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Abstract

Recent experiments have found the existence of ”photon bands” in periodic dielectric structures
analogous to the electron bands in the solid. One-dimensional crystals are considered here.
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1 Introduction

It is well known that the electron forms energy bands in periodic crystals. the deviation from the
free-particle dispersion may be thought to be caused by the coherent interference of scattering of
electrons from individual atoms. This leads to the formation of gaps and other characteristic aspects
in the electron band structure. Analogously, any particle would coherently scatter and form energy
bands in a medium that provides a periodic scattering potential with a length scale comparable
to the wavelength of the particle. Specifically this should be true for the propagation of classical
electromagnetic (EM) waves in periodic dielectric structures.

2 Electromagnetism in Mixed Dielectric Media

All of macroscopic electromagnetism, including the propagation of light in a photonic crystal, is
governed by the four macroscopic Maxwell equations. In cgs units, they are,

∇.B = 0 (1)

∇× E +
1

c

∂B

∂t
= 0 (2)

∇.D = 4πρ (3)

∇×H − 1

c

∂D

∂t
=

4π

c
J (4)

where (respectively) E and H are the macroscopic electric and magnetic fields, D and B are the
displacement and magnetic induction fields, and ρ and J are the free charges and currents.

We will restrict ourselves to propagation within a mixed dielectric medium, a composite regions
of homogeneous dielectric material, with no free charges and currents. With this type of medium in
mind, in which light propagates but there are no sources of light, we can set ρ = J = 0. We have
D(r) = ε(r)E(r). However, for most dielectric materials of interest, the magnetic permeability is very
close to unity and we may set B = H.

With all of these assumptions in place, the Maxwell equations(1-4) become

∇.H(r, t) = 0 (5)

∇× E(r, t) +
1

c

∂H(r, t)

∂t
= 0 (6)

∇.εE(r, t) = 0 (7)

∇×H(r, t)− ε(r)

c

∂E(r, t)

∂t
= 0. (8)

We emply the familier trick of using a complex-valued field for mathematical convenience, re-
membering to take the real part to obtain the physical fields. This allowa us to write a harmonic
mode as a certain field pattern times a complex exponential:

H(r, t) = H(r)eiωt (9)

E(r, t) = E(r)eiωt (10)

To find equations for mode profiles of a given frequency, we insert the above equations into (5-8).
The two divergence equations give the simple conditions:

∇.H(r) = ∇.D(r) = 0 (11)

These equations have a simple physical interpretation. There are no point sources or sinks of
displacement and magnetic fields in the medium. Alternatively, the field configurations are built up
of electromagnetic waves that are transverse. We can focus on the other two Maxwell equations as
long as we are always careful to enforce this transversality requirement.
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The two curl equations relate E(r) to H(r):

∇× E(r) +
iω

c
H(r) = 0 (12)

∇×H(r)− iω

c
ε(r)E(r) = 0 (13)

We can decouple these equations in the following way. Divide the equation (13) by ε(r), and then
take the curl. Then using equation (12) we can eliminate E(r). The result is an equation entirely in
H(r):

∇× (
1

ε(r)
∇×H(r)) = (

ω

c
)2H(r) (14)

This is the master equation. In addition to the divergence equation (11), it completely determines
H(r). The strategy will be the following: for a given photonic crystal ε(r), solve the master equation
to find the modes H(r) for a given frequency, subject to the transversality reuirement. Then using
equation (13), E(r) can be recovered:

E(r) = (
−ic
ωε(r)

)∇×H(r) (15)

By expanding the field pattern into a set of plane waves, it’ll convert the differential equation (14)
into a system of linear equations that can be solved on a computer. Doing so allows us to determine
which are the allowed mode frequencies for a given crystal, and which wave vectors k are associated
with those modes.

3 Physical Origin of Photonic Band Gaps

We know every crystal has two lattices associated with it: the crystal lattice and the reciprocal lattice.
Two lattices are related by the definitions: A = 2π b×c

a.b×c ; B = 2π c×a
a.b×c ; c =

2π a×b
a.b×c where, a, b, c are primitive vectors of the crystal lattice, and A, B, C are

primitive vectors of the reciprocal lattice.
Any vector G of the form

G = hA+ kB + lC (16)

is called a reciprocal lattice vector, (h, k, l=integers), and any vector T

T = ua+ vb+ wc (17)

is called crystal translation, (u, v, w=integers).
In order to know what happens to electromagnetic wave inside the crystal, let’s consider a

dielectric configuration with discrete translational symmetry.

Figure 1: A dielectric configuration with discrete translational symmetry.
For magnetic field, propagating in the x-y plane, this system has continuous translational sym-

metry in the x-direction. And discrete translational symmetry in the y-direction. The basic step
length is the lattice constant a, which is also the primitive lattice vector.

A system with continuous translational symmetry is unchanged by a translation through a dis-
placement d. For each d, we can define a translation operator Td. A system with continuous symmetry
in the x-direction is invariant under all of the Td’s for that direction. A mode with the functiuonal
form eikxx is an eigenfunction of any translation operator in the x-direction:

Tde
ikxx = eikx(x+d) = (eikxd)eikxx (18)

The corresponding eigenvalue is eikxd. The dielectric unit that we consider to be repeated over
and over, highlighted in the figure with a box, is know as the unit cell. In this example, the unit cell
is an xz-slab of dielectric material with width a in the y-direction.
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The translatonal operators for lattice vectors R = la (l=integer) in the y-direction is TR, whose
eigenfunction is plane wave:

TRe
ikyy = eiky(y+la) = (eikyla)eikyy (19)

We can begin to classify the modes by specifying kx and ky. However, not all values of ky yield
different eigenvalues. Consider two modes, one with wave vector ky and the other with wave vector
ky + 2π

a . A quick insertion into (19) shows that they have the same TR-eigenvalues. In fact, all of
the modes with the wave vectors of the form ky + m(2π

a ), where m is an integer, form a degenerate

set; they all have the same TR-eigenvalue of ei(kyla). Augmenting ky by an integral multiple of b = 2π
a

leaves the state unchanged. Here b is the primitive reciprocal lattice vector.
Since any linear combination of these degenerate eigenfunctions is itself an eigenfunction with

the same eigenvalue, we can take linear combinations of our driginal modes to put them in the form

Hkx,k y(r) = eikxxΣmcky,m (z)ei(ky+mb)y = eikxx.eikyyΣmcky,m (z)eimby = eikxx.eikyyuky(y, z) (20)

where the c’s are expansion coefficients to be determined by explicit solution, and u(y,z) is a
periodic function in y. By inspection of eqn(20), we can verify that u(y + la, z) = u(y, z).

The discrete periodicity in the y-direction leads to a y-dependence for H that is simply the
product of a plane wave with a y-periodic function. We can think of it as a plane wave, as it would
be in the free space, but modulated by a periodic function because of the periodic lattice:

H(....y....) ∝ eikyyuky(y, ....). (21)

This result is known as Block’s theorem. The form of (21) is known as a Block state(as in Kittel).
One key fact about Block state is that the Block state with wave vector ky and the Block state

with wave vector ky + mb are identical. The ky’s that differ by an integral multiples of b = 2π
a are

not different from a physical point of view. Thus the mode frequencies must also be periodic in
ky : ω(ky) = ω(ky +mb). In fact, we need only consider ky to exist in the range −π

a < ky ≤ π
a . This

region of important, nonredundant values of ky is called the Brillouin zone. In three dimension the
magnetic field inside the crystal is then:

Hk(r) = ei(k.r)uk(r) (22)

where uk(r) is a periodic function on the lattice: uk(r) = uk(r +R) for all lattice vectors R.
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The master equation (14) now becomes,

∇× (
1

ε(r)
∇×Hk) = (

ω(k)

c
)2Hk (23)

where Hk is given by equation (22).
The mode profiles are determined by the above eigenvalue equation of (23), subject to the con-

dition
uk(r) = uk(r +R) (24)

Because of this periodic boundary condition, we can regard the eigenvalue problem as being
restricted to a single unit cell of the photonic crystal. As we remember from electron-in-a-box problems
in quantum mechanics, restricting an eigenvalue problem to a finite volume leads to a discrete spectrum
of eigenvalues. We can expect to find, for each value of k, an infinite set of modes with discretely
spaced frequencies, which we can label with the band index n.

This way we arrive at the description of the modes of a photonic crystal. They are a family
of continuous functions, ωn(k), indexed in order of increasing frequency by the band number. the
information contained in these functions is called the band structure of the photonic crystal.

4 A One-Dimensional Photonic Crystal

The simplest possible photonic crystal, shown in figure: 2, consists of alternating layers of material
with different dielectric constants.

Figure 2: A one dimensional photonic crystal.
Using the prescription of previous section, if primitive lattice vector is a, along z-axis, then the

primitive reciprocal lattice vector is 2π
a , in z-axis and the Brillouin zone is −π

a < kz ≤ π
a . Let’s

consider the light happens to propagate in the z-direction, crossing the sheets of dielectric at normal
incidence.

In figure: 3, the plot ωn(k) for three different multilayer films is shown (as in Joannopoulos). The
leftmost plot is for a uniform dielectric medium, to which an artificial periodicity of a is introduced.
The frequency spectrum is just the light line given by

ω(k) =
ck√
ε

(25)
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Because k repeat itself outside the Brillouin zone, the lines fold back into the zone when they
reach the edges. The center plot looks like the light-lines with one important difference. There is
a gap in frequency between the upper and lower branches of the lines- a frequency gap in which no
mode, regardless of k, can exist in the crystal. We call such a gap, a photonic band gap. As we can
see on the right, as the dielectric contrast is increased, the gap widens considerably.

The gap between bands n = 1 and n = 2 occurs at the edge of Brillouin zone, at k = π
a . For k = π

a ,
the modes are standing waves with a wavelength of 2a, twice the crystals lattice constant. From the
study of electromagnetic variational theorem (as in Joannopoulos), it’s found that the low frequency
modes concentrate their energy in the high-ε regions and the high frequency modes concentrate their
energy in the low-ε regions. The mode just under the gap has its power concentrated in ε = 13 regions,
giving it a lower frequency. Meanwhile, the mode just above the gap has most of its power in lower
ε = 12 regions, so it’s frequency is raised a bit. this way it creates a frequency gap.

5 Conclusion

The field of photonic crystals is a combination of solid state physics and electromagnetism. Crystal
structures are citizens of solid-state physics, but in photonic crystals the electrons are replaced by
electromagnetic waves. We have discussed only one-dimensional photonic crystals which offers band
gap in one-direction (z-axis). Electromagnetic waves entering from x- and y-directions will not see
any band gap. Three-dimensional photonic crystals, which are periodic along 3-axes can be formed.
Such a system can have a complete band gap, so that no propagating states would be allowed in any
direction in the crystal.

References

[1] M. Plihal and A. A. Maradudin (1991): “Photonic band structure of two-dimensional systems:
The triangular lattice”Phys. Rev. B Vol-44, No-16, 8565-8571.

[2] John D Joannopoulos, Robert D. Meade, Joshua N. Winn: “Photonic Crystals”(Princeton Uni-
versity Press, 1995).

[3] S. Sathpathy, Ze Zhang, and M. R. Salehpour (1990): “Theory of photon bands in three-
dimensional periodic dielectric structures”Phys. Rev. Lett. Vol-64, No-11, 1239-1242.

6


