Solid State Physics
Homework Set 4
Solutions

1. There are 12 nearest neighbors for Face Central Cubic Crystal (FCC) at positions
a/2(+i + i), a/2(+i £ k), a/2(+ij + k)

where a is the lattice constant and d = a/+/2 is the distance between nearest neighbors
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where z,,(R) is the deviation toward the pth direction from the equilibrium at position R then r(R) =
R + z(R). Assuming that the potential between 2 ions at positions R and R’ depends on their
separation |r — 1’| = |R+x(R) — R’ —xz(R’)|. Because of translational invariance we can always choose
then 7" = 0 and write V(r) = V(R + 2(R) — z(R’)|) then for nearest neighbors where R — R’ = d
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where A =2V’'/d and B = 2(V" — V’/d). Hence we have a longitudinal mode
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in the direction i and 2 transverse mode
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in the direction 5 and k
2. The expression for |s(0)|? is given by
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using the commutation relation
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From the theory of elasticity we know that in the long wavelength limit where the dominant
contribution to < s? > occurs. We have (Refer to eq. 22.88 from Ashchroft & Mermin)
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Since A, forms a FCC system the number of independent elastic constants is 3

Cll = C"mczz = nyyy = szzz =1.24 x 1012
C12 = Cxa:yy = nyzz = sz:vx =0.9 x 1012
044 = Cmyxy = Cyzyz = szzz =0.46 x 1012

In matrix form

an?g (Cra + Cua)kzky  (Cia + Cua)kyk,
pw2€ = (Cra + Cua)kzky ang (Cra + Cua)kyk.
(Cra+ Cua)kzk, (Cia+ Cua)kyk. C11k?

Thus for k£ along =

pw2 = an?ﬁ = w = @km =Ck,
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Taking an isotropic density of states
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We can estimate < s? > by converting the sum to integral.
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At very low T where kT < hw. Defining x = Shw where dw = dz/Bh. The first integral becomes
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and the second integral
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Thus in this limit the second integral will dominate. Substituting wg = G”ZLﬂ we will get
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where we use iwp = kfp. Substituting

{ M Ag = 107.87 x (1.66053 x 10~24g) = 1.79 x 10~%2¢ 2
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Op = 215k for Ag =< 8" >p_=1.57x 10" " cm

The high T limit where T' = Ty, = 1234k
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For large T

For estimation

3(1234k)(1.0545 x 10~ 27erg.s)(7.638 x 10712)
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3. The dispersion relation for a linear chain is derived in Aschroft and Mermin in chapter 22 page
430-432, where
2f(1 — cos(ka))
M
for a diatomic linear chain the dispersion relation is (from Iback & Luth eq. 4.15 page 55)

w(k) =
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let My = Ms = M and make the substitution a — 2a, then

= U (1 ) = o= [HO o)

We choose the minus sign because it is the acoustic branch.



