Structure and properties of EuAl$_2$Si$_2$, EuAl$_2$Ge$_2$, YbAl$_2$Si$_2$ and YbAl$_2$Ge$_2$

Amensisa Abdi

Department of Physics
University of Cincinnati
Cincinnati, Ohio 45221

March 04, 2002

Abstract

LnAl$_2$X$_2$ (Ln=Eu, Yb; X=Si,Ge) compounds are synthesized by heating the elements at 1070–1270 K. They are observed to crystallize in the CaAl$_2$Si$_2$-type structure (space group P3m1) with lattice constants (Å): YbAl$_2$Ge$_2$: $a=4.179$, $c=7.069$. EuAl$_2$Ge$_2$: $a=4.214$, $c=7.320$. EuAl$_2$Si$_2$: $a=4.181$, $c=7.259$. Magnetic susceptibility measurements of EuAl$_2$Si$_2$ and EuAl$_2$Ge$_2$ has shown paramagnetic behavior above 50 K with experimental magnetic moments of 7.82 μ_β/Eu and 7.90 μ_β/Eu respectively indicating divalent Eu. Antiferromagnetic behavior is also detected at $T_N=35.5$ for EuAl$_2$Si$_2$ and at $T_N=27.5$ for EuAl$_2$Ge$_2$. A typical behavior of an intermediate-valent compound is observed for YbAl$_2$Si$_2$. A linear dependence of the inverse of susceptibility on temperature has been seen between 100 and 300 K with a reduced moment of 2.57 μ_β/Yb. A strong negative Curie temperature of 382 K is obtained. LMTO band structure calculations and experimental results confirm that all compounds are metallic between 8 and 320 K.
1. Introduction

AM_2X_2 compounds ($A=$ rare- or alkaline earth metal; $M=$metal; $X=$main group 3-6 element) favorably crystallize in the ThCr$_2$Si$_2$ structure [1]. In contrast to this, the metallic aluminum silicides and germanides LnAl$_2$X$_2$ (Ln=rare-earth metal, $X=Si$, Ge) crystallize in the trigonal CaAl$_2$Si$_2$-type structure [1]. The band gap of LnAl$_2$X$_2$ is vanishingly small when the electronegativity difference of the atoms Al$_2$X$_2$ is small [2]. Therefore, the surplus electron does not destabilize the structure as it would do if the energy gap is present. So the metallic behavior of LnAl$_2$X$_2$ is, not a result of the surplus electron, just the electronic structure itself is that of a metal. In other words, every compound AAl_2X_2 with $X=Si$ or Ge and CaAl$_2$Si$_2$ structure is expected to be metallic, regardless the valence of the base metal A.

In contrast to the pure trivalent rare earth metals, europium and ytterbium have an enhanced stability of the divalent states (4f7 and 4f14-shells) and occur as Eu^{2+}/Eu^{3+} and Yb^{2+}/Yb^{3+}, respectively. In addition to the above mentioned arguments, the question arises whether the rare-earth atoms in EuAl$_2$X$_2$ and YbAl$_2$X$_2$ are di- or trivalent. A good probe for this is the magnetism of the 4f-shell: Eu^{2+} has a magnetic moment of 7.94 μ_B, Eu^{3+} is nonmagnetic as Yb^{2+} is, and Yb^{3+} has a moment of 4.45 μ_B. Magnetic measurements and a neutron diffraction experiment with EuAl$_2$Si$_2$ resulted considerably rescued magnetic moments for Eu about 7 μ_B in these compounds, which indicates intermediate valance. In this paper, the single-crystal structures of EuAl$_2$X$_2$ and YbAl$_2$X$_2$.The crystal structure of YbAl$_2$Si$_2$ was recently reported by us [2], YbAl$_2$Ge$_2$ was characterized only by powder data so far [3]. In this paper b, we report the single-crystal structures of EuAl$_2$X$_2$ and YbAl$_2$X$_2$, electrical conductivity and magnetic measurements are reported.

2. Experimental

All compounds were synthesized by direct reaction of the elements in corundum Crucibles at a temperature between is 1020 and1170 K. in quartz glass tubes under dry argon atmosphere. The first inhomogeneous products were homogenized in an argon-filled glove box and annealed twice at temperature between 1170 and 1270 K for 50 h. The resulting gray powders deteriorate slowly when exposed to; single crystals show metallic luster. Single-crystal data of EuAl$_2$Si$_2$, EuAl$_2$SGe$_2$, EuAl$_2$Si$_2$ and YbAl$_2$Ge$_2$ were collected with an automated four-circle diffractometer STOE AED-2 (Mo-Ka1, graphite monochromator, ω/θ-scan, $3^\circ < 2q < 80^\circ$). Absorption effects were collected by acquiring Ψ–ω scan data, structure refinements were performed with the SHELXL-97 [5] package. Electrical conductivities of all compounds were measured polycrystalline pellets using a four-probe dc current reversal technique between 8 and 300 K. The magnetic susceptibility of polycrystalline piece of LnAl$_2$X$_2$ compounds was measured with a SQUID Magnetometer between 2 and 300 K with magnetic flux densities up to 5.5 T. Self-consistent band structure calculations were performed using the LMTO method in its scalar relativistic version (program LMTO-ASA47) [1]. The basis sets consisted of 6s, 5d, 4f orbital for Eu/Yb, 3s, 3p for Si/Al and 4s, 4p for Ge. The 6p orbitals for Eu/Yb, 3d for Si/Al and 4d for Ge were treated by the downfolding technique [2]. To achieve space filling within the atomic sphere approximation, interstitial spheres are introduced to avoid too large overlap of the atom-centered spheres. The empty sphere positions and radii were calculated using an automatic procedure developed by Krier et al. [3]. Owing to the magnetic properties of the 4f-shell, spin-polarized calculations were performed using the exchange-correlation
3. Results and discussion

3.1 Structure refinements

Refinements of the single-crystal data EuAl$_2$Si$_2$, EuAl$_2$Ge$_2$, and YbAl$_2$Ge$_2$ converged rapidly with the atomic positions of CaAl$_2$Si$_2$ (space group P3m1) as starting parameters [1]. The results are summarized in the table below (Figure 1). In CaAl$_2$Si$_2$-type, the Si(Ge) atoms form a slightly distorted hexagonal close packing with Al occupying half the tetrahedral and the Ln (Ln=Yb,Eu) atoms half the octahedral voids. With regard to the Al-Si(Ge) bond distances, a main feature of the structure is a double layer of puckered AlSi(G) hexagons as shown in Figure 2. Herein the Al atoms are coordinated tetrahedrally by Si(Ge), which is itself surrounded umbrella-like by four Al atoms. The rare-earth atoms are located on hexagonal prisms build of six Si(Ge). Due to the puckering of the AlSi(Ge) hexagons, the Ln-Al distances are longer compared with the Ln-Si(Ge). The latter ones correspond to the sums of the atomic radii of Ln and the covalent radii for Si(Ge) for all compounds except YbAl$_2$Si$_2$ with slightly smaller Yb-Si bond lengths (-3.4%). This may be a hint for an intermediate valence state of Yb because the radius for Yb$^{3+}$ is smaller than for Yb$^{2+}$.

The ratio between the length of the Al-Si(Ge) bonds within and between the AlSi(Ge) hexagons indicates that EuAl$_2$Ge$_2$, compounds are CaAl$_2$Si$_2$-type structure. The structure refinements measurement give the value of 0.959, 0.967, 0.964 and 0.962 for YbAl$_2$Ge$_2$, EuAl$_2$Ge$_2$, EuAl$_2$Si$_2$ and YbAl$_2$Si$_2$ respectively [1]. From this all compounds described here are expected to contain divalent rare-earth atoms.

<table>
<thead>
<tr>
<th>Compound</th>
<th>YbAl$_2$Ge$_2$</th>
<th>EuAl$_2$Ge$_2$</th>
<th>EuAl$_2$Si$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P3m1 (No. 164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice parameters (\AA)</td>
<td>$a = 4.179(2)$, $c = 7.069(3)$</td>
<td>$a = 4.214(1)$, $c = 7.320(1)$</td>
<td>$a = 4.181(1)$, $c = 7.259(1)$</td>
</tr>
<tr>
<td>Volume (\AA^3)</td>
<td>106.9</td>
<td>112.57</td>
<td>109.89</td>
</tr>
<tr>
<td>Formula units per cell</td>
<td>Z = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated density (g , cm^{-3})</td>
<td>5.78</td>
<td>5.18</td>
<td>3.96</td>
</tr>
<tr>
<td>2θ Range for data collection (°)</td>
<td>$3 \leq 2\theta \leq 80$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total no. reflections</td>
<td>1454</td>
<td>2412</td>
<td>1362</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>293</td>
<td>309</td>
<td>286</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>ψ-scan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final R_1 indices ($I>2\sigma(I)$)</td>
<td>0.024</td>
<td>0.014</td>
<td>0.010</td>
</tr>
<tr>
<td>wR_2 (all data)</td>
<td>0.050</td>
<td>0.022</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Figure 1: Crystallographic data [1]
3.2 Magnetic and electrical properties

The temperature dependence of the inverse magnetic susceptibilities (1T measurements) of EuAl_2Si_2 and EuAl_2Ge_2 are shown in Figure 3. Above 80 K the susceptibilities EuAl_2Si_2 obeys modified Curie-Weiss law $\chi = \chi_0 + c/(T - \Theta)$. The data is fitted above 80 K with modified Curie-Weiss resulting in a paramagnetic Curie temperature (Weiss constant) of 23 K, magnetic moment of 7.82 μ_β/Eu and a temperature independent contribution of $\chi_0 = 14 \times 10^{-9} m^3/mol$. The temperature independent contribution is in the order of magnitude of Pauli paramagnet and most likely results from the conduction of this metallic compound [1].
The 1/\(\chi \) versus T plot of EuAl\(_2\)Ge\(_2\) is almost linear. An evaluation of the data above 50 K according to the Curie-Weiss law resulted in an experimental magnetic moment of 7.90 \(\mu_\beta/\text{Eu} \) and a Weiss constant of 23 K. At low external magnetic fields (0.002 T) antiferromagnetic ordering is detected at \(T_N = 35.5 \) K for EuAl\(_2\)Si\(_2\) and at \(T_N = 27.5 \) K for EuAl\(_2\)Ge\(_2\) in perfect agreement with the previous study [2]. The magnetization behavior of EuAl\(_2\)Si\(_2\) and EuAl\(_2\)Ge\(_2\) is presented in Figure 4. At 50 K, well above the Néel temperature, the magnetization curves are almost linear as expected for a paramagnetic compound. At 4 K the magnetization of EuAl\(_2\)Si\(_2\) increases in a linear madder up to a critical field of B=1.3950 T and then shows a weaker increase. This may be ascribed to a metamagnetic (antiparallel to parallel spin alignment) or spin-flip transition. At the highest field strength about B=5.5 T the magnetization reached a value of 6.0 \(\mu_\beta/\text{Eu} \) at 4 K, comparable to the theoretical saturation magnetization of 7.0 \(\mu_\beta/\text{Eu} \). The magnetization behavior of EuAl\(_2\)Ge\(_2\) is quite similar with that of EuAl\(_2\)Si\(_2\).

The temperature dependence of inverse magnetic susceptibility of YbAl\(_2\)Si\(_2\) is shown in Figure 3. Between 100 and 300 K the 1/\(\chi \) versus T plot is almost linear. In this temperature region, an experimental magnetic moment of \(\mu_{\text{exp}} = 2.57 \mu_\beta/\text{Yb} \) can be determined according to the Curie-Weiss law \(\chi = c/(T-\Theta) \). The corresponding paramagnetic Curie temperature of 382 K is strongly negative as the frequency observed for intermediate-valent compounds [5]. In view of single crystallographic ytterbium site, YbAl\(_2\)Si\(_2\) may be classified as a homogeneously intermediate-valent compound.

The susceptibility versus temperature dependence of YbAl\(_2\)Ge\(_2\) is presented in the lower part of Figure 3. Down to about 80 K the susceptibility is almost temperature independent with a room temperature value of 1.2\(\times 10^{-9} \) m\(^3\)mol\(^{-1}\), compatible with Pauli paramagnetism [?]. The temperature dependencies of the electrical resistivities of LnAl\(_2\)X\(_2\) compounds are shown in Figure 5. The value is normalized to the resistivity at 300 K. All samples showed very low resistivities (about 0.2-1.2 m\(\Omega \)) and metallic behavior between 8 and 320 K. The peaks at 35 K for EuAl\(_2\)Si\(_2\) and 27 K for EuAl\(_2\)Ge\(_2\) coincide exactly with Neel temperatures determined by the SQUID experiments. Both ytterbium compounds show almost identical resistivities.
Figure 5: Temperature dependence of resistivity of compounds[1]

4. Conclusions

Crystallographic data and magnetic susceptibility measurement shows that LnAl$_2$X$_2$ compounds crystallize in the CaAl$_2$Si$_2$ type structure. All LnAl$_2$X$_2$ compounds are observed to be conductor between 8 and 320 K. Since they have small band gap, conduction is due to the metallic element in the compound.

References