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1. INTRODUCTION

Some of the most exotic properties of materials, including high-temperature supercon-
ductivity, magnetism, and heavy Fermion and non-Fermi liquid behaviors, are due to
strong electronic correlations. The materials which display these properties are charac-
terized by either narrow electronic bands or compact orbitals with large angular momen-
tum in the valence shell. In either case, the potential energy associated with some of these
electronic degrees of freedom is of similar magnitude or larger than their electronic ki-
netic energy (bandwidth), which invalidates conventional perturbative approaches. Thus,
we resort to the construction of simplified models to study these systems.

For example, the Hubbard model[1] is the simplest model of a correlated elec-
tronic lattice system. Both it and the t − J model are thought to at least qualita-
tively describe some of the properties of transition metal oxides, and high tempera-
ture superconductors[2]. The Periodic Anderson model along with various Kondo lat-
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FIGURE 1. Cartoon of the Hubbard model, characterized by a single band with near-neighbor hopping
t, and local repulsion U .

tice models have been proposed to describe both the Actinide and Lanthanide Heavy
Fermion systems and the Anderson insulators. The Holstein model incorporates the es-
sential physics of strongly interacting electrons and phonons. All of these model Hamil-
tonians contain at least two major ingredients: a local interaction term and a non-local
hopping term. For example, the Hubbard model Hamiltonian is

H =−t ∑
〈 j,k〉σ

(c†
jσ ckσ + c†

kσ c jσ )+∑
j

ε(n j↑+n j↓)+U(n j↑−1/2)(n j↓−1/2) , (1)

where c†
jσ (c jσ ) creates (destroys) an electron at site j with spin σ , niσ = c†

iσ ciσ , and t
sets a unit of energy.

However, except for special limits, even such simplified models like Eq. 1 cannot
be solved exactly. For example, for the Hubbard model, no exact solutions exist except
in one dimension, where the knowledge is in fact rather complete [3]. The Periodic
Anderson model is only solvable in the limit where the orbital degeneracy diverges[4],
and the Holstein model is only solvable in the Eliashberg-Migdal limit where vertex
corrections may be neglected. Clearly a new approach to these models is needed if
nontrivial exact solutions are desired.

FIGURE 2. Quantum cluster approaches, like the DMFA and DCA, map the infinite lattice problem
onto a self-consistently embedded cluster problem.

Metzner and Vollhardt suggested such a new approach [5, 6, 7] based on an expan-
sion in 1/d about the point d = ∞ to study these strongly correlated lattice models. The
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resulting formalism neglects dynamical intersite correlations while retaining the impor-
tant local dynamical correlations. The resulting formalism is called Dynamical Mean
Field Approximation since it may be employed in any dimension, but is only exact on
infinite dimensional lattices. In finite dimensions, the Dynamical Cluster Approximation
is used to study systematic non-local corrections to the DMFA[8, 9]. Quantum cluster
approaches such as the DMFA and DCA work by mapping an infinite periodic lattice
onto a self-consistently embedded cluster problem, as illustrated in Fig. 2. Correlations
up to the cluster size are treated explicitly, while those at longer length scales are treated
in a mean field.

In this article, we will assume that you have some working knowledge of the DMFA.
In Sec. 2 we will first rederive the DMFA as a course-graining approximation, and then
extend this logic to derive the DCA in Sec. 3. Finally, in Sec. 4 we will describe how
physical quantities are calculated in this formalism.

2. THE DYNAMICAL MEAN-FIELD APPROXIMATION

The DMFA is a local approximation which was used by various authors in perturba-
tive calculations as a simplification of the k-summations which render the problem
intractable[10]. But it was after the work of Metzner and Vollhardt [5] and Müller-
Hartmann [6] who showed that this approximation becomes exact in the limit of infinite
dimension that it received extensive attention. In this limit, the spatial dependence of the
self-energy disappears, retaining only its variation with time. Please see the reviews by
Pruschke et al[11] and Georges et al[12] for a more extensive treatment.

In this section, we will show that it is possible to re-interpret the DMFA as a course
graining approximation. For a two-dimensional lattice, this is equivalent to averaging,
or coarse-graining, the Green functions used to calculate the irreducible diagrammatic
insertions over the Brillouin zone.

Müller-Hartmann[6] showed that this coarse-graining becomes exact in the limit of
infinite-dimensions. For Hubbard-like models, the properties of the bare vertex are com-
pletely characterized by the Laue function ∆ which expresses the momentum conserva-
tion at each vertex. In a conventional diagrammatic approach

∆(k1,k2,k3,k4) = ∑
r

exp [ir · (k1 +k2−k3−k4)] (2)

= Nδk1+k2,k3+k4

where k1 and k2 (k3 and k4) are the momenta entering (leaving) each vertex through
its legs of G. However as the dimensionality D → ∞ Müller-Hartmann showed that the
Laue function reduces to[6]

∆D→∞(k1,k2,k3,k4) = 1+O(1/D) . (3)

The DMFA assumes the same Laue function, ∆DMFA(k1,k2,k3,k4) = 1, even in the
context of finite dimensions. More generally, for an electron scatting from an interaction
(boson) pictured in Fig. 3, ∆DMFA(k1,k2,k3) = 1. Thus, the conservation of momentum
at internal vertices is neglected. We may freely sum over the internal momentum labels
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FIGURE 3. The Laue function ∆, which described momentum conservation at a vertex (left). In the
DMFA, ∆ = 1, so momentum conservation is neglected for compact graphs (right) so that we may freely
sum over the momentum labels leaving only local propagators and interactions.

of each Green function leg and interaction leading to a collapse of the momentum
dependent contributions leaving only local terms.

This argument may then be applied to the generating functional Φ, which, as illus-
trated for the second-order contribution in Fig 4, becomes a functional of the local
interaction and Green function. The self energy Σ may be obtained from a functional
derivative of Φ with respect to the Green function G, which effectively breaks one of the
Green function lines.

FIGURE 4. The second order contribution the generating functional Φ. As we apply the DMFA coarse-
graining approximation, Eq. 3, Φ becomes a functional of the local Green function and interaction.

The perturbative series for Φ, Σ and the irreducible vertices Γ in the DMFA are
identical to those of the corresponding impurity model, so that conventional impurity
solvers may be used. However, since most impurity solvers can be viewed as meth-
ods that sum all the graphs, not just the skeletal ones, it is necessary to exclude Σ(iωn)
from the bare local propagator G input to the impurity solver in order to avoid over-
counting the local self-energy Σ(iωn) (iωn = (2n + 1)πT is the Matsubara frequency).
G (iωn)−1 = G(iωn)−1 + Σ(iωn) where G(iωn) is the full local Green function. Hence,
in the local approximation, the Hubbard model has the same diagrammatic expansion
as an Anderson impurity with a bare local propagator G (iωn;Σ) which is determined
self-consistently.

An algorithm constructed from this approximation is the following: (i) An initial guess
for Σ(iωn) is chosen (usually from perturbation theory). (ii) Σ(iωn) is used to calculate
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FIGURE 5. The self energy obtained from a functional derivative of the DMFA Φ. Note that it contains
local self energy corrections; e.g. in the third graph.

the corresponding local Green function

G(iωn) =
∫

dη
ρ0(η)

iωn−η− ε−Σ(iωn)
, (4)

where ρ0 is the non-interacting density of states. (iii) Starting from G(iωn) and Σ(iωn)
used in the second step, the host Green function G (iωn)−1 = G(iωn)−1 + Σ(iωn) is
calculated which serves as bare Green function of the impurity model. (iv) starting
with G (iωn), the local Green function G(iωn) is obtained using the Quantum Monte
Carlo method (or another technique). (v) Using the QMC output for the cluster Green
function G(iωn) and the host Green function G (iωn) from the third step, a new Σ(iωn) =
G (iωn)−1 −G(iωn)−1 is calculated, which is then used in step (ii) to reinitialize the
process. Steps (ii) - (v) are repeated until convergence is reached. In step (iv) the QMC
algorithm of Hirsch and Fye [13, 14] may be used to compute the local Green function
G(τ) or other physical quantities in imaginary time. Local dynamical quantities are then
calculated by analytically continuing the corresponding imaginary-time quantities using
the Maximum-Entropy Method (MEM) [15].

χ−,n(k)

Σ
k

G(k)
−
G=

G( ) ττ ,χ( )

Σ+−1= −G−1−1−1 GG Σ=G−

ρ(ω),χ(ω)
MEM

QMC Analysis

FIGURE 6. The DMFA algorithm. QMC is used as a cluster solver. Once convergence is reached,
G = Ḡ, and the irreducible quantities are used in the analysis and Maximum Entropy Method (MEM)
codes to calculate the phase diagram and spectra, respectively.
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3. THE DYNAMICAL CLUSTER APPROXIMATION

In this section, we will review the formalism which leads to the dynamical cluster
approximation. Here, we first motivate the fundamental idea of the DCA which is coarse-
graining, we then describe the mapping to an effective cluster problem and discuss the
relationship between the cluster and lattice at the one and two-particle level.

3.1. Coarse-Graining

Like the DMFA, the DCA may be intuitively motivated with a coarse-graining trans-
formation. In the DMFA, the propagators used to calculate Φ and its functional deriva-
tives were coarse-grained over the entire Brillouin zone, leading to local (momentum
independent) irreducible quantities. In the DCA, we wish to relax this condition, and
systematically restore momentum conservation and non-local corrections. Thus, in the
DCA, the reciprocal space of the lattice (Fig. 7) which contains N points is divided
into Nc cells of identical linear size ∆k. The coarse-graining transformation is set by
averaging the Green function within each cell. If Nc = 1 the original lattice problem is
mapped to an impurity problem, and we recover the DMFA. If Nc is larger than one,
then non-local corrections of length ≈ π/∆k to the DMFA are introduced. Provided that
the propagators are sufficiently weakly momentum dependent, this is a good approxima-
tion. If Nc is chosen to be small, the cluster problem can be solved using conventional
techniques such as QMC. This averaging process also establishes a relationship between
the systems of size N and Nc. A simple and unique choice which will be discussed in
Sec. 3.2 is to equate the irreducible quantities (self energy, irreducible vertices) of the
cluster to those in the lattice.

3.2. A diagrammatic derivation

This coarse graining procedure and the relationship of the DCA to the DMFA is
illustrated by a microscopic diagrammatic derivation of the DCA starting from the Baym
generating functional Φ.[19] It is the sum over all closed connected compact graphs
constructed from the dressed Green function G and the bare interaction. The self energy
Σσ is obtained from a functional derivative of Φ, Σσ = δΦ/δGσ , and the irreducible
vetices Γσσ ′ = δΣσ/δG′

σ .
The DCA systematically restores the momentum conservation at internal vertices of

Φ relinquished by the DMFA. The Brillouin-zone is divided into Nc = LD cells of size
∆k = 2π/L (c.f. Fig. 7 for Nc = 8 and Nc = 4). Each cell is represented by a cluster
momentum K in the center of the cell. We require that momentum conservation is
(partially) observed for momentum transfers between cells, i.e., for momentum transfers
larger than ∆k, but neglected for momentum transfers within a cell, i.e., less than ∆k. This
requirement can be established by using the Laue function [9]

∆DCA(k1,k2,k3,k4) = NcδM(k1)+M(k2),M(k3)+M(k4) , (5)
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FIGURE 7. (left) Coarse-graining cells for Nc = 8 (differentiated by alternating fill patterns) that
partition the first Brillouin Zone (dashed line). Each cell is centered on a cluster momentum K (filled
circles). (right) To construct the DCA cluster (e.g. for Nc = 8) we map a generic k to the nearest cluster
point K = M(k) so that k̃ = k−K remains in the cell around K.

where M(k) is a function which maps k onto the momentum label K of the cell
containing k (see, Fig. 7). This choice for the Laue function systematically interpolates
between the exact result, Eq. 3, which it recovers when Nc → N and the DMFA result,
Eq. 3, which it recovers when Nc = 1. With this choice of the Laue function the momenta
of each internal leg may be freely summed over the cell.

FIGURE 8. A second-order term in the generating functional of the Hubbard model. Here the undu-
lating line represents the interaction U , and on the LHS (RHS) the solid line the lattice (coarse-grained)
single-particle Green functions. When the DCA Laue function is used to describe momentum conservation
at the internal vertices, the momenta collapse onto the cluster momenta and each lattice Green function is
replaced by the coarse-grained result.

This is illustrated for the second-order term in the generating functional in Fig. 8.
Each internal leg G(k) in a diagram is replaced by the coarse–grained Green function
Ḡ(M(k)), defined by

Ḡ(K)≡ Nc

N ∑̃
k

G(K+ k̃) , (6)
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where N is the number of points of the lattice, Nc is the number of cluster K points, and
the k̃ summation runs over the momenta of the cell about the cluster momentum K (see,
Fig. 7). The diagrammatic sequences for the generating functional and its functional
derivatives are unchanged; however, the complexity of the problem is greatly reduced
since Nc ¿ N.

As with the DMFA, the coarse-graining approximation will be applied to only the
compact part of the free energy, Φ, and its functional derivatives. Physically, this is
justified by the fact that irreducible terms like the self energy are short ranged, while
reducible quantities the G must be able to long length and time scale physics. This is
motivated in Fig. 9. As the particle propagates from the origin to space-time location
x, the quantum phase and amplitude it accumulates is descripbed by the single-particle
Green function G(x). Consequently if x is larger than the size of the DCA cluster, then
G(x) is poorly approximated by the cluster Green function. However, the Self energy
Σ describes the many-body processes that produce the screening cloud surrounding the
particle. These processes are generally short ranged in a strongly correlated many-body
system, so the self energy is often well approximated by the cluster quantity. Formally,

FIGURE 9. Screening of a propagating particle. The single particle green function, which describes the
quantum phase and amplitude the particle accumulates, is poorly approximated by a small cluster calcu-
lation. Its self energy, which describes generally short ranged screening processes, is well approximated
by a small cluster calculation.

we have justified this elsewhere by exploring the ∆k-dependence of the compact and
non-compact parts of the free energy[16]. The generating functional is the sum over
all of the closed connected compact diagrams, such as the one shown in Fig. 8. The
corresponding DCA estimate for the free energy is

FDCA =−kBT (Φc−Tr [Σσ Gσ ]−Trln [−Gσ ]) (7)

where Φc is the cluster generating functional. The trace indicates summation over
frequency, momentum and spin. FDCA is stationary with respect to Gσ ,

−1
kBT

δFDCA

δGσ (k)
= Σcσ (M(k))−Σσ (k) = 0, (8)

which means that Σ(k) = Σcσ (M(k)) is the proper approximation for the lattice self
energy corresponding to Φc. The corresponding lattice single-particle propagator is then
given by

G(k,z) =
1

z− εk− ε−Σc(M(k),z)
. (9)

A similar procedure is used to construct the two-particle quantities needed to deter-
mine the phase diagram or the nature of the dominant fluctuations that can eventually
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destroy the quasi-particle. This procedure is a generalization of the method of calcu-
lating response functions in the DMFA[17, 18]. In the DCA, the introduction of the
momentum dependence in the self-energy will allow one to detect some precursor to
transitions which are absent in the DMFA; but for the actual determination of the nature
of the instability, one needs to compute the response functions. These susceptibilities
are thermodynamically defined as second derivatives of the free energy with respect to
external fields. Φc(G) and Σcσ , and hence FDCA depend on these fields only through Gσ
and G0

σ . Following Baym[19] it is easy to verify that, the approximation

Γσ ,σ ′ ≈ Γcσ ,σ ′ ≡ δΣcσ/δGσ ′ (10)

yields the same estimate that would be obtained from the second derivative of FDCA
with respect to the applied field. For example, the first derivative of the free energy with
respect to a spatially homogeneous external magnetic field h is the magnetization,

m = Tr [σGσ ] . (11)

The susceptibility is given by the second derivative,

∂m
∂h

= Tr
[

σ
∂Gσ
∂h

]
. (12)

We substitute Gσ =
(
G0−1

σ −Σcσ
)−1, and evaluate the derivative,

∂m
∂h

= Tr
[

σ
∂Gσ
∂h

]
= Tr

[
G2

σ

(
1+σ

∂Σcσ
∂Gσ ′

∂Gσ ′

∂h

)]
. (13)

If we identify χσ ,σ ′ = σ ∂Gσ ′
∂h , and χ0

σ = G2
σ , collect all of the terms within both traces,

and sum over the cell momenta k̃, we obtain the two–particle Dyson’s equation

2
(
χ̄σ ,σ − χ̄σ ,−σ

)
(14)

= 2χ̄0
σ +2χ̄0

σ
(
Γcσ ,σ −Γcσ ,−σ

)
(χ̄σ ,σ − χ̄σ ,−σ ) .

We see that again it is the irreducible quantity, i.e. the vertex function, for which cluster
and lattice correspond.

3.3. Cluster Selection

The geometry of the DCA cluster is relevant for systematic studies of phase transi-
tions. All cluster geometries which can be used to tile the lattice without gaps are valid
(c.f. Fig. 10). In this approximation, the lattice has long ranged order once the correlation
length ξ of the order reaches the linear cluster size, since then the lattice tiled with such
clusters would be ordered. A scaling Ansatz for Tc which captures these ideas is[20]

ξ (Tc(Nc)) = N1/D
c (15)
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FIGURE 10. A variety of cluster geometries which may be used to tile a two-dimensional square lattice.

. So for a typical transition, with ξ (T ) ∝ |T −T ∗c |−ν (where T ∗c is the transition temper-
ature of the thermodynamic lattice), the scaling formula is T ∗c = Tc(Nc)−A(Nc)−1/Dν ,
where A, ν , and T ∗c are fit to the data Tc(Nc). However, clearly this approach will not
apply to clusters with strange geometries, like e.g. rods in a 2D system.

Ideal clusters should properly represent all length scales upto N1/D
c , and no others.

Consider the 16-site clusters show in Fig. 11, the number of neighbors in each neighbor
shell are shown in the adjacent tables.[21] On the lattice, the nth shell has 4n neighbors.
Both 16A and 16B have complete near neighbor (n=1) shells with four near neighbors.
However, the conventional square cluster 16B, has 6 (not 8) sites in the n=2 shell, has 4
(not 12) in the n=3 shell, and even on site in the n=4 shell. The cluster 16A is far better,
with no site in the n=4 shell and a nearly complete n=2 shell.

Betts explored different cluster geometries, and realized that there are few clusters
with the same geometry (point group) as the lattice, but far more with lower symme-
try that are often superior. He selected for neighbors in a given shell, symmetry, and
squareness. Since for a given cluster size, one incomplete shell is usually inevitable, he
classified the imperfection of cluster by the number of missing sites in smaller shell than
the incomplete one and the number of additional sites in larger shells. Thus, 16B has in
imperfection of three while 16A has an imperfection of one. The imperfection number
is the most important selection criteria.

Dynamical Mean Field and Dynamical Cluster Approximations March 16, 2011 10



FIGURE 11. Two sixteen (Nc = 16 site periodic clusters. Here, the neighbors to the black site are shown
in different colors. Near-neighbors are blue, next near neighbors are green, next-next neighbors red, etc.

4. CALCULATION OF PHYSICAL PROPERTIES

Most experiments measure quantities which we can express theoretically as reducible
one or two-particle green functions. As discussed above, the appropriate way to calculate
these quantities is to first extract the corresponding irreducible quantity from the cluster
calculation, and then use it to calculate the reducible quantity. For example, to calcu-
late the single-particle Green function (relevant for angle-resolved photoemission spec-
troscopy) we first extract the cluster self energy and use the Dyson equation to construct
the lattice Green function. To calculate the phase diagram, we calculate the irreducible
vertices in the different scattering channels Γ, and insert them into the Bethe-Salpeter
equations for the lattice. In this subsection we will provide more details about the rela-
tionship between the lattice and cluster two-particle Green functions and describe how
a lattice susceptibility may be calculated efficiently.

4.0.1. Particle-hole channel

As a specific example, we will describe the calculation of the two-particle Green
function

χσ ,σ ′(q,k,k′) =
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3dτ4

× ei((ωn+ν)τ1−ωnτ2+ωn′τ3−(ωn′+ν)τ4)

× 〈Tτc†
k+qσ (τ1)ckσ (τ2)c

†
k′σ ′(τ3)ck′+qσ ′(τ4)〉 ,

where we adopt the conventional notation [22] k = (k, iωn), k′ = (k,ω ′
n), q = (q,νn) and

Tτ is the time ordering operator.
χσ ,σ ′(q,k,k′) and Γσ ,σ ′(q,k,k′) are related to each other through the Bethe-Salpeter

equation:

χσ ,σ ′(q,k,k′) = χ0
σ ,σ ′(q,k,k′)+ χ0

σ ,σ ′′(q,k,k′′)

Dynamical Mean Field and Dynamical Cluster Approximations March 16, 2011 11



FIGURE 12. The Beth-Salpeter equation in the DCA. We approximate the lattice irreducible vertex Γν

by the Γν
c from the DCA cluster and coarse-grain over the k̃. The remaining equation is a function of the

cluster K only and may be solved by inversion.

× Γσ ′′,σ ′′′(q,k′′,k′′′)χσ ′′′,σ ′(q,k′′′,k′) (16)

where Γσ ,σ ′(q,k,k′) is the two-particle irreducible vertex which is the analogue of the
self-energy, χ0

σ ,σ ′(q,k,k′′) is the non-interacting susceptibility constructed from a pair
of fully-dressed single-particle Green functions. As usual, a summation is to be made
for repeated indices.

We now make the DCA substitution Γσ ,σ ′(q,k,k′) → Γcσ ,σ ′ (q,M(k),M(k′)) in
Eq. 16 (where frequency labels have been suppressed). Note that only the bare and
dressed two-particle Green functions χ depend upon the momenta k̃ within a cell. Since
χ and χ0 in the product on the RHS of Eq. 16 share no common momentum labels, we
may freely sum over the momenta k̃ within a cell, yielding

χ̄σ ,σ ′(q,K,K′) = χ̄0
σ ,σ ′(q,K,K′)+ χ̄0

σ ,σ ′′(q,K,K′′)

× Γcσ ′′,σ ′′′(q,K′′,K′′′)χ̄σ ′′′,σ ′(q,K′′′,K′) . (17)

By coarse-graining the Bethe-Salpeter equation, we have greatly reduced its complexity;
each of the matrices above is sufficiently small that they may be easily manipulated using
standard techniques.

In contrast with the single-particle case where the coarse-grained quantities are identi-
cal to those of the cluster, χcσ ,σ ′(q,K,K′) is not equal to χ̄σ ,σ ′(q,K,K′). This is because
the self-consistency is made only at the single-particle level. Unlike the single particle
case where both Σ(K) and Ḡ(K) are directly calculated, neither Γσ ,σ ′(q,K,K′) nor the
coarse-grained susceptibility χ̄σ ,σ ′(q,K,K′) are calculated during the self-consistency.
Instead, the coarse-grained non-interacting susceptibility χ̄0

σ ,σ ′(q,K,K′) is calculated in
a separate program after the DCA converges using the following relation

χ̄0
σ ,σ ′[(q, iνn);(K, iωn);(K′, iω ′

n)] = δσ ,σ ′δK,K′δωn,ω ′
n

×Nc

N ∑̃
k

Gσ (K+ k̃, iωn)Gσ (K+ k̃+q, iωn +νn) . (18)

Dynamical Mean Field and Dynamical Cluster Approximations March 16, 2011 12



The corresponding cluster susceptibility is calculated by the cluster solver and the vertex
function is extracted by inverting the cluster two-particle Bethe-Salpeter equation

χcσ ,σ ′(q,K,K′) = χc
0
σ ,σ ′(q,K,K′)+ χc

0
σ ,σ ′′(q,K,K′′)

×Γcσ ′′,σ ′′′(q,K′′,K′′′)χcσ ′′′,σ ′(q,K′′′,K′) . (19)

If we combine Eqs. 19 and 17, then the coarse-grained susceptibility may be obtained
after elimination of Γ(q,K,K′) between the two equations. It reads

χ̄−1 = χ−1
c −χ0−1

c + χ̄0−1
, (20)

where, for example, χ̄ is the matrix formed from χ̄σ ,σ ′(q,K,K′) for fixed q. The charge
(ch) and spin (sp) susceptibilities χch,sp(q,T ) are deduced from χ̄

χch,sp(q,T ) =
(kBT )2

N2
c

∑
KK′σσ ′

λσσ ′ χ̄σ ,σ ′(q,K,K′) , (21)

where λσσ ′ = 1 for the charge channel and λσσ ′ = σσ ′ for the spin channel.

4.0.2. Particle-particle channel

The calculation of susceptibilities in the particle-particle channel is essentially iden-
tical to the above. The exception to this rule occurs when we calculate susceptibilities
for transitions to states of lower symmetry than the lattice symmetry. For example, in
order to obtain the pair function of the desired symmetry (s, p,d), the two-particle Green
function must be multiplied by the corresponding form factors g(k) and g(k′). In the
study of the Hubbard model below, we will be particularly interested in g(k) = 1 (s
wave), g(k) = cos(kx)+cos(ky) (extended s wave) and g(k) = cos(kx)−cos(ky) (dx2−y2

wave). These symmetries have been evoked as possible candidates for the superconduct-
ing ground state.

These factors modify the Bethe-Salpeter equations

g(k)χ(q,k,k′)g(k′) = g(k)χ0(q,k,k′)g(k′) (22)
+ g(k)χ0(q,k,k′′)×Γ(q,k′′,k′′′)×χ(q,k′′′,k′)g(k′)

where

χ(q,k,k′) =
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3dτ4 (23)

× ei((ωn+ν)τ1−ωnτ2+ωn′τ3−(ωn′+ν)τ4)

× 〈Tτc†
k+qσ (τ1)c

†
−k−σ (τ2)c−k′−σ (τ3)ck′+qσ (τ4)〉 ,

On the LHS, we have dropped the spin indices since we will consider only opposite-spin
pairing. Eq. 22 cannot be easily solved if it is coarse-grained, since this will partially
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FIGURE 13. Calculation of particle-particle projected susceptibilities. Often we want to calculate
a projected particle-particle susceptibility (e.g. d-wave, with gk = cos(kx)− cos(ky)). Here the Bethe-
Salpeter equation is rewritten in terms of the irreducible vertex F . We approximate the lattice irreducible
vertex Γν by the Γν

c from the DCA cluster and coarse-grain over the k̃. Then the projected bare bubbles are
calculated, and the remaining equation is a function of the cluster K only and may be solved by inversion.

convolve χ(q,k,k′) with two factors of g on the LHS and one factor on the RHS. Hence
for the pairing susceptibilities, or for any situation where non-trivial form factors must
be used, we use the equivalent equation involving the reducible vertex F (instead of the
irreducible vertex Γ)

g(k)χ(q,k,k′)g(k′) = g(k)χ0(q,k,k′)g(k′)
+ g(k)χ0(q,k,k′′)
× F(q,k′′,k′′′)χ0(q,k′′′,k′)g(k′) , (24)

where

F(q,k,k′) = Γ(q,k,k′) (25)
+ χ0(q,k,k′′)Γ(q,k′′,k′′′)χ0(q,k′′′,k′)+ · · ·

We define

Πg,g(q,k,k′) = g(k)χ(q,k,k′)g(k′) (26)
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Π0
g,g(q,k,k′) = g(k)χ0(q,k,k′)g(k′) (27)

Π0
g(q,k,k′) = g(k)χ0(q,k,k′) . (28)

The remaining steps of the calculation are similar to the particle-hole case. We invert
the cluster particle-particle Bethe-Salpeter equation with g = 1 for the cluster, in order
to extract Γc. We then coarse-grain Eq. 25, and use Γc to calculate the coarse-grained
F̄ = Γc

(
1− χ̄0Γc

)−1. We then coarse-grain Eq. 24, and use the coarse-grained F̄ to
calculate the coarse-grained Π̄g,g

Π̄g,g(q,K,K′) = Π̄0
g,g(q,K,K′) (29)

+ Π̄0
g(q,K,K′′)T̄2(q,K′′,K′′′)Π̄0

g(q,K′′′,K′) .

The pairing susceptibility of a desired symmetry is given by

Pg(q,T ) =
(kBT )2

N2
c

∑
K,K′

Π̄gg(q,K,K′) . (30)

5. CONCLUSION

Coarse-graining methods are used to derive the DMFA, and DCA which map the lattice
onto a self-consistently embedded cluster problem. The DMFA is a local approximation,
while the DCA incorporates systematic non-local corrections. Irreducible quantities
from the cluster are used to calculate reducible lattice quantities.
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