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In this chapter, we shall first develop the multipole expansion for

the electrostatic potential and field. This is useful not only for ex-

pressing the field produced by a localized distribution of charge but

is also a helpful preliminary investigation for the business of describ-

ing the electrostatics of materials containing a large number of charges

and which are not conductors. These are called dielectrics. After de-

veloping a means of describing their electrostatic properties, we shall

turn to boundary value problems in systems comprising dielectrics and

conductors.

1 Multipole Expansion: An Alternate Approach

In this section we will develop the multipole expansion for a charge

distribution by an alternate means to that used in Jackson (the method

used in Jackson is discussed in the appendix to this chapter).

We begin by writing the general expression for the potential due to

a finite charge distribution ρ(x),

Φ(x) =
∫
d3x′ ρ(x′)

1

|x− x′| (1)

Let us consider the case where the origin is within the charge distri-

bution and where |x| = r is large compared to the size of the charge

distribution. Then we may expand the denominator in the integrand.

1

|x− x′| =
1√

r2 − 2x · x′ + r′2
=

1

r
√

1− 2x · x′/r2 + r′2/r2
. (2)
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Using the Taylor series expansion

1√
1− x = 1 +

1

2
x+

3

8
x2 + · · · (3)

We get

1

|x− x′| =
1

r

(
1 +

1

2

(
2x · x′/r2 − r′2/r2

)
+

3

8

(
4(x · x′)2/r4

))
+order

(
(r′/r)3

)

(4)
1

|x− x′| =
1

r
+

x · x′
r3

+
1

2r5

(
3(x · x′)2 − r′2r2

)
+ · · · (5)

With this expansion, we can rewrite Φ(x) as

Φ(x) =
∫
d3x′

ρ(x′)

r
+

∫
d3x′

(x · x′)ρ(x′)

r3
+

∫
d3x′

ρ(x′)

2r5

(
3(x · x′)2 − r′2r2

)
+ · · ·

Φ(x) =
1

r

∫
d3x′ ρ(x′) monopole +

x

r3
·
∫
d3x′ x′ρ(x′) dipole +

1

2r5

∫
d3x′ ρ(x′)

(
3(x · x′)2 − r′2r2

)
quadrupole + · · ·

or

Φ(x) =
1

r

∫
d3x′ ρ(x′) +

x

r3
·
∫
d3x′ x′ρ(x′) +

1

2

∑

i,j

xixj
2r5

∫
d3x′ ρ(x′)

(
3x′ix

′
j − r′2δij

)
+ · · · (6)
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where the sum is over the 3 coordinates of space. If we follow the

conventional designation of these terms, then

Φ(x) = q/r +
x · p
r3

+
1

2

∑

ij

Qij
xixj
r5

+ · · · (7)

where

q =
∫
d3x′ ρ(x′) Monopole Moment (8)

p =
∫
d3x′ ρ(x′)x′ Dipole Moment (9)

Qij =
∫
d3x′ ρ(x′)

(
3x′ix

′
j − r′2δij

)
Quadrupole Moment (10)

Note that the matrix Qij is real an symmetric (Qij = Qji). Thus

only six of its elements are independent. In fact, only 5 are, since there

is an additional constraint that Tr(Q) = 0.

Tr(Q) =
∑

i

Qii =
∫
d3x′ ρ(x′)

∑

i

3x′ix
′
i − r′2δii (11)

then as
∑

i

3x′ix
′
i = 3r′2 (12)

∑

i

r′2δii = 3r′2 (13)

Tr(Q) =
∫
d3x′ ρ(x′)

(
3r′2 − 3r′2

)
= 0 (14)

Thus it must be that Q33 = −Q11 − Q22 and only two of the diagonal

components are independent. This is important, since we will relate Q

to the set of five Y m
2 .
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1.1 Interpretation of the Moments

What is the interpretation of these terms? The monopole moment is

just the total charge of the distribution. Thus the monopole term gives

the potential due to the charge as a whole. Since the monopole term in

the potential falls off like 1/r at large r, it will dominate the far field

potential whenever q is finite. The dipole moment is the first moment

of the charge distribution; and refers to how the charge is distributed

in space. Similarly, the quadrupole moment is a second moment of the

distribution.

Let’s consider the dipole in some detail, with the model shown below.

a/2

a/2-

q

- q

Φ(x) =
q

|x− a/2| +
−q

|x + a/2| (15)

For |x| = r À a we can expand

1

|x∓ a/2| =
1

r

(
1± x · a

2r2

)
+ order(a2/r2) (16)

Φ(x) ≈ q

r

(
1 +

x · a
2r2

)
− q

r

(
1− x · a

2r2

)
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≈ q

r3
x · a

(17)

If a → 0 in the diagram (such that qa = p = constant), then the

higher order terms vanish, and this result becomes exact. In such a

limit (a→ 0, qa = p) we obtain a point dipole.

Now consider the field due to a dipole p = pẑ

Φ(x) =
p cos θ

r2
(18)

Er = −∂Φ

∂r
=

2p cos θ

r3
(19)

Eθ = −1

r

∂Φ

∂θ
=
p sin θ

r3
, (20)

p

or more formally (in Cartesian coordinates).

Ep = −∇
(

p · x
r3

)
= −∑

i

ei
∂

∂xi

∑

j

pjxj
r3

= −∑

i

ei


pi
r3
− 3

∑

j

pjxj
r4

xi
r




(21)
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where we have used the fact that ∂r
∂xi

= xi
r .

Ep =
3x(p · x)

r5
− p

r3
(22)

In a similar fashion the potential term involving the quadrupole

moment may be interpreted as due to an assembly of four charges

(hence the name).

+

+

-

-

Higher-order moments (octapole, hexadecapole, etc.) may be generated

in a like fashion.

It is important to note that the interpretation of the moments de-

pends strongly upon the origin. For example consider a point charge

located at the origin.

x

z

y
q
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Φ(x) = q/r (23)

It has only a monopole term. Now displace the charge by a vector a.

x

z

y
a

q

Φ(x) =
q

|x− a| = q/r + q
a · x
r3

+
q

2

3(a · x)2 − a2r2

r5
+ · · · (24)

This has moments to all orders! watch your origin!

1.2 Dipole Field

It is interesting to ask what is going on at the origin, where our expan-

sion fails. Let’s look at the particular case of the dipole field, assuming

a point dipole at r = 0. For any r > 0, we know that the potential is

as given in Eq. (17). Once before we found such a potential when we

solved the problem of a conducting sphere of radius a in a uniform ex-

ternal applied field E0. What we found was that the potential outside

of the sphere is

Φ(x) = −E0r cos θ + E0a
3 cos θ

r2
(25)
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while inside of the sphere the potential is a constant and the field is

zero.

- - -

+
+ +

+

- -

E=0 E=0E=E z E=

- - -

+
+ +

+

- -

zE -

If one removes the applied field but retains the field produced by

the charges on the surface of the sphere, then the potential for r > a

is simply E0a
3 cos θ/r2 which may also be written as p · x/r3 with p =

E0a
3ẑ. By the superposition principle, the field at r < a is now −E0 =

−p/a3. What this means is that the surface charge on the sphere has

a dipole moment and, remarkably, no other multipole moments. Now

let us fix p while letting a → 0. The region r < a shrinks, while the

field inside gets bigger. As the region shrinks to zero, the field strength

at the origin (i.e., inside the sphere) diverges. The integral of the field

over the spherical domain r < a is, however, a constant and equal to

−(4π/3)p. Consequently, in the limit of vanishing a, this field may

be represented by a delta function, −(4π/3)pδ(x). The total field of a

point dipole of moment p is thus the dipolar field, Eq. (21), for r > 0
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plus a delta-function piece at the origin,

E(x) =
3n(p · n)− p

r3
− 4π

3
pδ(x). (26)

Our derivation of this result is not completely general since it is based

on the limiting form of the solution to one particular problem involving

a sphere; the result is, however, quite correct for any point dipole. See

Jackson, Chapter 4, Section 1, for a more complete discussion of this

point.

2 Energy of the Charge Distribution

In this section we consider the energy of a localized charge distribution

ρ(x) in an external applied electric field E(x) which may be described

through its potential Φ(x). This energy is, as we know from Chapter

1,

W =
∫
d3x ρ(x)Φ(x). (27)

ρ (  )x

Source of E
To calculate the energy of a charge
distribution in an external field,
we must ignore the self field

Not source of E
Notice that there is no factor of 1/2; that is because we are finding

the interaction energy of a charge distribution with a field which is not
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produced by that same charge distribution and so we do not double

count the energy in Eq. (24) by omitting this factor.

Now if we assume that Φ changes slowly over the region where ρ is

appreciable, then we can expand the potential Φ around the origin of

coordinates using a Taylor series:

Φ(x) = Φ(0) + x · ∇Φ(x)|x=0 +
1

2

3∑

i,j=1

xixj
∂2Φ(x)

∂xi∂xj

∣∣∣∣∣∣
x=0

+ ...

= Φ(0)− x · E(0)− 1

2

3∑

i,j=1

xixj
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

+ ... (28)

where E(x) is the external applied field. Now, this field is such that its

sources are far away, or at least are zero in the region where the charge

distribution ρ(x) is located. Therefore ∇ · E(x) = 0 in this region and

so we can add a term proportional to ∇ · E(x) to the potential Φ(x)

without changing the result of the integral in Eq. (24). We choose this

term to be

1

6
r2∇ · E(x)|x=0 =

1

6

3∑

i,j=1

r2δij
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

. (29)

Hence we have

Φ(x) = Φ(0)− x · E(0)− 1

6

3∑

i,j=1

(3xixj − r2δij)
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

, (30)

plus higher-order terms. If we substitute this expansion into the ex-

pression for the energy, we find

W = qΦ(0)− p · E(0)− 1

6

3∑

i,j=1

Qij
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

+ .... (31)
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2.1 Example: Dipole Energies

As an example making use of this result, suppose that we have a dipole

of moment p1 at point x1 in the presence of a second dipole of moment

p2 at x2. Then the energy of interaction is

x
1

p
1

x2

p
2

W = −p1 · E2(x1) =
−3(p2 · n)(p1 · n) + p1 · p2

|x1 − x2|3
(32)

where n = (x1−x2)/|x1−x2| is a unit vector pointing from the second

dipole to the first (or vice versa).

2.2 Example: Quadrupole Energies

A second example has to do with the coupling of a nucleus’ electric

quadrupole moment to an external field (such as that from the elec-

trons). By choosing the origin in an appropriate fashion, one can guar-

antee that any nucleus (any object with a non-zero net charge, in fact)

has no dipole moment. Hence the first interesting term in the nucleus’

interaction with an external field is the electric quadrupole interaction.

Further, a nucleus in an angular momentum eigenstate |J,M > will

have a charge density which is invariant under rotation around the

13



z-axis,

ρ ∝ Y M
J Y M∗

J ∝ eiMφe−iMφ

leading to a diagonal electric quadrupole moment tensor (the matrix of

Qlm’s) which is such that Qxx = Qyy. Since the trace of this tensor (or

matrix) is zero, this means that1 Qxx = Qyy = −Qzz/2. The upshot is

that the interaction of the nuclear quadrupole with the applied field is

W = −1

4
Qzz

∂Ez(x)

∂z

∣∣∣∣∣∣
x=0

. (33)

Bear in mind that the moment Qzz is a function of the internal state

of the nucleus and in particular of its angular momentum states. The

quadrupolar coupling thus provides a way to lift the degeneracy asso-

ciated with the different quantum numbers M for the z-component of

angular momentum.

3 Dipoles in Nature: Permanent and Induced

Why are dipoles so interesting?? The reason is that many atoms and

molecules have dipole moments which affects their chemical and elec-

trical properties.

1Or maybe that means this: Q11 = Q22 = −Q33/2.
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3.1 Permanent Dipoles

An example of a molecule with a permanent electric dipole moment is

water H2O.

|p| = 1.86x10−18esu− cm = 1.86Debyes

O

H H104

--

+ +
o

This dipole moment corresponds to approximately one electron charge

separated across the size of the molecule. Other polar molecules have

similar dipole moments (NH3: 1.47 debyes, HCl: 1.03 debyes).

Atoms or Nuclei cannot have permanent dipole moments, since they

are in states of good angular momentum l: the dipole moment of an

electron in such a state vanishes. In contrast the molecules mentioned

above are in sp hybrid orbitals, so that l is not a good quantum number,

and thus a dipole moment is allowed.

3.2 Induced Dipoles

Atoms and molecules that lack permanent dipoles can have induced

dipole moments when placed in an external electric field.

15



3.2.1 Static Models

We have already seen the effect of an external field inducing a dipole

moment in a metallic sphere.

+
+ +

+

- - ---

+

E

Φ(x) = Φexternal(x) + Φinduced(x) (34)

Φinduced(x) =
p · x
r3

p = Eoa
3ẑ (35)

The induced dipole moment is proportional to the external electric field.

If we define α to be the polarizability of the body, then

p = αE (36)

where, in this case, α = a3. We see that in general the polarizability of

the order of magnitude of the volume of the body. Thus for an atom

αatom ≈ atomic volume ≈ 10−24cm3 (37)

This is consistent with experiment.

To see what this means in realistic terms, consider an atom placed

in a relatively large electric field E = 100 statvolts/cm.
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+

- a
E

Lets assume that the induced dipole moment is

p = αE = ea (38)

where e is an electronic charge and |a| is the distance which separates

the charge. Then

a =
αE

e
≈ (10−24cm3)(100statvolts/cm)

4.8× 10−10esu
≈ 2× 10−13cm (39)

This is of nuclear dimensions ( 2 fermi’s). Thus the atom is quite rigid

to polarization. To have a distortion of the order of and Angstrom,

we need a field of order E = 5 × 106statvolts/cm. This type of field

strength is only available with a laser.

3.2.2 Dynamic Model

We may also calculate α for an atom using a simple dynamical model.

Suppose that the electron is bound to the ion by a spring, so that, if

displaced from equilibrium, it feels a restoring force.

Frestore = −mω2
ox (40)

where m is the electronic mass, and ωo the frequency of oscillation. If

we apply an external electric field E, the displacement x of the electron

17



from equilibrium will grow until Frestore is equal and opposite to the

electronic force on the electron.

−(−eE) = −mω2
ox so x =

−eE
mω2

o

(41)

The induced dipole moment is then

p = −ex =
e2

mω2
o

E = αE (42)

So that the atomic polarizability is

α =
e2

mω2
o

(43)

Now, we expect that ωo ≈ angular frequency of oscillation, which is

approximately the frequency of the light which is emitted by atoms.

For a wavelength of 3000 Angstroms ωo ≈ 6× 1015s−1, giving

α ≈ 6× 10−24cm3.

This is in accord with our previous estimate.

4 Dielectric Materials

The electrostatic properties of some insulating materials may be mod-

eled by a collection of dipole molecules, each with a dipole moment.

Higher order moments are usually neglected. Our main interest here is

not in the dipole moments of individual atoms or molecules, but rather

the dipole moments of atoms or molecules in a solid. In such a medium,

18



we expect that there will be no net permanent dipole moment. This is

for two reasons:

(1) If there is a permanent dipole moment in the atoms or

molecules which make up the system, then the orientation

of them will be random. Thus the average dipole moment

< p > will be zero.

(2) If there is no permanent dipole moment of the component

atoms or molecules, then in the absence of an external

field, each will have no dipole moment, and thus the average

dipole moment < p > will also be zero

4.1 Statistical Mechanics

Now suppose that we do apply an external electric field, what will

< p > be then? What effect will thermal fluctuations have? We must

again consider the ensemble of molecules for two different cases.
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4.1.1 Induced dipoles

If each molecule has an induced dipole moment, then the Hamiltonian

for each molecule is

U = −p · E +
1

2
mω2

0r
2. (44)

We can thus find the thermal average value of x by averaging it over

the distribution exp(−U/kT ), where k is Boltzmann’s constant and T

is the temperature:

< x >=

∫
d3x e−U/kTx
∫
d3x e−U/kT

(45)

Let E define the z-direction and have

< x >=

∫
d3x e(eEr cos θ− 1

2mω
2
0r

2)/kT r cos θẑ
∫
d3x e(eEr cos θ− 1

2mω
2
0r

2)/kT

=

∫
dze(eEz− 1

2mω
2
0z

2)/kTzẑ
∫
dze(eEz− 1

2mω
2
0z

2)/kT

=

∫
due−

1
2mω

2
0u

2/kT (u+ eE/mω2
0)ẑ

∫
due−

1
2mω

2
0u

2/kT
(46)

where u ≡ z − eE/mω2
0. The remaining integrals cancel nicely and we

find that

< x >= (eE/mω2
0)ẑ p = (e2E/mω2

0)ẑ α = (e2/mω2
0) (47)

the same as before we introduced thermal fluctuations in the separation.

Thus thermal effects vanish.
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4.1.2 Permanent Dipoles

For permanent dipoles (remember H2O) we may do something similar

using a Boltzmann distribution exp(−U/kT ), as in the previous exam-

ple but this time U is simply

U = −p · E (48)

with p fixed in magnitude. Thus, letting E define the z-direction again,

we have

< p >=

∫
dΩepE cos θ/kTp cos θẑ
∫
dΩepE cos θ/kT

= kT ẑ
d

dE
ln

[∫ 1

−1
duepEu/kT

]
. (49)

The integral is easy; upon taking the derivative and simplifying the

result insofar as possible, one finds

< p >= pẑ (coth(Ep/kT )− kT/Ep) . (50)

As T → 0, this becomes pẑ, meaning that the dipole is perfectly aligned

with the field. For large T , kT >> pE, we may expand the hyperbolic

cosine and find the leading term

< p >=
1

3

p2E

kT
ẑ. (51)

This is the most frequently encountered situation at e.g., room tem-

perature; it leads to a polarizability which is

α =
1

3

p2

kT
. (52)
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4.1.3 Both

Finally, if a molecule has both a permanent moment and the possibly of

being polarized, then the polarizability consists of both a temperature-

independent term and one which varies inversely as the temperature,

α =
e2

mω2
0

+
p2

3kT
. (53)

In each of the model calculations, where the dipoles are induced or

permanent or both, the mean dipole moment induced in the material

by an external field is proportional to that field. This is the basic

assumption which we will use to explore the electrostatics of dielectric

materials.

4.2 Macroscopic Electrostatics; Dielectrics

Before this section, we have considered only one kind of macroscopic

material, conductors. Within conductors, there is no electric field, we

said, because a conductor is an equipotential. If we had bothered to

think a bit about that statement, we would have realized that it is a

statement which applies only in some average sense. If one looks at the

microscopic structure of a conductor or any other material, one finds

electrons and nuclei with very strong electric fields reflecting the forces

that act between these objects.
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r

V(r)

There is no electric field only in some macroscopic sense, that is, only if

one averages over some region with a size large compared to an atomic

size (which can still be much smaller than the size of a macroscopic

probe whose size is at least of order 1µ).

Now we want to do the same with other materials, i.e., noncon-

ductors or insulators. Such materials are termed dielectrics. We con-

cern ourselves again only with the macroscopic electric field, which is

the true electric field averaged over some small domain, but it will no

longer be zero, so that we must work a little harder to understand how

to describe these materials.

Start by supposing that a piece of material is subjected to an exter-

nally applied electric field. This field will alter the multipole moments

of the constituents of the material, which we shall call molecules (They

could also be atoms or ions), yielding a net polarization of the material.

Now let’s calculate the potential do to this polarization. If we regard

it as a sum over the dipoles of each molecule, then

Φ(x) =
∑

j

pj · (x− xj)

|x− xj|3
(54)

For now assume the the molecules are neutral, so that there is no
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monopole term. In addition, assume that quadrupole and higher terms

in the series are negligible. If we define the polarization vector

P(x) = dipole moment per unit volume, (55)

then this becomes,

Φ(x) =
∫
d3x′


P(x′) · (x− x′)

|x− x′|3



=
∫
d3x′


P(x′) · ∇′


 1

|x− x′|




 . (56)

where we have used the expression

(x− x′)

|x− x′|3 = −∇ 1

|x− x′| = ∇′ 1

|x− x′| (57)

If we integrate by parts, we get the form

Φ(x) =
∫
d3x′∇′ ·


 P(x′)

|x− x′|


−

∫
d3x′

(∇′ ·P(x′))

|x− x′| (58)

There are two ways to regard this expression. Assume we have a

volume V with P(x′) finite inside and zero outside.

First case. Let V be bounded by a surface S just inside the volume.

Then using the divergence theorem, the equation above becomes.

V

S
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Φ(x) =
∫

S
d2x′

n′ ·P(x′)

|x− x′| −
∫

V
d3x′

(∇′ ·P(x′))

|x− x′| (59)

Thus we can define the surface and volume polarization charge densi-

ties:

σp(x) = Pn(x) or σp(x) = P(x) · n (60)

ρp(x) = −∇ ·P(x) (61)

These have simple physical interpretations. For example, in the fig-

ure below on the left, the material has a constant finite P throughout

its volume, so that at the surface, charge congregates since all of the

dipoles are aligned. Also, in the figure on the right a a certain location

within a material the dipoles point radially outward (yielding a positive

divergence). At the center of this region, where the tails of the dipoles

are concentrated, there is an excess of negative charge (hence the −
sign in ρp(x) = −∇ ·P(x).
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Second case. Let V be bounded by a surface S just outside of the

region of finite polarization. Then
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V

S

Φ(x) =
∫

S
d2x′

n′ ·P(x′)

|x− x′| −
∫

V
d3x′

(∇′ ·P(x′))

|x− x′| (62)

=
∫

V
d3x′

ρp(x
′)

|x− x′| (63)

Although the surface charge does not appear explicitly, it still must

be there. It may be obtained from the discontinuity in P(x) at the

surface of the polarization region. To see this consider a small pill box

enclosing a small section of the volume and surface of the polarized

material. From the divergence theorem

n

n

da P

P

= 0

= 0in

out

∫

V
d3x∇ ·P(x) =

∫

S
d2xn ·P(x), (64)

or if the region is small enough

(−n ·Pin + n ·Pout) da = ∇ ·Pd3x (65)
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so that

n ·P da = −∇ ·P d3x, (66)

Thus −∇ · P must have a delta-function at the surface, and we still

have the surface polarization charge.

To understand the surface polarization charge, consider a uniformly

polarized slab of dielectric.

+

+

+
+
+
+
+

-

-
-
-
-
-
-

−ρ ρ

ad

P

=

p =





constant inside

0 outside
(67)

We may actually regard this as two overlapping slabs, one of uniform

positive charge +ρ, and one of uniform negative charge −ρ, separated

by a small distance distance a. The whole is then electrically neutral,

with uniform polarization

P = ρa = dipole moment per unit volume. (68)

27



The charge density is then

ρp = −∇ ·P = 0 Inside the slab (69)

σp = P · n =





P > 0 on rhs

−P < 0 on lhs
(70)

The potential due to the slab is just that of two oppositely charged

sheets separated by a distance d. The corresponding electric field is

just obtained by summing that due to each sheet

+σ−σ

E=2πσE=-2πσ

E =0outinE =0

E =





0 outside the slab

−4πP inside the slab
(71)

(We used Ein = 2πσ + 2πσ = 4πσ and σ = P )

4.2.1 Electric Displacement

Thus far we have assumed that the dielectric is neutral. If there are

free charges present as well, then the total charge density is

ρtot = ρfree −∇ ·P (72)

Then as E is generated by all charges, we have

∇ · E = 4πρtot = 4π (ρfree −∇ ·P) (73)
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or,

∇ · (E + 4πP) = 4πρfree (74)

The vector (E + 4πP) is generated by free charges only. We will

define the electric displacement D as this field

D = E + 4πP ∇ ·D = 4πρfree (75)

As an example, consider the uniformly polarized slab

P

, here

ρfree = 0 everywhere (76)

Thus E + 4πP = 0, and

E =





0 where P = 0

−4πP where P 6= 0
(77)

Another simple example using D with the same slab geometry is the

parallel plate capacitor.

-

-
-

-
-

+

+

+

+
+
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If we have two charged plates in a vacuum, then P = 0 everywhere,

and

D = E =





0 outside

−4πσfree between the plates

If we now slide a dielectric slab between the plates, then we expect it

to obtain a uniform polarization, giving rise to surface charges.

-

-
-

-
-

+

+

+

+
+

Remove the battery
so that the charge
is fixed.

However, D responds to only free charges, thus it is unchanged by the

introduction of the dielectric slab. E responds to all charges, so it is

changed. Since E = D − 4πP, we see that E decreases in magnitude

inside the dielectric, and since D, P, and E are parallel:

Edielectric

Evacuum
=
Edielectric

D
=

Edielectric

Edielectric + 4πP

4.2.2 Summary and Discussion

At this point a summary of the dielectric equations will be useful.

P(x) = dipole moment per unit volume,

Φ(x) =
∫
d3x′

ρtotal(x
′)

|x− x′|
ρtotal = ρfree −∇ ·P
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E(x) = −∇Φ(x) =⇒ ∇× E(x) = 0

D(x) = E(x) + 4πP(x)

∇ ·D = 4πρfree

Several points must be made in relation to these. The first is that they

do not form a sufficient set from which we can solve for E(x) as we have

no way of writing E in terms of D or vice versa. The defining relation

does not help as we don’t know P. What is needed is a constitutive

relation which can be of the form D = D(E) or P = P(E). If there

is no nonalalytic behavior entering this relation, then one can expand

components of P as a power series in components of E. If E is not too

large, then only the linear term in these expansions need be kept,

Pi =
3∑

j=1

χijEj. (78)

where the nine numbers χij are the components of the electric suscep-

tibility tensor. When this is a good approximation, one says that the

dielectric is linear .In disordered materials as well as highly ordered

ones with a high degree of symmetry (cubic crystals, for example), this

tensor reduces to a single non-zero number,

χij = χeδij; (79)

χe is called simply the electric susceptibiliity and such materials are

said to be isotropic. Finally, if a material is uniform in its electrical

properties, χe will be a constant, independent of position; then the
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material is said to be homogeneous. If all of these things are true, the

dielectric material is as simple as it can be.

For a linear, isotropic, homogeneous dielectric, the connection be-

tween E and D is

D(x) = E(x) + 4πχeE(x) ≡ εE(x) (80)

where

ε = 1 + 4πχe (81)

is the dielectric constant of the material.

A second point is that the electric displacement is neither fish nor

fowl, that is, neither field (force on a test charge) nor source. Look again

at the integral expression for Φ(x); from it we see that the negative of

the divergence of P(x) must be a (macroscopic) charge density; it is

called the polarization charge density,

ρp(x) = −∇ ·P(x). (82)

To see how this can be so, imagine a polarization which points in the

z-direction and decreases in this direction so that its divergence is neg-

ative. Because of the variation of P(x), the molecules at smaller z are

more polarized than those at slightly larger z, meaning that less posi-

tive charge “sticks out” on the larger-z side of the former than negative

charge sticks out on the smaller-z side of the latter.
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P dP/dz < 0

+ + + + + + +

- - - - - - - - - - - - - -

Hence there is a net positive charge density in the region between the

two sets of molecules, and this is the polarization charge density. This

argument leads one to believe that the total polarization charge must be

zero. One can easily show by an application of the divergence theorem

that it is indeed zero.

Having understood that the polarization leads to a charge density,

how then may we understand the electric displacement? It is a linear

combination of a macroscopic field (representing the force on a test

charge) and of the polarization, whose divergence is a charge density.

The polarization is itself source, being the dipole moment density of

the constituent molecules of the material. Hence the displacement is

neither field (E) nor source (P). Its usefulness lies in the fact that

problems involving macroscopic electrostatics, and especially boundary

value problems, are conveniently approached by making use of both the

electric field and the electric displacement.

Another point that should be mentioned has to do with the higher

multipole moments. We have seen how it is essential to keep the sources

associated with the electric dipole moments of the molecules. What of
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the higher multipole moments? One may show that they contribute

negligibly at the macroscopic level.

Finally, there is the question of solving for the macroscopic electric

field. Given a medium such that Eq. (40) is valid, we may use D = εE

and have the field equations

∇× E(x) = 0 and ∇ · E(x) = 4π(ρ(x)/ε); (83)

these are the same as we have been working with right along except

that the charge density is rescaled by a factor of 1/ε; hence all of the

lore that we have learned may be applied to solve for the macroscopic

field.

5 Boundary-Value Problems in Dielectrics

In this section we shall solve a few representative boundary-value prob-

lems involving dielectrics. Since ∇ × E = 0, E = −∇Φ(x), D = εE,

and ∇ ·D = 4πρ in a dielectric, we may write

∇2Φ(x) = 4πρ/ε .

Thus, all the methods we have learned (images, greens functions, series

expansion etc.) will all work if properly modified.

There is of course the question of boundary conditions. At an in-

terface between two materials (dielectric-vacuum, dielectric-dielectric,

dielectric-conductor, etc.), we have a choice. We can either learn how
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to solve for the field in a system with non-homogeneous properties, or

we can split the system up into pieces in each of which the material

properties are uniform and then solve a boundary value problem. The

latter course is the simpler if the interfaces may be treated as abrupt.

The appropriate boundary or continuity conditions may be found

from the basic differential equations for D andE. Applying the diver-

gence theorem and Stokes’ theorem as we did once before, one can show

that the appropriate boundary conditions are

t

da

V

n

∇⋅D = 4πρ
⌠                  ⌠

⌡

∇⋅D d x =  D ⋅ n d x
                 ⌡

( D  - D ) ⋅ n = 4 π σ

D   = D   + 4 π σ

free

free

free

23

2 1

2n 1n

C

∇ × E = 0
⌠                          ⌠
d x ( ∇ × E)⋅n = E ⋅ dl = 0
⌡                          ⌡ 

( E  - E ) ⋅ t =0

E   = E
2t 1t

2 1
1

2

V

C

2

[D2(x)−D1(x)] · n = 4πσ and [E2(x)− E1(x)]× n = 0 (84)

which say that the discontinuity in the normal component of D is equal
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to 4π times the surface charge density (not including the surface charge

density arising from the polarization) and that the tangential compo-

nent of E is continuous. The unit normal in the equation for D points

into medium 2 from medium 1.

5.1 Example: Point Charge Near a Boundary

Consider that we have two dielectric materials; the first, with dielectric

constant ε1, occupies the half-space z > 0, and the second, with ε2,

occupies the half-space z < 0. Let there be a point charge q inside of

the first dielectric at point x0 = (0, 0, z0).

Without a boundary, we can solve the problem easily. Since D is

unchanged by the dielectric,

D = −∇
(
q

R

)
= εE thus E = −1

ε
∇
(
q

R

)
and Φ =

q

εR
(85)

where R is the distance between the charge and where the electric

displacement is evaluated

We will try to solve for the electric field using the method of images.

For the region z > 0, following our earlier success with this approach,

let us locate an image charge q′ at the image position xi = (0, 0,−z0).
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2 1

x 0x 0-
q’ q qq’

R
R

1
2

z
0

z
0

The potential produced by these two charges, embedded in a medium

which everywhere has the properties of the first medium, is

Φ1(x) =
1

ε1


 q

R1
+

q′

R2


 , (86)

where R1 and R2 are, respectively, the distances of the field point from

x0 and xi; this becomes our potential in the region z > 0 for the real

system.

For the region z < 0, we imagine in the fictitious system that there

is a charge q′′ at the location of the real charge, embedded in a medium

whose dielectric constant is everywhere ε2. The potential of such a

system is

Φ2(x) =
1

ε2

q′′

R1
. (87)

This becomes our potential in the region z < 0.

Now we try to pick the image charges in such a way that the bound-

ary conditions are satisfied. these conditions involve the following
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derivatives:

∂

∂z

(
1

R1

)∣∣∣∣∣
z=0

= − ∂

∂z

(
1

R2

)∣∣∣∣∣
z=0

=
z0

(ρ2 + z2
0)3/2

(88)

and
∂

∂ρ

(
1

R1

)∣∣∣∣∣
z=0

=
∂

∂ρ

(
1

R2

)∣∣∣∣∣
z=0

= − ρ

(ρ2 + z2
0)3/2

. (89)

Using these one finds that the condition of continuous normal compo-

nent of D or, D1z = D2z leads to (since σfree = 0)

q − q′ = q′′ (90)

and that the condition of continuous tangential component of E or

E1ρ = E2ρ leads to
1

ε1
(q + q′) =

1

ε2
q′′ . (91)

The solution of these two linear equations is

q′ =
(
ε1 − ε2
ε1 + ε2

)
q

q′′ =
(

2ε2
ε1 + ε2

)
q. (92)

Hence the potential on the right side, z > 0, is

Φ1(ρ, z) =
q

√
ρ2 + (z − z0)2

+
q(ε1 − ε2)/(ε1 + ε2)√

ρ2 + (z + z0)2
(93)

while that on the left, z < 0, is

Φ2(x) =
2qε2/(ε1 + ε2)√
ρ2 + (z − z0)2

. (94)
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consequences The constitutive relations yield several interesting

results for this problem. Since ∇D = 4πρ, where ρ is the free charge

density, it must be that

∇ ·D = 0 except at the real charge

Then as D = εE,

∇ · E = 0 except at the real charge

Then since D = E + 4πP, it must be that

∇ ·P = 0 except at the real charge

Thus the polarization charge density is zero except at the real charge!

(this is consistent with the potential for a point charge retaining 1/r

behavior).
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This line of reasoning breaks down at the surface between the two

dielectrics, since there ∇ε 6= 0 corresponding to the polarization surface

charge P · n discussed earlier. Thus

σp = (P2 −P1) · n (95)

where n is the unit normal outward from medium 2 into medium 1. If

we apply this to our present example, we first need to find the polar-

izations. These are given by, for i = 1, 2,

Pi = χiEi =
εi − 1

4π
Ei. (96)

and so

σp =
ε2 − 1

4π
E2z −

ε1 − 1

4π
E1z, (97)

evaluated at z = 0. Here,

E1z = − 1

ε1

(q − q′)z0

(ρ2 + z2
0)3/2

(98)

and

E2z = − 1

ε2

q′′d0

(ρ2 + z2
0)3/2

. (99)

The polarization surface-charge density is then

σp = −P1z + P2z =
z0

(ρ2 + z2
0)3/24π

{
ε1 − 1

ε12
(−q + q′)− ε2 − 1

ε2
q′′
}

=
qz0

4π(ρ2 + z2
0)3/2

{
ε1 − 1

ε1

2ε2
ε1 + ε2

− ε2 − 1

ε1

2ε1
ε1 + ε2

}

=
qz0(ε1 − ε2)

2πε1(ε1 + ε2)(ρ2 + z2
0)3/2

.(100)
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An important limiting case is given by ε1 = 1 and ε2 → ∞, in which

case the material at z < 0 cannot support an electric field and behaves

like a conductor. Then our system reduces to a point charge outside of

a conductor, for which we already know that the answer is

σp = − qz0

2π(ρ2 + z2
0)3/2

. (101)

5.2 Example: Dielectric Sphere in a Uniform Field

Our second example is a dielectric sphere placed in a uniform externally

applied field.

ε = 1

ε = 1

E z0

Rather than use the image charge method, this time we shall make use

of an orthogonal function expansion. Because∇×E(x) = 0 everywhere,

we can write the electric field as the gradient of a scalar potential.

Further, for a uniform medium D(x) = εE(x) with constant ε, so, from

∇ · D(x) = 4πρ(x), we know that ∇ · E(x) = 0 where there is no

macroscopic charge density ρ(x). Given that the radius of the sphere

is a, we have such conditions for r < a and for r > a. Hence the scalar

potential satisfies the Laplace equation in these two regimes, and we can

expand it in the usual way in spherical coordinates. The symmetries
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in the problem imply that the solution is independent of φ, so we need

to use a Legendre polynomial expansion. Thus, for r < a, we have

Φ<(r, θ) = E0a
∞∑

l=0

Al

(
r

a

)l
Pl(cos θ) (102)

and, for r > a,

Φ>(r, θ) = −E0r cos θ + E0a
∞∑

l=0

Bl

(
a

r

)l+1

Pl(cos θ). (103)

The first term in the second of these expansions is the potential asso-

ciated with the applied field; the others come from the sources induced

on the dielectric sphere (polarization charge). The boundary conditions

that must be applied are (i) tangential E and (ii) normal D continuous;

these are
∂Φ<

∂θ

∣∣∣∣∣
r=a

=
∂Φ>

∂θ

∣∣∣∣∣
r=a

(104)

and

ε
∂Φ<

∂r

∣∣∣∣∣
r=a

=
∂φ>
∂r

∣∣∣∣∣
r=a

, (105)

where ε is the dielectric constant of the sphere. By proceeding with the

solution in the by now familiar way for orthogonal function expansions,

one finds that all Al and Bl are zero except for l = 1. For l = 1 the

conditions are

A1 = −1 +B1 and εA1 = −1− 2B1. (106)

These are easily solved to yield

A1 = −3/(2 + ε) and B1 = (ε− 1)/(ε+ 2). (107)
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Hence, the potential is

Φ<(r, θ) = − 3

ε+ 2
E0r cos θ (108)

and

Φ>(r, θ) = −E0r cos θ + E0a

(
ε− 1

ε+ 2

) (
a

r

)2

cos θ. (109)

Notice that if ε→∞, we recover the result for the conducting sphere.

From this result, and since Φ(x)dipole = p ·x/r3, we can see that the

sphere has a dipole moment which is

p = E0a
3
(
ε− 1

ε+ 2

)
ẑ. (110)

The electric field inside of the sphere is a constant, and so is D,

D = εE = ε

(
3

ε+ 2

)
E0ẑ ≡ E + 4πP, (111)

so

4πP = D− E = 3

(
ε− 1

ε+ 2

)
E0ẑ, (112)

or

P =
3

4π

(
ε− 1

ε+ 2

)
E0ẑ. (113)

E0 E0P

+

+++
+
+
+

+-

---
-
--
-

Dielectric sphere in a uniform field, showing the polarization on the left and
the polarization charge with its associated, apposing, electric field on the right.
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Although there is no macroscopic charge density anywhere in the

system, there is polarization charge density. There is no volume polar-

ization charge density because P has zero divergence. However, there

is a surface charge density; it is given by

σp = P · r̂ = Pr =
3

4π
E0

(
ε− 1

ε+ 2

)
cos θ. (114)

As an application of the polariazble sphere problem, consider a water

drop in air. For this system, roughly

εrmair ≈ 1 εrmwater ≈ 81 . (115)

Water is a dielectric composed of permanent dipoles. The polarizability

α (p = αE) of the water drop is then

αH2O =
81− 1

81 + 2
a3 ≈ a3 (116)

Water drops look like metallic spheres to a static E-field.

5.2.1 The Inverse Problem

The inverse problem of a dielectric with a spherical cavity is easy to

solve because one has only to change ε into 1/ε in the results found

here. The reason is that the relative dielectric constant of the cavity to

that of the surrounding medium is 1/ε. In this way we find

Φ<(r, θ) = − 3ε

2ε+ 1
rE0 cos θ (117)
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and

Φ>(r, θ) = −E0r cos θ − E0a
ε− 1

2ε+ 1

(
a

r

)2

cos θ. (118)

a

E 0

ε

5.3 Clausius-Mossotti equation

In writing α above note that the electric field in

p = αE

is the external field not including the field of the induced dipole itself.

However, in

P = χeE

the field E does include the the field due to the dipoles in P. If we can

relate these two, we can calculate the relation between α (a microscopic

quantity), and the macroscopic quantities χe and ε. If we define two

different Es

p = αEloc = α(electric field at the site of the molecule)

P = χeEmed = χe(electric field in the medium)
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If n is the number of molecules per unit volume, then P = np and

P = nαEloc.

With these equations we can find a relation between α and χe if we

can relate Eloc and Emed. We note that Eloc is the field at the site of a

molecule if the molecule is removed. To calculate this, we will consider

a spherical cavity in a dielectric medium. If the cavity were filled with

dielectric, then the field at the center would be Emed, so

= +

Emed = Eloc + Esphere

where Esphere is the field at the center of a uniformly polarized dielectric

sphere due only to the polarization. From Eq. (111) it is clear that the

field inside the sphere (due to both the polarization and the external

field) is

Einside sphere =
3

2 + ε
E0 = E0 +

1− ε
2 + ε

E0

Thus that due only to the polarization is

Esphere =
1− ε
2 + ε

E0
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Comparing this to Eq. (113) we see that

Esphere = −4π

3
P

Thus

Eloc = Emed − Esphere = Emed +
4π

3
P.

Now, if we multiply by nα and solve for P, we get

P =
nα

1− 4π
3 nα

Emed

Then since P = χeEmed and ε = 1 + 4πχe we get

4π

3
nα =

ε− 1

ε+ 2
Clasius−Mossotti Equation (119)

6 Electrostatic Energy in Dielectrics

In free space we derived the energy of a distribution of charge ρ(x) by

assembling the distribution little by little, bringing infinitesimal pieces

of charge in from infinity. Following this reasoning we found that

W =
1

2

∫
d3x ρ(x)Φ(x)

This is in general not true in the presence of dielectrics (however, as we

will see, it may be true in some cases). In the presence of dielectrics

work must also be done to induce polarization in the dielectric, and it

is not clear if this work is included in the equation above.

When dielectrics are present we shall use a somewhat different ar-

gument (which still corresponds to the same procedure). Suppose that
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there is initially some macroscopic charge density ρ(x), potential Φ(x),

and fields E(x) and D(x). The imagine that some infinitesimal change

in the charge density, δρ(x), is made. To first order in δρ, the change

in energy of the system is

δW =
∫

V
d3xΦ(x)δρ(x) (120)

where the integration is done over that region of space where the in-

tegrand is non-zero. The point is that this is the interaction energy of

δρ(x) with the sources already present (and which produce Φ(x)); the

interaction energy of δρ with itself is second-order in small (infinites-

imal) quantities. (this form is consistent with the fact that W is a

natural thermodynamic function of the charges, not the potential).

The change in D which arises as a consequence of the change δρ in

the charge density is related to the latter by the equation∇·(D+δD) =

4π(ρ+ δρ), or

∇ · (δD(x)) = 4πδρ(x), (121)

so we may write the change in the energy as

δW =
∫

V
d3xΦ(x)

1

4π
(∇ · δD(x)). (122)

We next do an integration by parts in the by now familiar way.

δW =
1

4π

∫

V
d3x∇ · (Φ(x)δD(x))− 1

4π

∫

V
d3x∇Φ(x) · δD(x)

=
1

4π

∫

S
d2xΦ(x)δD(x) · n +

1

4π

∫

V
d3xE(x) · δD(x). (123)

48



The surface integral is zero for a localized charge distribution if V in-

cludes all space. Thus we have simply

δW =
1

4π

∫
d3xE(x) · δD(x). (124)

Now we must introduce some statement about the properties of the

medium. If it is linear (D = εE), then

E · δD = E · (εδE) =
1

2
εδ(E · E) =

1

2
δ(E ·D)

so that

[E(x) · δD(x)] =
1

2
δ[E(x) ·D(x)]. (125)

and so

δW =
1

8π

∫
d3x δ[E(x) ·D(x)]. (126)

If we now integrate from zero field up to the final fields (a functional

integration),

W =
1

8π

∫
d3x

∫ D

0
δ[E(x) ·D(x)]

we find

W =
1

8π

∫
d3xE(x) ·D(x). (127)

This result is valid only for linear media.

There are several amusing consequences obtainable from this rela-

tion. First, by writing E(x) = −∇Φ(x) and integrating by parts, we

obtain

W =
−1

8π

∫
d3x∇ · (Φ(x)D(x)) +

1

8π

∫
d3xΦ(x)∇ ·D(x)
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Through the divergence theorem, the first term yields a surface term

which vanishes at infinity. The second term becomes

W =
1

2

∫
d3x ρ(x)Φ(x); (128)

Thus for a linear dielectric, the original formula is valid.

6.1 Force on a Dielectric

From the above, it is clear that W , as written, is a function of the free

charges, their positions, and of the positions of the dielectrics through

ε(x) (which may vary from point to point). Thus we may write

W (x, ρ) =
1

8π

∫
d3x
|D(x)|2
ε(x)

linear only (129)

From this, it is clear that if the free charges (which produce D) are

fixed, and we move one of the dielectrics, then the energy is reduced

if the change makes ε increase in the region where D(x) is finite. In

particular, the energy is reduced by having a dielectric move from a

region of low field to one of high field. Thus the force on such a linear

dielectric must always be such as to draw it into a region of greater

fields.
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source

region of strong field

F ε

If the free charges are held fixed, then since W depends on the

positions and magnitude of the charges and dielectrics, it follows that

the force on a dielectric is

Fη = −
(
∂W

∂η

)

Q

(130)

where Fη is the η-component of the force on the dielectric. This is

because the most stable state of the system is that with the minimum

W .

In this calculation, it is important that the energy was a natural

function of the charges and positions of the charges and dielectrics.

Then we could evaluate the total differential

dW =

(
∂W

∂η

)

Q

dη +

(
∂W

∂Q

)

η

dQ

to obtain the force. This is analogous to the situation in elementary

thermodynamics where the energy U is a natural function of the volume

and temperature U(V, T ). If we wanted to obtain a potential which was

a function of the entropy S and V (suppose for example S is change in
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such a way as to keep T fixed, i.e. a system in a heat bath), then we

made a Legendre transformation F = U−TS, and the most stable state

of the system is that with the minimum F (For an elegant discussion

of elementary thermodynamics see Thermodynamics by Enrico Fermi,

about 77pp.)

Thus, since W is a natural function of the positions and charges,

it is not appropriate for the case where the potentials are held fixed.

We need the potential which is a natural function of the positions and

potentials. As in the paragraph above, the way to remedy this is a

Legendre transformation to a new function W ′, defined by

W ′ = W − 1

4π

∫
d3xE(x) ·D(x) (131)

This is a general expression (not just for the linear case) where E =

−∇Φ(x) is a natural function of the potentials, and D is a function of

the charges (since ∇ ·D = 4πρ). A differential change in W ′ is given

by

δW ′ = δW − 1

4π

∫
d3xE(x) · δD(x)− 1

4π

∫
d3xD(x) · δE(x). (132)

Then, since

δW =
1

4π

∫
d3xE(x) · δD(x)

δW ′ = − 1

4π

∫
d3xD(x) · δE(x) (133)

Then since E(x) is a natural function of the potential, W ′ is a natural

function of potentials and positions, as desired.
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Thus the force on a dielectric in the presence of fixed potentials (i.e.

conductors connected to a battery) is

Fη = −

∂W

′

∂η




Φ

(134)

In the linear case, we can evaluate this in terms of W , since

W ′ = W− 1

4π

∫
d3xE(x)·D(x) = − 1

8π

∫
d3xE(x)·D(x) = −W (135)

Thus in the linear case only,

Fη = +

(
∂W

∂η

)

Φ

(136)

6.2 Forces on a Dielectric Revisited

These force formulae may also be derived in a more pedestrian manner.

We can derive one for the change in a system’s energy when a piece

of dielectric is moved from one place to another under conditions of

constant macroscopic charge density. Consider that initially the macro-

scopic fields, charge density, potential, and polarization are E0, W0, D0,

ρ0, Φ0, and P0. Let the final ones have subscript 1 instead of 0. Then

W1 =
1

8π

∫
d3xE1(x) ·D1(x) and W0 =

1

8π

∫
d3xE0(x) ·D0(x), (137)

so

∆W ≡ W1 −W0 =
1

8π

∫
d3x [E1 ·D1 − E0 ·D0]. (138)

By adding and subtracting identical terms, we can turn this expression

into

∆W =
1

8π

∫
d3x [E0+E1]·[D1−D0]+

1

8π

∫
d3x [E1·D0−E0·D1]. (139)
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By doing an integration by parts (in the usual way), one can show that

the first term is zero if ρ1 = ρ0, so we have

∆W =
1

8π

∫
d3x [E1 ·D0 − E0 ·D1]. (140)

As an example of the use of this formula, imagine that a dielec-

tric having ε = ε1 is moved in from infinity to occupy some domain V

where formerly there was empty space. Everywhere else there is vac-

uum. Then D1 = ε1E1 in V, and D1 = E1 elsewhere. Also, E0 = D0

everywhere. Our formula for the change in energy gives

∆W = − 1

8π

∫

V
d3x(ε1 − 1)E1 · E0 = −1

2

∫
d3xP1 · E0. (141)

This is the energy of the dielectric object placed in an external field

E0. The factor of 1/2 distinguishes it from the energy of a permanent

dipole placed in an external field which we derived earlier. It has to

do with the fact that in the present case the field has to do work to

polarize the dielectric in the first place.

We may also devise a formula for the force on a piece of dielectric. In

the case that the (macroscopic) charge is fixed, no work is done moving

any charge and so we have a conservative system in the sense that the

change in the field energy must be equal to the work that an external

agent does on the dielectric when the latter is moved. This force (recall

our earlier arguments of this kind) is equal and opposite to the electric

field force on the dielectric so we wind up concluding that

Fη = −
(
∂W

∂η

)

Q

(142)
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where the “Q” means that the derivative with respect to displacement

in the η direction is taken at constant sources (constant ρ(x)). The

result is the force in the direction of η, and this is the usual expression

for a conservative system.

A more difficult case is one in which there is an external source of

energy. A very common case of this kind which frequently arises in

electrostatics involves a set of conducting objects or surfaces on which

the macroscopic charge ρ resides, and keeping these surfaces at fixed

potentials when the dielectric is moved. The latter is easily achieved by

connecting the conductors to fixed voltage sources (batteries). To see

what happens, imagine making a small displacement of the dielectric

in two steps. First, move it by dη while maintaining ρ(x) fixed. Then

restore Φ(x) to its original value at those points where there is non-

zero macroscopic charge density by adjusting this charge density as

necessary. We can calculate the change in field energy during either of

these steps by applying the general formula for a linear system

W =
1

2

∫
d3x ρ(x)Φ(x), (143)

which gives, for small changes in ρ and Φ,

δW =
1

2

∫
d3x [δρ(x)Φ(x) + ρ(x)δΦ(x)]. (144)

In the first step described above, there is no change in ρ, so

δW1 =
1

2

∫
d3x ρ(x)δΦ1(x). (145)
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This is the same as δWQ since charges are fixed in this step:

δW1 = δWQ. (146)

In step 2, ρ(x) is adjusted so that Φ(x) returns to its initial value

everywhere where the charge density does not vanish. In this step

δW2 =
1

2

∫
d3x ρ(x)δΦ2(x) +

1

2

∫
d3x δρ(x)Φ(x). (147)

However, at points where ρ(x) in non-zero, δΦ2(x) = −δΦ1(x) because

in the second step we restore the potential to its original value at these

points. Hence we can rewrite δW2 as

δW2 = −1

2

∫
d3x ρ(x)δΦ1(x) +

1

2

∫
d3x δρ(x)Φ(x). (148)

There is a second way to see what δW2 is; in this step we make an

infinitesimal change in the charge density, δρ(x), and the change in

energy accompanying this adjustment is, to first order in infinitesimals,

δW2 =
∫
d3xΦ(x)δρ(x). (149)

By comparing the two equations we have for δW2, we learn that

1

2

∫
d3xΦ(x)δρ(x) = −1

2

∫
d3x ρ(x)δΦ1(x). (150)

Using this relation in Eq. (113), we find that

δW2 = −
∫
d3x ρ(x)δΦ1(x) (151)
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and this is the same as −2δW1. Consequently we can say that the total

change in energy, which we shall call δWV (the “V ” signifies constant

potentials at points where δρ(x) is non-zero), is

δWV = δW1 + δW2 = −δW1 = −δWQ. (152)

Consequently,

Fη = −
(
∂W

∂η

)

Q

= +

(
∂W

∂η

)

V

. (153)

In other words, if we can calculate the energy as a function of η, the

position of the dielectric, at constant potentials where ρ(x) 6= 0, we can

find the force on the dielectric by taking the positive derivative of this

energy with respect to the dielectric’s position.

7 Example: Dielectrophoresis

A spherical dielectric particle of radius a and ε = ε1 is placed in a

dielectric fluid (ε2 6= ε1) contained within an annulus with conducting

walls.
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Fig.1. Dielectric fluid and particle between two conducting cylinders

The annulus is maintained at a relative potential V0. Assuming that

a¿ any other dimension in the problem, and that the densities of the

particle and fluid are the same:

• Show that the net force on the particle is

Fnet = −1

3
a3AV 2

0 r
−3 [ln (Rout/Rin)]−2 r̂ ,

where

A =
ε2(4ε2 + 5)− ε1(ε2 − 1)

(2ε2 + ε1)2
(ε1 − ε2) .

• Discuss how Fnet depends upon (1) ε2 relative to ε1 and (2) ε1 for

fixed ε2.

• The drift velocity v of the particle is given by

Fnet = 6πηav ,
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(1) Discuss the dependence of v on a and ε1 for fixed ε2, and (2)

Suggest possible uses for this setup (dielectrophoresis).

Solution. To solve this we must first find the field between the

cylinders in the absence of the particle. To accomplish this, we use

Gauss’ law, the constitutive relations, and the fact that D and E are

purely radial.

∇ ·D = 4πρ ; D = ε2E

λr
λ = charge / length

Fig. 2. The gaussian surface is a cylinder within the annulus

l2πrε2Er = 4πλl ; Er =
2λ

ε2r

V0 =
∫ Rout
Rin

dr
∂Φ

∂r
= −2λ

ε2
ln (Rout/Rin)

When we solve for λ(V0), we find that

Ecyl = − V0

r ln (Rout/Rin)
r̂

Now we must solve for the field within the volume of the particle.

Since a ¿ R, we will assume that Ecyl is essentially uniform over the
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diameter of the particle. This problem then becomes very similar to

one we solved in class, that of a dielectric sphere in a uniform external

field E0.

εE0

Fig. 3. A dielectric sphere in a uniform external field.

Recall that for this problem,

Esphere =
3

ε+ 2
E0

where Esphere is the electric field within the sphere. However, since

the dielectric constant only enters through the boundary condition in

a relative way

D1n = D2n ⇒ ε1E1n = ε2E2n ⇒
ε1
ε2
E1n = E2n,

it must be that

Esphere =
3ε2

2ε2 + ε1
Ecyl.

The polarization of the sphere is then

P =
ε1 − 1

4π
Esphere =

1

4π

3ε2(ε1 − 1)

2ε2 + ε1
Ecyl,

which corresponds to a dipole moment of the sphere

p =
4π

3
a3P = a3 ε2(ε1 − 1)

2ε2 + ε1
Ecyl
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Thus the electrostatic force on the sphere is given by

Felec = (p · ∇) Esphere = a3 3ε22(ε1 − 1)

(2ε2 + ε1)2
(Ecyl · ∇) Ecyl

Felec = (p · ∇) Esphere =
a3

2

3ε22(ε1 − 1)

(2ε2 + ε1)2
∇ |Ecyl|2

In addition to this force, there is an electric Archimedes force. This

force is due to the fact that the particle displaces some of the dielectric

fluid. We can calculate it by applying Archimedes principle just like

we do for gravitational forces. The electric Archimedes force is minus

the force that the sphere of displaced fluid experiences.

Felec−Arch = −Felec(ε1 → ε2)

As indicated, we can get this force by replacing ε1 by ε2 in the force

equation above.

Felec−Arch = −a
3

6
(ε2 − 1)∇ |Ecyl|2

Thus the net electric force on the sphere is

Fnet =
a3

2


3ε22(ε1 − 1)

(2ε2 + ε1)2
− ε2 − 1

3


∇ |Ecyl|2 .

Now evaluating the gradient, we get

Fnet = − a3V 3
0

r3 (ln(Rout/Rin))2


3ε22(ε1 − 1)

(2ε2 + ε1)2
− ε2 − 1

3


 ,

or, after a bit of algebra,

Fnet = − a3AV 3
0

3r3 (ln(Rout/Rin))2
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where

A =
ε2(4ε2 + 5)− ε1(ε2 − 1)

(2ε2 + ε1)2
(ε1 − ε2)

Interpretation. This setup has practical applications for sorting

bits of dielectric particles with different ε1. Thus we should consider A

for fixed ε2 and different ε1 of the different particles. If A > 0, then the

force is inward, toward stronger fields, and if A < 0, then the force is

outward, toward weaker fields. The zeroes of A occur when

ε2 = ε1 ; ε1 =
ε2(4ε2 + 5)

ε2 − 1
,

and the maximum for fixed ε2

∂A

∂ε1
= 0⇒ ε1 = 2(ε2 + 1).

Now lets consider a numerical example. Let ε2 = 2.0 and vary ε1.

Fig. 4. Sketch of A
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As shown in the figure, A is not a monotonic function of ε1 In fact there

are three regions

ε1 < ε2 force is outward

ε2 < ε1 < ε2(4ε2 + 5)/(ε2 − 1) force is inward

ε1 > ε2(4ε2 + 5)/(ε2 − 1) force is outward

Thus, mildly and highly polar particles move out, while particles of

intermediate polarizability more in. At first it seems that this makes

no sense; however, consider the following explanation:

Since the potential within the annulus is held fixed by an external

source, the appropriate thermodynamic potential for this system is

W ′(r,Φ) = − 1

8π

∫

V
d3x ε(x) |E(x)|2

The most stable state of the system is the one which minimizes this

potential. Thus the most stable state of the system is obtained by

having the largest field where ε(x) is largest. Reconsider the three

regions.

(1) ε1 < ε2 The particle has a lower ε than that of

the fluid, thus it is expelled to regions of

low filed. Thus, ε(x) is maximized where

E is large.

(2) ε2 < ε1 < ε2(4ε2 + 5)/(ε2 − 1) Now the particle has a higher ε than the fluid
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thus it moves to regions of large field

(3) ε1 > ε2(4ε2 + 5)/(ε2 − 1) The field inside the particle goes to zero as ε→∞
(the sphere approaches a metal), and the potential

is minimized by having the sphere go to regions of

low field.

Now consider the motion of the particle. The drift velocity of the

particle is given by

Fnet = 6πηv.

If we use the following reasonable parameters

parameter value cgs value

a 0.1 mm 0.01 cm

ε1 4.6 4.6

ε2 2.3 2.3

η 6.5× 10−4 (MKSA) 6.5× 10−3 cgs

Rin 0.5 mm 0.05 cm

Rout 1 cm 1 cm

V0 4.0× 103 volts 13.34 statvolts

r 0.5 cm 0.5 cm

The value of ε2 corresponds to that of organic solvents, in this case Ben-

zene. Solving with these parameters, we find that v = 0.031 cm./sec.
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Slow.

We could use this setup to separate living cells from dead ones due

to the very different water content (since εwater ≈ 81).

A Multipole Expansion: with Spherical Harmon-

ics

In this appendix, we will discuss the multipole expansion as it is done

in Jackson.

Consider the potential Φ(x) produced by some localized charged

distribution ρ(x),

Φ(x) =
∫
d3x′ ρ(x′)

1

|x− x′| . (154)

Substitute the spherical harmonic expansion for 1
|x−x′| to have

Φ(x) =
∑

l,m

4π

2l + 1



∫
d3x′ ρ(x′)Y ∗l,m(θ′, φ′)

rl<
rl+1
>


Yl,m(θ, φ). (155)

Ο

x’

x

r = r’
r = r>

<

Now, if the origin of coordinates is chosen to be around the center of

the charge distribution, and if the field point x is such that r is larger
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than the distance of any source point (where ρ(x′) 6= 0) x′ from the

origin, then it is true that for all x′ of importance in the integral, r > r′

and so r< = r′ and r> = r. Thus,

Φ(x) =
∑

l,m

4π

2l + 1

[∫
d3x′ r′lY ∗l,m(θ′, φ′)ρ(x′)

] Yl,m(θ, φ)

rl+1
. (156)

This result may be written in the form

Φ(x) =
∞∑

l=0

l∑

m=−l

4π

2l + 1
qlm

Yl,m(θ, φ)

rl+1
≡∑

l,m

Φlm(x), (157)

where

qlm ≡
∫
d3x rlY ∗l,m(θ, φ)ρ(x) (158)

is known as a multipole moment of the charge distribution. These

moments, which satisfy the identity

ql,m = (−1)mq∗l,−m (159)

by virtue of the same property of the spherical harmonics, completely

determine the field outside of the domain where the charge is located.

Note, however, that they do not contain enough information to tell

us what the actual charge distribution is. The moments of greatest

interest are the ones with small values of l. We can understand this

statement from the fact that the moment qlm is proportional to, as seen

from Eq. (5), al, where a is the size of the charge distribution. Hence

the potential produced by this moment is proportional to (q ′/r)(a/r)l

where q′ is a characteristic charge in the distribution (The actual total
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charge may vanish). This contribution to the potential becomes very

small for large l given that r is significantly larger than a.

The components of the electric field associated with the l,m multi-

pole are

Er = −∂Φlm

∂r
=

4π(l + 1)

2l + 1
qlm

Yl,m(θ, φ)

rl+2

Eθ = −1

r

∂Φlm

∂θ
= − 4π

2l + 1
qlm

1

rl+2

∂Yl,m(θ, φ)

∂θ

Eφ = − 1

r sin θ

∂Φlm

∂φ
= − 4π

2l + 1
qlm

im

rl+2 sin θ
Yl,m(θ, φ). (160)

The leading moments are

q00 =
∫
d3x ρ(x)

1√
4π

=
q√
4π

(161)

where q is precisely the total charge of the system. This term is the

monopole moment of the charge distribution; it is fundamentally just

the total charge. Similarly,

q10 =

√√√√ 3

4π

∫
d3x ρ(x)r cos θ =

√√√√ 3

4π

∫
d3x ρ(x)z (162)

and

q11 = −q∗1,−1 = −
√√√√ 3

8π

∫
d3x ρ(x)r sin θe−iφ = −

√√√√ 3

8π

∫
d3x ρ(x)(x− iy).

(163)

From these equations we can see that the information contained in the

coefficients q1m is the same as what is contained in the components of

the electric dipole moment p of the charge distribution,

p ≡
∫
d3x ρ(x)x. (164)
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The explicit connection is

p =





1

2

√√√√8π

3
(q11 − q1,−1)x̂−

1

2

√√√√8π

3
i(q11 + q1,−1)ŷ +

√√√√4π

3
q10ẑ





(165)

The l = 2 moments, called electric quadrupole moments, are easily

shown to be

q22 =
1

4

√√√√15

2π

∫
d3x ρ(x′)(x− iy)2

q21 = −
√√√√15

8π

∫
d3x ρ(x)(x− iy)z

q20 =
1

2

√√√√ 5

4π

∫
d3x ρ(x)(3z2 − r2). (166)

These multipole moments are traditionally written in terms of the com-

ponents of the traceless quadrupole moment tensor, defined by

Qij ≡
∫
d3x ρ(x)(3xixj − r2δij); (167)

the subscripts i and j stand for Cartesian components x, y, and z, or

1,2,3. With a little algebra, one can show that

q22 =
1

12

√√√√15

2π
(Q11 − 2iQ12 −Q22)

q21 = −1

3

√√√√15

8π
(Q13 − iQ23)

q20 =
1

2

√√√√ 5

4π
Q33 (168)

It seems a little strange to be replacing at most five independent num-

bers (contained in the moments q2m) by nine numbers Qij; however,

68



the quadrupole moment tensor is symmetric, Qij = Qji, reducing the

number of possible independent components to six, and it also has,

as its name suggests and as may be shown easily from the definition,

zero trace so that Q33 = −Q11 − Q22 and only two of the diagonal

components are independent. Thus the tensor can have at most five

independent components also.

69


