Homework set 14

November 9, 2001

1. Complete the analysis of the Fizeau experiment begun in class. I.e., derive (to lowest order in β, and for constant n)

$$
v_{\text {phase }}=\frac{c}{n} \pm v\left(1-\frac{1}{n^{2}}\right)+O\left(\beta^{2}\right)
$$

2. In a certain region of space, an observer at rest relative to the local neighborhood of stars sees the distribution of stars to be isotropic. A second observer moves relative to the first in the positive z-direction with speed $v=\beta c$.
(a) Show that the second observer sees a distribution of stars which depend upon the polar angle θ^{\prime} (in spherical corrdinates) according to

$$
n\left(\theta^{\prime}\right)=\frac{N}{4 \pi} \frac{\left(1-\beta^{2}\right)}{\left(1-\beta \cos \theta^{\prime}\right)^{2}}
$$

where N is the total number of visible stars. Discuss this result.
Plot $n\left(\theta^{\prime}\right)$ versus θ^{\prime} for $\beta=0.1,0.5,0.9$. How would the
sky appear to the second observer as $\beta \rightarrow 1$?
(b) To the first observer, all the stars visible emit light of the same color: for simplicity assume that each star is a monochromatic emitter of light of wavelengh λ_{0}. For the second observer, find the observed wavelength λ as a function of the observed angular position of θ^{\prime} of the star. Find the value of θ^{\prime} for which (for a given β) there is neither a red shift nor a blue shift. Plot $\lambda\left(\theta^{\prime}\right)$ versus θ^{\prime} for $\beta=0.1,0.5,0.9$ and $\lambda_{0}=5000 \mathbf{r} A$. Describe the appearance of
the sky as a function of β for the second observer.
(c) The stars are of course not monochromatic emitters. Over a broad range frequencies they emit a black-body spectrum. For a black body of temperature T, the number of phonons present per unit volume within $d^{3} k$ of \mathbf{k} is

$$
n(\mathbf{k}) d^{3} k=\frac{1}{4 \pi^{3}} \frac{1}{\left(e^{\hbar c k / k_{B} T}-1\right)} d^{3} k
$$

Show that to the second observer, a star at apparent position θ^{\prime} has a black-
body spectrum too, but for a different temperature than that of the first observer.
Find this temperature in the frame of the second observer in terms of the temperature T in the frame of the first observer, β, and θ^{\prime}. In light of this result, discuss the appearance of the sky to the second observer
3. Jackson 11.11.
3. Jackson 11.12.
3. Jackson 11.19.

