possible, we will
follow the notation used there. This chapter is organized as follows: In
Sec. 2, we will present the MEM formalism. In Sec. 3, the Bryan MEM
algorithm will be sketched, which has been optimized for this type of
problem. In Sec. 4, we will illustrate these techniques with the spectra
of the Periodic Anderson model, described below, and finally in Sec. 5,
we will conclude.

Throughout this chapter, we will illustrate the formalism and meth-
ods introduced with a simulation of the infinite-dimensional periodic
Anderson model (PAM), described by the Hamiltonian

H =
−t∗

2
√

D

∑

<ij>σ

(d†iσdjσ+d†jσdiσ)+V
∑

iσ

(d†iσfiσ+f †iσdiσ)+
U

2

∑

iσ

(nf
i,σ−

1

2
)(nf

i,−σ−
1

2
)

(2)
where diσ and fiσ (d†iσ and f †iσ) destroy (create) a d- and f-electron
on site i with spin σ, U is the screened Coulomb-matrix element for
the localized f-states, and V characterizes the mixing between the two
subsystems. We will study (2) on a simple hypercubic lattice of dimen-
sion D → ∞ with hybridization t = t∗/(2

√
D) restricted to nearest-

neighbors. We choose t∗ = 1 as a convenient energy scale for the
remainder of this chapter. The algorithm to solve infinite-dimensional
lattice problems will be discussed in more detail in Chap. IV; however,
the core of this algorithm is the Hirsch-Fye impurity algorithm[7]. Here
the problem is cast into a discrete path formalism in imaginary time,
τl, where τl = l∆τ , ∆τ = β/L, β = 1/kBT , and L is the number of
times slices. Matsubara-time Green’s functions are measured on this
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discrete time domain.

2 Formalism

2.1 Green’s Functions

If this system is perturbed by an external field which couples to an
operator B, then the linear response to this field is described by the
retarded Green’s function

G(t) = −iΘ(t)
〈[

B(t), B†(0)
]
±

〉
(3)

where the negative (positive) sign is used for Boson (Fermion) operators
B and B†, and makes reference to the Dirac (anti)commutator. The
Fourier transform of G(t), G(z) is analytic in the upper half plane, and
its real and imaginary parts are related by

G(z) =
∫

dω
−1
π ImG(ω)

z − ω
. (4)

The Matsubara-frequency Green’s function G(iωn) is obtained by let-
ting z → iωn in Eq. 4. This may be Fourier transformed to yield
a relation between the Matsubara-time Green’s function produced by
the QMC procedure, and −1

π ImG(ω)

G(τ) =
∫

dω
−1
π ImG(ω)e−τω

1± e−βω
. (5)

2.2 Bayesian Statistics

We use our QMC algorithm to generate a set Ḡi
l of i = 1, Nd es-

timates for the Green’s function at each time slice τl = (l − 1)∆τ ,
l = 1, L. Since many A correspond to the same data Ḡ, we must em-
ploy a formalism to determine which A(ω) is the most probable given
the statistics of the data and an prior information that we have about
A. To quantify the conditional probability of A given the data, and our
prior knowledge, we use Bayesian statistics.
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If we have two events a and b, then according to Bayes theorem, the
joint probability of these two events is

P (a, b) = P (a|b)P (b) = P (b|a)P (a) , (6)

where P (a|b) is the conditional probability of a given b. The probabil-
ities are normalized so that

P (a) =
∫

dbP (a, b) and 1 =
∫

daP (a) . (7)

In our problem, we search for the spectrum A which maximizes the
conditional probability of A given the data Ḡ,

P (A|Ḡ) = P (Ḡ|A)P (A)/P (Ḡ) . (8)

Typically, we call P (Ḡ|A) the likelihood function, and P (A) the prior
probability of A (or the prior). Since we work with one set of QMC
data at a time, P (Ḡ) is a constant during this procedure, and may
be ignored. The prior and the likelihood function require significantly
more thought, and will be the subject of the next two subsections.

2.3 Prior Probability

We can define a prior probability for positive-definite normalizable
spectra. For Bosonic Green’s functions, we may define positive definite
spectra if we redefine the kernel

K(τ, ω) =
ω[e−τω + e−(β−τ)ω]

1− e−βω
with A(ω) =

−1

πω
ImG(ω) ≥ 0 for Bosons .

(9)
We modified the kernel to account for the symmetry of the Bosonic
data G(τ) = G(β − τ) and the spectrum A(ω) = A(−ω) Note that
the kernel is non-singular at ω = 0 and the spectral density A(ω)
is positive definite. For Fermionic Green’s functions the spectra are
already positive definite

K(τ, ω) =
exp(−τω)

1 + exp(−βω)
with A(ω) =

−1

π
ImG(ω) ≥ 0 for Fermions .

(10)
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We may also define positive definite spectra for more exotic cases, such
as for the Nambu off-diagonal Green function G12. Since the corre-
sponding spectrum A12(ω) = −1

π ImG12(ω) is not positive definite, we
enforce positivity by adding a positive real constant b

G12(τ) + b
∫

dωK(τ, ω) =
∫

dωK(τ, ω) (A12(ω) + b) . (11)

Here, we may incorporate the symmetry of the spectrum A12(ω) =
−A12(−ω) and the data G12(τ) = −G12(β− τ) by modifying the kernel

K(τ, ω) =
e−τω − e−(β−τ)ω

1 + exp(−βω)
(12)

With this kernel, the equation takes the canonical form Eq. 1, if we
identify

A(ω) = A12(ω) + b, and G(τ) = G12(τ) + b
∫

dωK(τ, ω) (13)

In each of the Bosonic, Fermionic and Anomalous cases,
∫ ∞
−∞ dωA(ω) < ∞ . (14)

These positive-definite normalized spectra A may be reinterpreted as
probability densities.

Skilling[8] argues that the prior probability for such an unnormalized
probability density is proportional to exp(αS) where S is the entropy
defined relative to some positive-definite function m(ω)

S =
∫

dω [A(ω)−m(ω)− A(ω) ln (A(ω)/m(ω))]

≈
N∑

i=1
Ai −mi − Ai ln (Ai/mi) , (15)

where Ai = A(ωi)dωi, i = 1, N . Thus, the prior is conditional on two
as yet unknown quantities m(ω) and α

P (A|m,α) = exp (αS) . (16)

m(ω) is called the default model since in the absence of data Ḡ, P (A|Ḡ,m, α) ∝
P (A|m,α), so the optimal A = m. The choice of α will be discussed in
Sec. 2.5.

Rather than try to repeat Skilling’s arguments here for the entropic
form of P (A|m,α), we argue that this form yields the desired effects:
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1. it enforces positivity of A,

2. it requires that A only have correlations which are required to
reproduce the data Ḡ, and

3. it allows us to introduce prior knowledge about the the spectra
(i.e. exact results at high frequencies) in the default model.

The first effect follows from the form of P (A|m,α), assuming that m is
positive definite. The third effect will be discussed in Sec. 4.5.

To illustrate the second effect, Gull and Skilling use their kangaroo
argument[9]. Imagine we have a population of kangaroos. We know
that one third of them are left handed and one third have blue eyes. The
joint probabilities of left-handedness and eye color may be represented
in a contingency table.

Left Handed
T F

Blue T p1 p2

Eyes F p3 p4

We are given that p1 + p2 = p1 + p3 = 1/3, what is the fraction that
are both blue eyed and left handed, p1? Clearly, there is not enough
information to answer this question. We must make some additional
assumptions. If we assume that there is a maximum positive correlation
between left handedness and blue eyes, then

Left Handed
T F

Blue T 1/3 0
Eyes F 0 2/3

If these events have a maximum negative correlation, then

Left Handed
T F

Blue T 0 1/3
Eyes F 1/3 1/3
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However, if we are forced to answer this question without the use of
further information, a more natural assumption to make is that the
events of handedness and eye color are uncorrelated, so that 1/9 of the
kangaroos are both blue eyed and left handed.

Left Handed
T F

Blue T 1/9 2/9
Eyes F 2/9 4/9

This final answer is the one obtained by maximizing the entropy S =
−∑4

i=1 pi ln pi subject to the Lagrange constraints
∑4

i=1 pi = 1, p1+p2 =
1/3 and p1 + p3 = 1/3. All other regularization functions yield either
positive or negative correlations between handedness and eye color.

To relate this to the analytic continuation problem, imagine that
each Ai is an independent event. If we maximize the entropy of A,
subject to the constraint of reproducing the data G = KA, then the
resulting spectrum is the one with the least correlations that is con-
sistent with Ḡ. If we identify a feature in the spectrum as a region of
correlated Ai (such as a peak) in deviation from the default model mi,
and such a feature emerges in the spectrum A(ω) and persists as the
data Ḡ becomes more precise, then we have reason to believe that this
feature is real. The choice of any other regularization function would
produce artificial features in the data.

2.4 Likelihood function

The form of the likelihood function is dictated by the central limit
theorem, which for the purposes of this chapter may be illustrated with
the following example. Suppose we use our QMC algorithm to generate
Nd measurements of the Green’s function Ḡi

l (where l is an integer
between 1 and L, and i an integer between 1 and Nd). According to
the central limit theorem, if each of these measurements is completely
independent of the others, then in the limit of large Nd, the distribution
of Ḡl will approach a Gaussian, and the probability of a particular value
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Gl is given by

P (Gl) =
1√
2πσ

e−χ2/2 , (17)

where χ2 = 1
σ2

(
1

Nd

∑Nd
i=1 Ḡi

l −Gl

)2
= 1

σ2

(〈
Ḡl

〉−Gl

)2
, σ2 = 1

Nd(Nd−1)
∑

i

(〈
Ḡl

〉− Ḡi
l

)2

and the angular brackets indicate an average over the bins of data
Of course, in the QMC process each of the measurements is not

independent of the others. Correlations exist between adjacent mea-
surements (Ḡi

l and Ḡi+1
l ) in the QMC process, and between the errors

of the Green’s function at adjacent time slices (Ḡi
l and Ḡi

l+1) at the
same QMC step. The removal of these correlations is the most critical
step in the MEM analytic continuation procedure.

0 200 400 600 800 1000

QMC step

0.00

0.05

0.10

0.15

0.20

G
f (τ

=
β/

2)

Figure 1: Symmetric PAM f-electron local Green’s function Ḡf (τ = β/2) plotted as a function of the
QMC step for U = 2, V = 0.6, and β = 20.

Correlations between adjacent measurements are illustrated in Fig 1
where measurements of Ḡf(τ = β/2) are plotted as a function of the
QMC step. Clearly, the data from adjacent QMC steps is correlated
and the data are skewed since the Green’s function is bounded from
below (Ḡi

l > 0). As a result the data are not Gaussianly distributed,
as shown in Fig. 2(a). Here, a histogram of the data is compared to
a Gaussian fit. The deviations from a Gaussian are quantified by the
moments of the distribution. The most relevant ones in the present case
are the skewness (third moment) and kurtosis (fourth moment) which
measure the degree of asymmetry around the mean and the pointedness
(or flatness) of the distribution relative to the Gaussian [10]. The data
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are clearly not Gaussianly distributed, and display significant skew and
kurtosis. To deal with this difficulty, we rebin the data. For example,
we set Ḡ1

l equal to the average of the first 30 measurements, Ḡ2
l equal

to the average of the next 30 measurements, etc. The distribution of
this rebinned data is shown in Fig. 2b. It is well approximated by a
Gaussian fit (the solid line).

0.02 0.03 0.04 0.05
0

100

200

G
f (τ

=
β/

2)

−0.01 0.03 0.07
0

2000
4000
6000
8000

G
f (τ

=
β/

2) (a) (b)

Figure 2: Distribution of the data shown in Fig. 1 (a) and after rebinning (b). The solid line is a
Gaussian fit. In (b) the data was processed by packing it sequentially into bins of 30 measurements
each.

The bin size (here, 30 measurements) must be chosen large enough
so that the bin averages are uncorrelated, but small enough so that suf-
ficient bins remain to calculate the likelihood function. To determine
the smallest bin size that yields uncorrelated data we quantify the de-
viation of the distribution from a Gaussian by measuring moments of
the distribution. Of course, because the data are a finite set, each of
these measured moments has some standard deviation (proportional to
1/
√

Nbins). Thus, one way to determine if the skewness and kurtosis of
a distribution are acceptably small is to measure these values relative to
what is expected from a Gaussian distribution. We will use such rela-
tive values. As the bin size increases, the relative kurtosis and skewness
decrease monotonically, indicating the convergence of the distribution
to a Gaussian. This behavior is shown in Fig. 3a for the G(τ = β/2)
data.

In addition, Fig. 3b shows that the error estimate also converges as
the bin size increases. Here, the error estimate is given by

σ =
√(〈

Ḡ2
〉− 〈Ḡ〉2)

/(Nbins − 1) (18)
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Figure 3: Relative kurtosis and skew (a) and error bar (b) of the data shown in Fig. 1 as a function
of bin size. Here the total amount of data is fixed, so increasing the bin size decreases Nbins propor-
tionately. As the bin size increases to about 30, the relative kurtosis and skew decrease to roughly
zero and the error bar saturates, indicating that the bins are uncorrelated samples and that the data
has become Gaussianly distributed.

where angular brackets indicate an average over the bins of data. Be-
cause correlations between successive Monte Carlo measurements al-
ways make this error estimate smaller than the actual value, this error
estimate should initially increase monotonically with bin size, as shown.
This behavior is easily understood by considering a perfectly correlated
sample where the data in each bin is identical. Clearly, for this per-
fectly correlated sample, the error estimate would be zero. As the bins
become uncorrelated, the error estimate increases. With independent
data and a large number of equally sized bins, eventually σ2 ∼ 1/Nbins.
However, with a fixed amount of data, as is typical with a QMC sim-
ulation, increasing the bin size decreases Nbins proportionally, and the
error estimate can saturate as illustrated in Fig. 3b. Thus, the sat-
uration of the error estimate indicates that the correlations between
Monte Carlo measurements, i.e., between bin averages, have been re-
moved. The point at which saturation occurs in a plot like Fig. 3b
provides a useful first estimate of the minimum bin size required to
remove correlations between the bins. In general, one should perform
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this test for the Green’s function at all times τl; however, we have found
it is often sufficient to perform this test at only a few times. For the
remainder of this section, we will assume that the bin size is sufficiently
large so that both the error estimate and the moments of the distri-
bution have converged to values which indicate that the data are both
statistically independent and Gaussian-distributed.

Now, only the errors in the Green’s function Ḡ at adjacent time
slices remain correlated. This correlation may be seen by comparing the
results from a single measurement with those essentially exact values
obtained from averaging over many measurements. Such a comparison
is shown in Fig. 4 where if the result from a single measurement differs
from the essentially exact result at a certain value of τ , then the results
at adjacent values of τ also tend to deviate from the exact results in
a similar way. These correlations of the error in Matsubara time are
characterized by the covariance

Clk =
1

Nbins(Nbins − 1)

Nbins∑

j=1
(
〈
Ḡl

〉− Ḡj
l )(

〈
Ḡk

〉− Ḡj
k) . (19)

0 5 10 15 20
τ

0.0

0.2

0.4

0.6

0.8

G
f (τ

)  average over all bins
 results from one measurement

Figure 4: Ḡf (τ) from one measurement compared to Ḡf (τ) obtained from the average over 800 bins
of data, each containing 1520 measurements. If the result from a single measurement at a certain
point differs from the essentially exact result obtained by averaging over many bins, then the results
at adjacent points also deviate from the exact results.

If C is diagonal, then according to the central limit theorem, the
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likelihood function is P (Ḡ|A) = exp[−χ2/2] where

χ2 =
L∑

l=1


Ḡl − ∑

j Kl,jAj

σl




2

. (20)

and σ2
l are the diagonal elements of C. However, in general, the covari-

ance matrix Cij is not diagonal because errors at different values of τ
are correlated. To define a meaningful measure of how well Ai repro-
duces the data, we must find the transformation U which diagonalizes
the covariance matrix

U−1CU = σ′2i δij . (21)

Both the data and kernel are now rotated into this diagonal represen-
tation

K′ = U−1K Ḡ′ = U−1Ḡ . (22)

and each measurement Ḡ′
i is statistically independent. Therefore, we

can use

χ2 =
∑

l


Ḡ′

l − ∑
j K ′

l,jAj

σ′l




2

. (23)

to measure the misfit between the spectrum and the data and to define
the likelihood function.

Cautionary Notes. We find that proper preparation of the data, removing
correlations, is the most critical step in the MEM procedure. If the
data are uncorrelated can the covariance is calculated and diagonalized
correctly, then the resulting spectra will be reliable (however, for weak
data, it will show a significant bias towards the default model). If not,
then the Gaussian form of the likelihood function is unjustified and the
resulting spectra will generally have spurious features.

However, care must be taken when calculating and diagonalizing the
covariance. First, Since the set of data is finite, it is necessary to balance
the need of removing the correlations in imaginary-time with the need
of removing the correlations between Monte Carlo steps. To remove the
correlations in Monte Carlo steps the bin size must be large; however,
to calculate the covariance accurately, many bins of data are required.
If there are not enough bins of data, then the covariance and (as shown
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0 10 20 30 40 50
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Figure 5: Eigenvalue spectra of the covariance matrix of Gf for different numbers of bins of data.
Each bin contains 100 measurements and L = 41. When Nbins

<∼ 2L, σ′2l develops a sharp break.

in Fig. 5) its eigenvalue spectrum can become pathological. The reason
for this pathology is that when we diagonalize the covariance matrix, we
are asking for L independent eigenvectors. We must have enough bins
of data to determine these directions so that Nbins must be greater than
or equal to L. In fact, since the information contained in a given bin of
data is not completely independent from the other bins, we must have
Nbins > L. Otherwise, as shown in Fig. 5, where L = 41, the eigenvalue
spectrum displays a sharp break when Nbins < L, indicating that only
a finite number of directions, less than L, are resolved. The small
eigenvalues after the break are essentially numerical noise and yield
artifacts in the spectra. Simply throwing away the small eigenvalues
and their associated eigenvectors does not cure the difficulty since the
small eigenvalues and eigenvectors contain the most precise information
about the solution. Thus, the only reasonable thing to do is to increase
the number of bins. Empirically, we find that we need

Nbins ≥ 2L (24)

in order to completely remove the pathology of the sharp break in the
eigenvalues[11]. Second, as illustrated in Fig. 4 adjacent data in time
tend to be highly correlated. These correlations grow as the time step
used in the QMC calculation is reduced, making the rows and columns
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of the covariance more correlated. Eventually, the covariance becomes
ill conditioned and cannot be diagonalized. Such severe oversampling
of the Green function data does not provide more information, but
a small time step may be useful for other reasons (such as reducing
Trotter errors). In this case we can fix the problem by eliminating
some fraction of the data (i.e. taking the data from every other time
step).

2.5 Details of the MEM Formalism

We will now construct the formalism to locate the most likely spec-
trum Â and set the value of α. The first step is to normalize the
likelihood function P (Ḡ|A) and the prior P (A|α, m). Here it will be
necessary to integrate over the space of all spectra Ai. This is done
with Gaussian approximations to the integrals. Following Skilling and
Bryan[12], we employ a measure dNA/

∏
i

√
Ai which amounts to a

change of variables to a space where S has no curvature[6].
For example, the normalized prior probability is

P (A|α, m) =
1

ZS
exp

{
α

(−∑
Ai ln Ai/mi − Ai + mi

)}
(25)

where

ZS =
∫ dNA

∏
i

√
Ai

exp
{
α

(−∑
Ai ln Ai/mi − Ai + mi

)}
. (26)

The integrand is maximized when S = 0, i.e. when A = m. We ap-
proximate the integral by expanding the argument of the exponent
to second order around this maximum, S ≈ 1

2δA
T ∇∇S|A=m δA =

−1
2δA

T {1/m} δA, where {1/m} is the diagonal matrix with finite ele-
ments composed of 1/mi, and δA is the vector A−m.

ZS ≈
∫ dNA

∏
i

√
Ai

exp

{
α

(
−1

2
δAT {1/m} δA

)}
. (27)

We define a change of variables, so that dyi = dAi/
√

Ai and find

ZS ≈
∫

dNy exp

{
α

(
−1

2
δyT{m}1/2 {1/m} {m}1/2δy

)}
= (2π/α)N/2

(28)
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The likelihood function must also be normalized

P (Ḡ|A) = e−χ2/2/ZL (29)

where

χ2 =
∑

l

(
Ḡ′

l − ∑
i K

′
liAi

)2

σ′2l
(30)

where K ′ and Ḡ′ are the kernel and data rotated into the data space
where the covariance is diagonal, and σ′2l are the eigenvalues of the
covariance. If we let Gl =

∑
i K

′
liAi, then

ZL =
∫

dLG exp





1

2

L∑

l=1

(
Ḡ′

l −Gl

)2

σ′2l



 = (2π)L/2 ∏

l

σ′l (31)

Using Bayes theorem, we find

P (A, G|m,α) = P (G|A,m, α)P (A|m,α)

= P (A|G,m, α)P (G|m, α) (32)

or

P (A|G,m, α) ∝ P (G|A,m, α)P (A|m,α) =
exp(αS − χ2/2)

ZSZL
(33)

Since the normalization factors ZS and ZL are independent of the spec-
trum, for fixed α and data, the most probable spectrum Â(α) is the one
which maximizes Q = αS − χ2/2. An algorithm to find this spectrum
is discussed in Sec. 3. However, the question of how to select α and the
default model remains.

Selection of α

The selection of α strongly effects the choice of the optimal spectrum[13]
since α controls the competition between S and χ2. If α is large, then
the entropy term is emphasized and the data cannot move the spectrum
far from the model. If α is small, then the least square misfit between
the spectrum and the data is minimized so that χ2 ¿ L. The numerical
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error in the QMC data then begins to dominate the solution and the
spectra displays random oscillations and noise. Thus, it is important
to find a sensible way of selecting α. Typically, α is selected in one of
three ways described below.

Historic MEM [14, 12] In the historic method, α is adjusted so that
χ2 = L. The justification for this is that if the spectrum is known
and the data was repeatedly measured, then the misfit between the
data and the spectrum χ2 = L on average. However, the data are only
measured once and the spectrum is not known a priori. Also, setting
χ2 = L tends to under fit the data since good data can cause structure
in the spectrum which reduces χ2 from L. Thus, there is little reason
to believe that α can be chosen without input from the data itself.

Classic MEM [13] A more appropriate method of setting α is to choose
the most probable value, defined by maximizing

P (α|Ḡ,m) =
∫ dNA

∏
i

√
Ai

P (A,α|Ḡ,m) . (34)

The integrand

P (A,α|Ḡ,m) = P (A|Ḡ,m, α)P (α) ∝ exp(αS − χ2/2)

ZSZL
P (α) (35)

involves the prior probability of α. Jeffreys[15] argues that since χ2

and S have different units, α is a scale factor. He asserts that in lieu
of prior knowledge, it should have the simplest scale invariant form
P (α) = 1/α. Thus,

P (α|Ḡ,m) =
∫ dNA

∏
i

√
Ai

exp(αS − χ2/2)

ZSZLα
=

ZQ

ZSZLα
(36)

ZQ is calculated in a similar fashion to ZS. We expand about the
maximum of Q at A = Â so that exp{αS − χ2/2} ≈ exp{Q(Â) +
1
2δA

T ∇∇Q|Â δA} = exp{Q(Â) + 1
2δA

T{1
2 ∇∇χ2

∣∣∣
Â
− {α/Â}}δA}. We
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again make a Gaussian approximation to the integral, and if λi are the
eigenvalues of 1

2{A1/2} ∇∇χ2
∣∣∣
Â
{A1/2}, then

P (α|Ḡ,m) =
1

Wα

∏

i

(
α

α + λi

)1/2 eQ(Â)

α
(37)

where

Wα =
∫ dα

α

∏

i

(
α

α + λ

)1/2
eQ(Â) . (38)

The optimal α, α̂ may be determined by the condition

∂P (α|Ḡ,m)

∂α
= 0 . (39)

For strong data, P (α|Ḡ,m) is dominated by the product and exp Q(Â)
so that

−2α̂S ≈ ∑

i

λi

α̂ + λi
. (40)

Each λi which is much greater than α̂ contributes one to the sum and
hence one to the number of good observations in the data. If the num-
ber Ngood = −2α̂S is large, then P (α|Ḡ,m) is very sharp the spectra
corresponding to α = α̂ is a good approximation of the spectra which
has been properly averaged over P (α|Ḡ,m).

Bryan’s Method [17] However, typically we find that Ngood ¿ L. Then
P (α|Ḡ,m) is a broad and highly skewed distribution. For example,
P (α|Ḡ,m) for the data shown in Fig. 1 is plotted in Fig. 6. The distri-
bution is wide, so many reasonable values of α exist. The distribution
is also skewed, so the value of α at the peak is not representative of the
mean. To deal with this, Bryan[17] calculates the optimal spectrum
Â(α) for each α. The solution is taken to be

Ā =
∫

dαÂ(α)P (α|Ḡ,m) . (41)

These three MEM methods will produce essentially identical results
if the data are uncorrelated and precise. However, when the data are
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Figure 6: The posterior probability P (α|Ḡ,m) as a function of α for the periodic Anderson model
data presented in Fig. 1. Since P (G|I) is unknown, the magnitude of the ordinate is also unknown.
The distribution is wide, so many reasonable values of α exist. The distribution is also skewed, so
the value of α at the peak is not representative of the mean.

less precise but still uncorrelated, the method suggested by Bryan, aver-
aging Â(α) weighted by P (α|G,m), generally produces more acceptable
results and converges to a good result faster than the classic method
and much faster than the historic method as the data is improved. A
further advantage of the averaging is that it allows an accurate rela-
tive assessment of the posterior probability (

∫∞
0 dαP (m|G,α)) of the

default model. This information is invaluable in determining which
default model yields the most likely A.

Cautionary Notes. Some care must be used Classic MEM and Bryan’s
method. Both rely on the accuracy of Eq. 37 for P (α|Ḡ,m), which
is calculated with a Gaussian approximation which is only accurate
if Q is a sharply peaked function in the space of all images. This
approximation clearly fails when α → 0. Here there is no regularization
and infinitely many spectra will produce the same Q. In this case,
the algorithm can reach a run-away condition where it tends toward
small values of α, the approximation for P (α|Ḡ,m) fails causing the
calculation to tend towards ever smaller values of α. This condition
is easily identified in the calculation, and it can be cured by choosing
a better default model (a Bryan or classic MEM calculation with a
perfect default model will always tend toward a solution with large
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alpha), using the methods described below, or the annealing method
described in the example Sec. 4.5.

2.6 Model Selection

Bayesian statistics may also be employed to select the default model.
I.e. if we must choose between different models, or set parameters used
to define a default model function, then we choose these models or
parameters based upon the posterior probability of the model

P (m|Ḡ) =
∫

dαP (α|m, Ḡ)P (m) . (42)

We see no a priori reason to favor one default model over an another,
so we typically set the prior probability of the model P (m) =constant.
Then the integrand in Eq. 42 is given by Eq. 37 so that

P (m|Ḡ) ∝ Wα . (43)

Since the prior probability of the model is unknown, P (m|Ḡ) deter-
mines only the relative probability of two models, and by inference the
relative probability of their corresponding spectra.

Cautionary Notes. It can be tempting to try very informative models,
such as the uncorrelated spectrum with sharp distinct features. Such
default models will often have high posterior probabilities P (m|Ḡ) but
should neverhteless be avoided unless one can be sure, certain, that
the sharp features are real. For example, a model with a delta func-
tion peak, has a huge amount of information, whereas the information
from the QMC data is quite finite an may not be able to correct a
wrong delta-function feature in the model. In this respect, again, the
annealing technique described later is ideal.

2.7 Error Propagation

To absolutely qualify the spectrum, we need to assign error bars
to it. In the quadratic approximation, the probability of the spectral
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density is

P (A|Ḡ,m, α) ∝ e−
1
2δAT ·∇∇Q|Â·δA , (44)

thus the covariance of the spectral density is

〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â
)−1

. (45)

It is not possible to assign error bars to each point in the spectral
density since this matrix is generally not diagonal. Thus errors between
different points are strongly correlated. Also, Ai represents the spectral
probability within some region of finite width and hence lacks meaning
at a specific value of ω. However, it is possible to assign error bars to
integrated functions of the spectral density such as [16],

H =
∫

dωA(ω)h(ω) . (46)

where h(ω) is an arbitrary function of ω. The error of H may be
associated with the covariance of the spectral density 〈δA(ω)δA(ω′)〉

〈
(δH)2〉

=
∫ ∫

dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 . (47)

The matrix ∇∇Q|Â is readily available because it is used as the Hes-
sian of the Newton search algorithm typically used to find the optimal
spectral density.

Cautionary Notes. Care should be taken in the interpretation of the error
bars, especially if a highly informative default model is used. Suppose
for example the data is weak, but a default model in essentially exact
agreement with the data is used, then as discussed above, a large α
solution will be found corresponding to a Q with small curvature in
the space of images, and hence very small error bars. This does not
necessarily mean that the resulting spectra is accurate though, just
that the default model is one of many which is consistent with the
weak data. Unless the information in a default model is known to be
accurate (such as the spectra from a higher temperature, or one which
becomes exact at high frequencies), such highly informative default
models should generally be avoided.
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2.8 Integration of MEM with DMFA/DCA

Cautionary Notes. A few problems can emerge when MEM is used to
analytically continue DMFA and DCA data.

G(K)=Σ
k

~
~

−
G(K+k)

Σ+−1=−1 GG
−

−G−1−1Σ=G

QMC
G( ) ττ ,χ( )

−G−1−1Σ=G

τ ωG( ) −> G(  )
MEM

Figure 7: MEM may be integrated into the DMFA/DCA loop. I.e. after each QMC MEM is used
to calculate the cluster Green function, and the Dyson equation relating G and G is used to extract
the self energy. This eliminate the need to invert the course-graining equation in order to solve for
Σ.

For example, in multiband models, such as the periodic Anderson
model Eq. 2 it may be difficult to extract the real-frequency self energy.
In such models where only a subset of bands are correlated, we typically
integrate the uncorrelated band (in this example, the d-band) out of
the action and only sample the Green functions of the correlated bands
(i.e. Gf(τ)). In principle, the self energy may be extracted by inverting
the coarse-graining equation. I.e. for DMFA solution to the PAM

Gf(ω) =
∑

k
Gf(k, ω) (48)

where the DMFA cluster green function Gf(ω) is calculated with MEM.
However, this can very problematic since there are as many root to this
equation as there are bands, except at very high and low frequency, it
can be difficult to disentangle the physical solutions from the unphysical
ones. There are two ways to deal with this problem. First, we may
directly sample the Green functions for the uncorrelated bands, using
the methods described in the chapter on DMFA and DCA. Second, we
may build the real spectra calculation into the DMFA/DCA loop as
illustrated in Fig. ?? Using MEM, we analytically continue the cluster
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DMFA or DCA green function. Of course this method requires that the
real and Matsubara frequency self energies used to initialize the DMFA
correspond (i.e. you may set Σ = 0 to initialize or use the self energies
from a previous combined DMFA/DCA-MEM run).

χ−,n(k)

MEM
ρ(ω),χ(ω)

Σ
k

~
~

QMC
G( ) ττ ,χ( )

Σ+−1= −G−1−1−1 GG Σ=G

G(K)=
−

−

G(K+k)

Analysis

Figure 8: The DMFA algorithm. QMC is used as a cluster solver. Once convergence is reached,
G = Ḡ, and the irreducible quantities are used in the Maximum Entropy Method (MEM) codes to
calculate the spectra. However, conventional error estimating techniques, only account for the error
in the last iteration.

Another problem, specific to self consistent methods like DCA and
especially DMFA, is that the error estimate for the data described above
only accounts for the error from the last DMFA/DCA iteration, but not
the error in the host Green function G coming from the previous itera-
tion. The simplest way to deal with this, is to make sure that the pen-
tultimate iteration is rather precise. Another way,is to sample the DCA
procedure, i.e. perform 30 or so statistically independent DMFA/DCA
simulations with different random number seeds and then use jackknife
or bootstrap statistical methods to calculate the covariance.

3 Bryan’s Method: a MEM algorithm

We will now sketch Bryan’s numerical algorithm to find the optimal
spectrum. For a more detailed description, we refer the reader to his
paper[17]. We have found his algorithm to be very appropriate for the
numerical analytic continuation problem for two reasons: First, due to
the exponential nature of the kernel which relates A to the data Ḡ, we
typically have L À Ngood. Thus, the problem is usually “oversampled.”
Bryan tailored his numerical algorithm[17] to this type of problem by
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working in a reduced space whose dimension is determined by singular-
value-decomposition of the kernel K and is equal to the largest possible
number of good singular values (i.e., numerically significant) which may
parametrize the solution. The dimension of this space is usually much
less than the number of Ai, and we found the computational advantage
over methods that use the entire space determined by the number of
Ai to be significant. Second, for the analytic continuation problem, the
approximation of setting α equal to its optimal value is questionable
because of the wide range of reasonably acceptable values of α. Bryan
deals with this by calculating a result which is averaged over P (α|G,m).

3.1 Typical Algorithms

What distinguishes Bryan’s numerical algorithm from its predeces-
sors is the way in which the space of possible solutions is searched.
Typical algorithms search for an optimal A by stepping through the
entire space of A

A → A + δA (49)

with

δA = −(∇∇Q)−1∇Q . (50)

The Hessian (∇∇Q)−1 is

(∇∇Q)−1 = (α∇∇S −∇∇L)−1 =
(
α{A}−1 −∇∇L

)−1
. (51)

where {A} is a diagonal matrix with the elements of A along its diag-
onal. It may conceptually be expanded using the binomial theorem so
that (∇∇Q)−1 may be written as a power series in {A}∇∇L. Thus,
δA may be written as a combination of {A}∇Q = {A} (α∇S −∇L),
and powers of {A}∇∇L acting on {A}∇S and {A}∇L. Each of these
vectors defines a direction in which the search can precede. Typically,
between three and ten directions are used; however, these directions are
often inappropriate for the problem at hand, because as mentioned ear-
lier, the space of all possible solutions is too large for such oversampled
data.
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3.2 Singular-Space Algorithm

To alleviate this problem, Bryan performs a singular-value decom-
position (SVD) of the kernel K, i.e., K = V ΣUT where U and V are
orthogonal matrices and Σ is a diagonal matrix, and works in the re-
sulting singular space. To see that this space still contains the solution,
we consider

∇L =
∂F

∂A

∂L

∂F
= KT ∂L

∂F
(52)

where F = KA. We see that ∇L lies in the vector space defined
by the columns of KT . We next perform a SVD on K and assume
the diagonal elements of Σ are ordered from largest to smallest. The
smallest elements are essentially zero (to the numerical precision of the
computer) since the kernel is effectively singular. However, s of the
elements are assumed finite. Now the vector space spanned by the
columns of KT is the same as the space spanned by the columns of U

associated with the non-singular values. Bryan calls this reduced space
the singular space. Thus, to the precision that can be represented
on the computer, {A}∇L and all of the search directions formed by
acting with {A}∇∇L lie in the singular space spanned by the columns
of {A}Us, where Us is the singular space projection of U . The only
direction not in this space is {A}∇S. Thus, Bryan’s algorithm works
in at most an s + 1-dimensional subspace of the N -dimensional space
of A.

In this singular space, the condition for an extremum of Q, ∇Q = 0,
is

α∇S −∇L = 0 → −α ln (Ai/mi) =
∑

j

Kji
∂L

∂Fj
. (53)

Thus, the solution may be represented in terms of a vector u

ln (A/m) = KTu . (54)

Unless K is of full rank, so that s = N , the components of u will not
be independent. However, since KT and U share the same vector space
and since most of the relevant search directions lie in the singular space,
Bryan proposes that the solution be represented in terms of U and u
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as
Ai = mi exp

∑
n

Uinun . (55)

Thus, to the precision to which it may be represented on the computer
and determined by SVD, the space u must contain the solution defined
by ∇Q = 0, and the search can be limited to this s-dimensional space.

Bryan’s algorithm precedes by first reducing all the relevant matrices
to the singular space. With the definitions K = V ΣUT and log(A/m) =
Uu, the condition for an extremum becomes

−αUu = UΣV T ∂L

∂F
, (56)

or

−αu = ΣV T ∂L

∂F
≡ g , (57)

where each of these matrices and vectors has been reduced to the sin-
gular space. (u is now a vector of order s, Σ is an s×s diagonal matrix.
etc.). Bryan then uses a standard Newton’s search to find the solution
in the singular space, starting from an arbitrary u. The increment at
each iteration is given by

Jδu = −αu− g , (58)

where J = αI + ∂g/∂u is the Jacobian matrix, I the identity matrix,
and

∂g

∂u
= ΣV T ∂2L

∂F 2

∂F

∂A

∂A

∂u
. (59)

With the definition W = ∂2L/∂F 2 (which is just the diagonal matrix
with elements 1/σ′2l ), M = ΣV TWV Σ, and T = UTAU . M and T are
symmetric s× s matrices, the Jacobian J = αI + MT , and

(αI + MT ) δu = −αu− g (60)

At each iteration δu must be restricted in size so that the algorithm
remains stable. Thus, another parameter µ (a Marquart-Levenberg
parameter) is added

[(α + µ)I + MT ] δu = −αu− g (61)
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and adjusted to keep the step length δuTTδu below some the limit

δuTTδu ≤ ∑

i

mi (62)

so the search is within the range of validity of a local quadratic expan-
sion of Q.

This search can be made more efficient if Eq. 61 is diagonalized, so
that of order s operations are required for each α µ pair. First, we
diagonalize T

TP = PΓ (63)

where P is an orthogonal matrix and Γ is diagonal with finite elements
γi. Then we define

B = {γ1/2}P TMP{γ1/2} (64)

and solve the second eigenvalue equation

BR = RΛ (65)

where R is orthogonal and Λ the diagonal matrix with finite elements
λi. Finally, to diagonalize Eq. 61 we define

Y = P{γ−1/2}R . (66)

Then Y −TY −1 = T , and Y −1MY −T = Λ, so that

Y −1 [(α + µ)I + MT ] δu = [(α + µ)I + Λ] Y −1δu = Y −1 [−αu− g]
(67)

which yields s independent equations for Y −1δu. Again, as these equa-
tions are iterated, µ must be adjusted to keep the step length

δuTTδu =
∣∣∣Y −1δu

∣∣∣2 ≤ ∑

i

mi . (68)

3.3 Selection of α

The value α is adjusted so that the solution iterates to either a fixed
value of χ2 (for historic MEM) or to a maximum value of P (α|G,m)
given by Eq. 37 (for classic MEM). Then, A is obtained from

Ai = mi exp




s∑

n=1
Uinun


 . (69)
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Alternatively, Bryan suggests that one may start the algorithm with
a large α for which P (α|Ḡ,m) is negligibly small, and then iterate to
α ≈ 0 so that the averaged spectrum may be approximated

〈A〉 =
∫ ∞
0

dαP (α|G,m)Â(α) (70)

where Â(α) is the optimal spectrum (that for which ∇Q = 0) for the
value of α specified in the argument. This latter step may be necessary
when P (α|G, m) is not a sharply peaked distribution. In fact this is
usually the case, as may be seen in Fig. 6.

3.4 Error Propagation

As discussed in Sec. 2.7, it is possible to assign error bars to inte-
grated functions of the spectrum H =

∫
dωA(ω)h(ω)

〈
(δH)2〉

=
∫ ∫

dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 , (71)

where

〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â
)−1

. (72)

This is the inverse of the Hessian of the algorithm discussed above.
∇∇Q|Â and is easily calculated in terms of singular-space quantities

− ∇∇Q|Â = {1/A}UY −T{αI + Λ}Y −1UT{1/A} . (73)

Its inverse

− (∇∇Q|Â
)−1

= {A}UY

{
1

α + λ

}
Y TUT{A} (74)

may be used to calculate the error of H,
√

(δH)2 for any α. In principle,
one should average the error over P (α|m, Ḡ); however, we find that it is
generally adequate to calculate the error of the spectrum at the optimal
α̂.

We close this section with several practical comments: On a work-
station, finding the optimal spectrum by searching in the singular space
requires only a few minutes of computer time. This efficiency is in sharp
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contrast with the amount of computer we needed[18] even on a “super-
computer” for standard Newton algorithms[12] or simulated annealing
methods that use the full space of A. We found it essential to use 64
bit arithmetic to obtain stable results. Also, we use LINPACK’s [19]
singular-value decomposition routine to do the SVD and also to com-
pute any eigenvalues and eigenvectors. The SVD routine in Numerical
Recipes[20] and the EISPACK [21] eigenvalue-eigenvector routine RS
are not as stable.

4 Case Study

In this section, we will demonstrate that it is possible to extract
spectral densities from the quantum Monte Carlo data that are essen-
tially free from artifacts caused by over fitting to the data and have
only small and controllable amounts of statistical error. We will use as
an example the electronic spectral densities of the infinite-dimensional
periodic Anderson model (PAM). We have already qualified the local
Greens function data to remove correlations using the procedure dis-
cussed in Sec. 2.4, so we can begin to process the data to obtain the
single-particle density of states spectral function.

For the majority of this section, we will consider particle-hole sym-
metric data G(τ) = G(β − τ), and spectra A(ω) = A(−ω). This prior
information may imposed on the solution by constructing a symmetric
kernel and default models. We will use three symmetric default models:
two non-informative models — the flat model m(ω) = constant and a
simple Gaussian

m(ω) =
1

Γ
√

π
exp[−(ω/Γ)2] (75)

and also a third one obtained from second-order perturbation theory
in U [22, 23]. The kernel for symmetric Fermionic Green’s functions
may be modified to reflect the symmetry and the associated integral
restricted to positive frequencies

G(τ) =
∫ ∞
0

dωA(ω)
e−τω + e−(τ−β)ω

1 + e−βω
. (76)
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4.1 Convergence of the Spectra
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Figure 9: A sequence of spectral densities generated with increasingly accurate data. Every time
the number of bins of data is doubled, the error is reduced by 1/

√
2. A Gaussian default model, the

dashed line, was used. Nbins increases beyond 2L = 82, spurious structures are quickly suppressed.

To minimize the effects of statistical error, the accuracy of the data
needs to be increased until the spectral density has converged. This is
demonstrated in Fig. 9, where the accuracy of the data are improved by
increasing the number of bins of data. Here, a Gaussian default model
is used whose width Γ = 1.6 (chosen by an optimization procedure to
be discussed below). Each time the number of bins of data is doubled,
the accuracy of the data increases by 41%. The spectral densities cor-
responding to smallest number of bins of data have spurious features
associated with over fitting. These features are associated with diffi-
culties in calculating the covariance matrix, as discussed in Sec. 2.4.
As Nbins increases beyond 2L = 82, the spurious structure is quickly
suppressed. By the time 800 bins of data have been used, the spectral
density appears to be converged to several line widths.

4.2 Default Model Selection

One may also test the dependence of the spectral density on the
default model by changing its parameters or by using different models.
The best model is the one with the largest posterior probability, cal-
culated by assuming that the prior probability of the default model is
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Figure 10: Dependence of the spectral density upon the default model. The width Γ of the Gaussian
default model (a) is varied, producing a series of spectral densities (b). In the inset to (a) is the
posterior probability of the default model P (m|Ḡ), produced by integrating the joint probability
P (A,α,m|Ḡ) over α and A, is plotted as a function of Γ. The normalization of P (m|Ḡ) is unknown
because it depends upon the probability of the data and the prior probability of the default model
which are unknown.

flat, so that P (A,α, m|Ḡ) ∝ P (A, α|Ḡ,m). Then P (m|Ḡ) is obtained
by integrating P (A,α,m|Ḡ) over A and α. The effects of varying the
default model parameters are shown in Fig. 10a where the same data set
is analytically continued with Gaussian default models whose widths
satisfy 1.0 < Γ < 2.4. The posterior probability P (m|Ḡ) of these de-
fault models, shown in the inset, is peaked around Γ ≈ 1.6. (We note
that the normalization of P (m|Ḡ) is unknown, since the prior probabil-
ity of the default model and data are unknown). The resulting spectral
densities are shown in Fig. 10b and are found to depend only weakly
upon the default model. It is also possible to optimize the perturbation
theory default model and hence to optimize the corresponding spectral
densities. In the optimization of the default for the PAM spectra, the
df-hybridization V may be treated as a variational parameter.
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4.3 Error Propagation

In Fig. 11, we compare the optimal spectral densities obtained with
the optimal perturbation theory, Gaussian, and flat default models.
(The flat default model, with no adjustable parameters, is not opti-
mized.) The posterior probabilities for each result indicate that the
perturbation theory default model produces by far the most probable
spectral density. However, we note that the qualitative features of the
spectral density change little with the default model even though a
large variety of default models were used. This independence is one
signature of good data!

As a final test of the quality of the spectral density, one can evaluate
its error in different intervals of frequency. In Fig. 10, we chose to
assign error bars to the integrated spectral density (h(ω) = 1) over
different non-overlapping regions. The width of the region centered at
each error bar is indicated by the horizontal spread of the error bar, the
spectral weight within this region is indicated by the value of the data
point, while the estimate of the uncertainty is indicated by the vertical
spread. The perturbation theory default model yields the most precise
spectra at all frequencies, consistent with the posterior probabilities of
the models.

4.4 Two-Particle Spectra

There are special difficulties associated with the calculation of spec-
tral densities associated with two-particle Green’s functions. These
difficulties include noisier and more correlated data and the lack of a
good default model. The latter problem stems from the traditional dif-
ficulties of performing perturbation theory for two-particle properties.

As an example, we will analytically continue the local f-electron
dynamic spin susceptibility χ′′(ω) of the symmetric PAM. As discussed
in Sec. ??, the Monte Carlo data χ(τ) = 2 〈S−(τ)S+(0)〉 is related to
χ′′(ω) by

χ(τ) =
∫ ∞
0

dω
ω[e−τω + e−(β−τ)ω](χ′′(ω)/ω)

1− e−βω
. (77)
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To construct a model we will employ an alternative to perturbation
theory, and construct a default model from different moments of the
spectral function. They will be used as constraints to the principle of
maximum entropy. The moments used to generate the default model
are

1

2
χ(ω = 0) =

∫ ∞
0

dω(χ′′(ω)/ω) . (78)

χ(τ = 0) =
∫ ∞
0

dω (χ′′(ω)/ω) ω coth(βω/2) . (79)

The (unnormalized) model is then generated by maximizing the entropy
subject to these constraints imposed with Lagrange multipliers λ0 and
λ1 and is easily found to be

m(ω) = exp[λ0 + λ1ω coth(βω/2)] (80)

where λ0 and λ1 are determined by the constraint equations above.

Clearly this procedure may be generalized to utilize an arbitrary
number of measured moments and often provides a better default model
than perturbation theory. However, as shown in Fig. 12, the final spec-
tral density can differ significantly from the default model when defined
in this way. Nevertheless, the error bars indicate that the spectral den-
sity is trustworthy.

4.5 Annealing Method

Occasionally we have reason to calculate a series of spectra for a va-
riety of temperatures (i.e. for the calculation of transport coefficients).
If this set is sufficiently dense, then starting from a perturbation the-
ory default at high temperature, we may use the resulting spectra as
a default model for the next lower temperature. As far as we know,
this procedure has no Bayesian justification; however, it has significant
physical motivation. At sufficiently high temperatures, perturbation
theory often becomes exact. Thus, this annealing procedure may be
initialized with an essentially exact result. Furthermore, as the tem-
perature is lowered, we expect the high frequency features of many
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spectra to freeze out (this is an essential assumption behind the nu-
merical renormalization group method). Thus, the QMC is only re-
quired to supply information about the low-frequency features. Since
QMC is a discrete sampling procedure in Matsubara time, according to
Nyquist’s theorem QMC only provides information below the Nyquist
frequency ωN = π/∆τ . Thus, the perturbation theory provides the
high-frequency information, the QMC the low-frequency information,
and MEM provides a natural method for combining these information
sources.

For example, the evolution of the d-electron density of states of
the asymmetric PAM is shown in Fig. 13. At high temperatures, as
shown in the inset, the spectra is in essentially exact agreement with
second-order perturbation theory. In addition, the d-electron states far
from the Fermi surface are weakly renormalized by the strong electronic
correlation on the f-orbitals. Thus, as the temperature is lowered, the
low-frequency spectra change continuously, whereas the high frequency
features change very little.

We conclude this section by noting that while the systematic prepa-
ration of the data of the described in Sec. 2.4 and the qualification of
the spectrum described in this section is time-consuming, we believe
that it is as important to quality of the final result, as is an accurate
MEM code.

5 Conclusion

The Maximum Entropy Method is a precise and systematic way of
analytically continuing Matsubara-time quantum Monte Carlo results
to real frequencies. Due to the exponential nature of the kernel which
relates the spectra and the data, there are many A which correspond to
the same Ḡ. With the MEM we employ Bayesian statistics to determine
which of these is most probable. Bayesian inference is also used to
assign error bars to integrals over the spectrum and optimize the default
model.

The posterior probability of the spectrum is given by the product of
the prior probability and the likelihood function. The entropic nature
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of the prior insures that the only correlated deviations from the default
model which appear in the spectrum are those which are necessary to
reproduce the data. The form of the likelihood function is determined
by the central limit theorem, assuming that the data are statistically
independent and Gaussianly distributed. Insuring these preconditions
is the most critical step in the MEM procedure, and requires that the
data be systematically rebinned and that the data and the kernel be
rotated into the space in which the covariance of the data is diagonal.

Once the data has been properly characterized, we calculate the op-
timal spectrum using Bryan’s algorithm which searches for a solution
in the reduced singular space of the kernel. Bryan’s method is more
efficient than conventional techniques which search the entire spectral
space. For any search algorithm three different techniques can be em-
ployed to set the Lagrange parameter α which determines the relative
weight of the entropy and misfit: the historic, classic or Bryan’s averag-
ing technique. With precise uncorrelated data, each returns essentially
the same spectrum, but with less-precise uncorrelated data, Bryan’s
technique yields the best results. Also, as the QMC data are system-
atically improved, images produced with Bryan’s technique appear to
converge more quickly than those produced by the other techniques.

Together, the techniques discussed in this chapter provide a pow-
erful, accurate, and systematic approach to the analytic continuation
problem. In each case where we have employed these techniques we
have been able to produce spectra that are precise at low frequencies,
and free from spurious (unjustified) features at all ω.

5.1 Steps to ensure a robust MEM calculation.

In this chapter we have summarized the proper implementation of
MEM and given a number of cautionary notes. As a parting discussion,
these will be summarized here along with a few other common sense
rules of thumb.

1. Rebin your data to remove correlations in QMC time.
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2. generate sufficient bins of data so that Nbins
>∼ 2L where L is the

number of time slices used.

3. If DMFA/DCA is used to generate the data, be sure that the error
in G from the previous iteration is negligible.

4. Calculate the covariance of the data making sure that: (1) the
eigenvalue spectrum is continuous (if not, increase Nbins), and (2)
that the covariance matrix is well enough conditioned to allow it
to be diagonalized (if not, the data is oversampled in Matsubara
time).

5. Diagonalize the covariance and rotate the data and kernel into the
diagonal frame.

6. Choose a good default model, hopefully you can use the annealing
technique. Always use a non-informative default model unless you
are certain that the information in the model is exact.

7. When possible, use Bryan’s MEM for maginalizing over α.

8. Systematicaly improve your data until the calcualted spectrum
converges.

9. When the annealing method is used, if the temperature step ap-
pears large (i.e. the specrum changes abruptly) you may want to
introduce data at additional intermediate temperatues.

10. If the annealing method is not used, try different non-informative
default models. A reliable result is independent of the model.
You may also want to use the model with the highest posterior
probability (calculated when Bryan’s method is used).

We would like to acknowledge useful conversations and fruitful col-
laborations with C. Groetsch, J.E. Gubernatis, A. Macridin, R.N. Sil-
ver, D. Sivia, and A.N. Tahvildarzadeh. This work was supported
by the National Science Foundation grants DMR-0706379 and DMR-
0312680.
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Figure 11: The f-electron density of states Af (ω) generated using (a) a perturbation theory, (b) a
Gaussian, and (c) a flat default model. These models are shown as insets to each graph. The data
points indicate the integrated spectral weight within 10 non-overlapping regions of width indicated
by the horizontal error bar. The vertical error bar indicates the uncertainty of the integrated weight
within each region.



42 M. Jarrell

0.0 0.5 1.0 1.5 2.0
ω

0

1

2

3

4

χ’
’f (ω

)/
ω

image

model
errors

Figure 12: χ′′(ω)/ω for V = 0.6, U = 2 and β = 20 for the PAM generated using a default model
defined by two moments of the spectral density. The data points indicate the integrated spectral
weight within 10 non-overlapping regions of width indicated by the horizontal error bar. The vertical
error bar indicates the uncertainty of the integrated weight within each region.
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Figure 13: The evolution of the d-electron density of states of the asymmetric PAM when U = 1.5,
V = 0.6 nd = 0.6, and nf = 1.0. At high temperatures, as shown in the inset, the spectra is
in essentially exact agreement with second-order perturbation theory. In addition, the d-electron
states far from the Fermi surface are weakly renormalized by the strong electronic correlation on
the f-orbitals. Thus, as the temperature is lowered, the low-frequency spectra change continuously,
whereas the high frequency features change very little.


