Homework set 14

November 9, 2001

1. Complete the analysis of the Fizeau experiment begun in class. I.e., derive (to lowest order in β , and for constant n)

$$v_{phase} = \frac{c}{n} \pm v \left(1 - \frac{1}{n^2} \right) + O(\beta^2)$$

2. In a certain region of space, an observer at rest relative to the local neighborhood of stars sees the distribution of stars to be isotropic. A second observer moves relative to the first in the positive z-direction with speed $v = \beta c$.

(a) Show that the second observer sees a distribution of stars which depend upon the polar angle θ' (in spherical corrdinates) according to

$$n(\theta') = \frac{N}{4\pi} \frac{\left(1 - \beta^2\right)}{\left(1 - \beta\cos\theta'\right)^2}$$

where N is the total number of visible stars. Discuss this result. Plot $n(\theta')$ versus θ' for $\beta = 0.1$, 0.5, 0.9. How would the sky appear to the second observer as $\beta \to 1$?

(b) To the first observer, all the stars visible emit light of the same color: for simplicity assume that each star is a monochromatic emitter of light of wavelengh λ_0 . For the second observer, find the observed wavelength λ as a function of the observed angular position of θ' of the star. Find the value of θ' for which (for a given β) there is neither a red shift nor a blue shift. Plot $\lambda(\theta')$ versus θ' for $\beta = 0.1$, 0.5, 0.9 and $\lambda_0 = 5000$ rA. Describe the appearance of the sky as a function of β for the second observer.

(c) The stars are of course not monochromatic emitters. Over a broad range frequencies they emit a black-body spectrum. For a black body of temperature T, the number of phonons present per unit volume within d^3k of **k** is

$$n(\mathbf{k})d^{3}k = \frac{1}{4\pi^{3}} \frac{1}{\left(e^{\hbar ck/k_{B}T} - 1\right)} d^{3}k$$

Show that to the second observer, a star at apparent position θ' has a blackbody spectrum too, but for a different temperature than that of the first observer. Find this temperature in the frame of the second observer in terms of the temperature T in the frame of the first observer, β , and θ' . In light of this result, discuss the appearance of the sky to the second observer

- 3. Jackson 11.11.
- 3. Jackson 11.12.
- 3. Jackson 11.19.