
9 Quantization of Gauge Fields

We will now turn to the problem of the quantization of the simplest gauge theory,
the free electromagnetic field. This is an abelian gauge theory. In Physics 583
we will discuss at length the quantization of non-abelian gauge fields. Unlike
abelian theories, such as the free electromagnetic field, even in the absence of
matter fields, non-abelian gauge theories are not free fields and have highly
non-trivial dynamics. In Physics 582 we will discuss canonical quantization and
path-integral quantization of the free electromagnetic gauge field.

9.1 Canonical Quantization of the Free Electromagnetic

Field

Maxwell’s theory was the first field theory to be quantized. However, the quan-
tization procedure involves a number of subtleties not shared by the other prob-
lems that we have considered so far. The issue is the fact that this theory has
a local gauge invariance. Unlike systems which only have global symmetries,
not all the classical configurations of vector potentials represent physically dis-
tinct states. It could be argued that one should abandon the picture based on
the vector potential and go back to a picture based on electric and magnetic
fields instead. However, there is no local Lagrangian that can describe the time
evolution of the system now. Furthermore is not clear which fields, ~E or ~B (or
some other field) plays the role of coordinates and which can play the role of
momenta. For that reason, one sticks to the Lagrangian formulation with the
vector potential Aµ as its independent coordinate-like variable.

The Lagrangian for Maxwell’s theory

L = −1

4
FµνF

µν (1)

where Fµν = ∂µAν − ∂νAµ, can be written in the form

L =
1

2
( ~E2 − ~B2) (2)

where

Ej = −∂0Aj − ∂jA0

Bj = −ǫjkℓ∂kAℓ

(3)

The electric field Ej and the space components of the vector potential Aj form
a canonical pair since, by definition, the momentum Πj conjugate to Aj is

Πj(x) =
∂L

δ∂0Aj(x)
= ∂0Aj + ∂jA0 = −Ej (4)
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Notice that since L does not contain any terms which include ∂0A0, the mo-
mentum Π0, conjugate to A0, vanishes

Π0 =
δL

δ∂0A0
= 0 (5)

A consequence of this result is that A0 is essentially arbitrary and it plays
the role of a Lagrange multiplier. Indeed it is always possible to find a gauge
transformation φ

A′
0 = A0 + ∂0φ A′

j = Aj − ∂jφ (6)

such that A′
0 = 0. The solution is

∂0φ = −A0 (7)

which is consistent provided that A0 vanishes both in the remote part and in
the remote future (t→ ±∞).

The canonical formalism can be applied to Maxwell’s electrodynamics if we
notice that the fields Aj(~x) and Πj′ (~x

′) obey the equal-time Poisson Brackets

{Aj(~x),Πj′ (~x
′)}PB = δjj′δ

3(~x− ~x′) (8)

or, in terms of the electric field ~E,

{Aj(~x), Ej′ (~x
′)}PB = −δjj′δ

3(~x − ~x′) (9)

The classical Hamiltonian density is defined in the usual manner

H = Πj∂0Aj − L (10)

We find

H(x) =
1

2
( ~E2 + ~B2) −A0(x)~▽ · ~E(x) (11)

Except for the last term, this is the usual answer. It is easy to see that the last
term is a constant of motion. Indeed the equal-time Poisson Bracket between
the Hamiltonian density H(~x) and ~▽ · ~E(~y) is zero. By explicit calculation, we
get

{H(~x), ~▽ · ~E(~y)}PB =

∫
d3z[− δH(~x)

δAj(~z)

δ ~▽ · ~E(~y)

δEj(~z)
+
δH(~x)

δEj(~z)

δ ~▽ · ~E(~y)

δAj(~z)
] (12)

But

δH(~x)

δAj(~z)
=

∫
d3w

δH(~x)

δBk(~w)

δBk(~w)

δAj(~z)
=

∫
d3wBk(~w)δ(~x− ~w)ǫkℓj ▽w

ℓ δ(~w − ~z)

= −ǫkℓj ▽z
ℓ

∫
d3wBk(~w)δ(~x− ~w)δ(~w − ~z)

(13)
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Hence

δH(~x)

δAj(~z)
= ǫjℓk ▽z

ℓ (Bk(~x)δ(~x − ~z)) = ǫjℓkBk(~x) ▽x
ℓ δ(~x− ~z) (14)

Similarly, we get

δ ~▽ · ~E(~y)

δEj(~z)
= ▽y

j δ(~y − ~z)
δ ~▽ · ~E(~y)

δAj(~z)
= 0 (15)

Thus, the Poisson Bracket is

{H(~x), ~▽ · ~E(~y)}PB =

∫
d3z[−ǫjℓkBk(~x) ▽x

ℓ δ(~x − ~z) ▽y
j δ(~y − ~z)]

= −ǫjℓkBk(~x) ▽x
ℓ ▽y

j δ(~x− ~y)

= ǫjℓkBk(~x) ▽x
ℓ ▽x

j δ(~x− ~y) = 0

(16)

provided that ~B(~x) is non-singular. Thus, ~▽ · ~E(~x) is a constant of motion. It

is easy to check that ~▽ · ~E generates infinitesimal gauge transformations. We
will prove this statement directly in the quantum theory.

Since ~▽· ~E(~x) is a constant of motion, if we pick a value for it at some initial
time x0 = t0, it will remain constant in time. Thus we can write

~▽ · ~E(~x) = ρ(~x) (17)

which we recognize to be Gauss’s Law. Naturally, an external charge distribu-
tion may be explicitly time dependent and then

d

dt
(~▽ · ~E) =

∂

∂t
(~▽ · ~E) =

∂

∂t
ρext(~x, t) (18)

Before turning to the quantization of this theory, we must notice that A0 plays
the role of a Lagrange multiplier field whose variation forces Gauss’s Law, ~▽· ~E =
0. Hence Gauss’s Law should be regarded as a constraint rather than an equation
of motion. This issue becomes very important in the quantum theory. Indeed,
without the constraint ~▽ · ~E = 0, the theory is absolutely trivial, and wrong.

Constraints impose very severe restrictions on the allowed states of a quan-
tum theory. Consider for instance a particle of mass m moving freely in three
dimensional space. Its stationary states have wave functions Ψ~p(~r, t)

Ψ~p(~r, t) ∼ e
i

(
~p · ~r − E(~p)t

~

)

(19)

with an energy E(~p) =
~p 2

2m
. If we constrain the particle to move only on the

surface of a sphere of radius R, it becomes equivalent to a rigid rotor of moment

of inertia I = mR2 and energy eigenvalues ǫℓm = ~
2

2I ℓ(ℓ+1) where ℓ = 0, 1, 2, . . .,
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and |m| ≤ ℓ. Thus, even the simple constraint ~r 2 = R2, does have non-trivial
effects.

The constraints that we have to impose when quantizing Maxwell’s electro-
dynamics do not change the energy spectrum. This is so because we can reduce
the number of degrees of freedom to be quantized by taking advantage of the
gauge invariance of the classical theory. This procedure is called gauge fixing.
For example, the classical equation of motion

Aµ − ∂µ(∂νA
ν) = 0 (20)

becomes, in the Coulomb gauge A0 = 0 and ~▽ · ~A = 0,

Aj = 0 (21)

However the Coulomb gauge is not compatible with the Poisson Bracket

{Aj(~x),Πj , (~x
′)}PB = δjj′δ(~x− ~x′) (22)

since the spatial divergence of the δ-function does not vanish. It will follow that
the quantization of the theory in the Coulomb gauge is achieved at the price of a
modification of the commutation relations. Because the classical theory is gauge
invariant we can always fix the gauge without any loss of physical content. The
procedure of gauge fixing has the attractive that the number of independent
variables is greatly reduced. A standard approach to the quantization of a
gauge theory is to fix the gauge first, at the classical level, and to quantize later.
However, a number of problems arise immediately. For instance, in most gauges
symmetries such as Lorentz invariance are lost, at least manifestly so. Thus, the
Coulomb gauge, also known as the radiation or transverse gauge, spoils Lorentz
invariance, but it has the attractive that the nature of the physical states (the
photons) is quite transparent. We will see below that the quantization of the
theory in this gauge has some peculiarities.

Another standard choice is the Lorentz gauge

∂µA
µ = 0 (23)

whose main appeal is its manifest covariance. The quantization of the system is
this gauge follows the method developed by and Gupta and Bleuer. While highly
successful, it requires the introduction of states with negative norm (known
as ghosts) which cancel-out all the gauge-dependent contributions to physical
quantities.

More general covariant gauges can also be defined. A general approach
consists not on imposing a rigid restriction on the degrees of freedom, but to
add new terms to the Lagrangian which eliminate the gauge freedom. For
instance, the modified Lagrangian

L = −1

4
F 2 +

α

2
(∂µA

µ(x))2 (24)

is not gauge invariant because of the presence of the last term. We can easily
see that this term weighs gauge equivalent configurations differently and the α
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plays the role of a Lagrange multiplier In fact, in the limit α → ∞ we recover
the Lorentz gauge condition. In the path integral quantization of Maxwell’s
theory it is proven that this approach is equivalent to an average over gauges of
the physical quantities. If α = 1, the equations of motion become very simple,
i.e., ∂2 aµ = 0. This is the Feynman gauge. This is the gauge in which the
calculations are simplest. Still within the Hamiltonian or canonical quantization
method, a third approach has been developed. In this approach one fixes the
gauge A0 = 0. This condition is not enough to eliminate the gauge freedom.
In this gauge a residual set of gauge transformations are still allowed, the time-

independent ones. In this approach quantization is achieved by replacing the
Poisson Brackets by commutators and Gauss’ Law condition becomes now a
constraint on the space of physical quantum states. So, we quantize first and
constrain later.

In general, it is a non-trivial task to prove that all the different quantizations
yield a theory with the same physical properties. In practice what one has to
prove is that these different gauge choices yield theories whose states differ
from each other at most by a unitary transformation. Otherwise, the quantized
theories would be physically inequivalent. In addition, the recovery of Lorentz
invariance may be a bit tedious in some cases. There is however, an alternative,
complementary, approach to the quantum theory in which most of these issues
become very transparent. This is the path-integral approach. This method
has the advantage that all the symmetries are taken care of from the out set.
In addition, the canonical methods encounter very serious difficulties in the
treatment of the non-abelian generalizations of Maxwell’s electrodynamics.

We will consider here two canonical approaches: 1) quantization in the
Coulomb gauge and 2) canonical quantization in the A0 = 0 gauge in the

Schŕ’odinger picture.

9.2 Coulomb Gauge

Quantization in the Coulomb gauge follows the methods developed for the scalar
field very closely. Indeed the classical constraints A0 = 0 and ~▽ · ~A = 0 allow
for a Fourier expansion of the vector potential ~A(~x, x0). In Fourier space we
write

~A(~x, x0) =

∫
d3p

(2π)32p0

~A(~p, x0) exp(i~p · ~x) (25)

where ~A(~p, x0) = ~A∗(−~p, x0). Maxwell’s equations yield the classical equation
of motion

~A(~x, x0) = 0 (26)

The Fourier expansion is consistent only if ~A(~p, x0) satisfies

∂2
0
~A(~P , x0) + ~p 2 ~A(~p, x0) = 0 (27)

The constraint ~▽ · ~A = 0 now becomes the transversality condition

~p · ~A(~p, x0) = 0 (28)
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Thus, ~A(~p, x0) has the time dependence

~A(~p, x0) = ~A(~p)eip0x0 + ~A(−~p)e−ip0x0 (29)

where p0 = |~p|. Then, the expansion takes the form

~A(~x, x0) =

∫
d3p

(2π)32p0
[ ~A∗(~p)eip·x + ~A(~p)e−ip·x] (30)

where p · x = pµx
µ. The transversality condition is satisfied by introducing two

polarization unit vectors ~ǫ(~p) and ~ǫ2(~p) such that ~ǫ1 · ~ǫ2 = ~ǫ1 · ~p = ~ǫ2 · ~p = 0

and ~ǫ21 = ~ǫ22 = 1. Hence if ~A has to be orthogonal to ~p, it must be a linear
combination of ~ǫ1 and ~ǫ2, i.e.,

~A(~p) =
∑

α=1,2

~ǫα(~p)aα(~p) (31)

where the factors aα(~p) are complex amplitudes. In terms of aα(~p) and a∗α(~p)
the Hamiltonian looks like a sum of oscillators.

The passage to the quantum theory is achieved by assigning to each ampli-
tude aα(~p) a Heisenberg operator â(~p). Similarly a∗α(~p) maps onto the adjoint
operator â†α(~p). The expansion of the vector potential now is

~̂A(x) =

∫
d3p

(2π)32p0

∑

α=1,2

~ǫα(p)[âα(~p)e−ip·x + â†α(~p)eip·x] (32)

with p2 = 0 and p0 = |~p|. The operators âα(~p) and â†α(~p) satisfy commutation
relations

[âα(~p), â†α′(~p
′)] = 2p0(2π)3δ(~p− ~p ′)

[âα(~p), âα′(~p ′)] = [â†α(~p), â†α′(~p
′)] = 0

(33)

It is straightforward to check that the vector potential ~A(~x) and the electric

field ~E(~x) obey the (unconventional) equal-time commutation relation

[Aj(~x), Ej′ (~x
′)] = −i

(
δjj′ −

▽j▽j′

▽2

)
δ3(~x− ~x ′) (34)

where the symbol 1/▽2 represents the inverse of the Laplacian, i.e., the Lapla-
cian Green function. In the derivation of this relation, the following identity
was used ∑

α=1,2

ǫjα(~p)ǫj
′

α (~p) = δjj′ −
pjpj′

~p2
(35)

These commutation relations are an extension of the canonical ones and it is
consistent with the transversality condition ~▽ · ~A = 0
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In this gauge the (normal-ordered) Hamiltonian is

Ĥ =

∫
d3p

(2π)32p0
p0

∑

α=1,2

â†α(~p)âα(~p) (36)

The ground state |0〉 is annihilated by both polarizations âα(~p)|0〉 = 0. The
single-particle states are â†α(~p)|0〉 and represent photons with momentum ~p,
energy p0 = |~p| and with the two possible linear polarizations labelled by α =
1, 2. Circularly polarized photons can be constructed in the usual manner.

9.3 The Gauge A0 = 0

In this gauge we will apply directly the canonical formalism. In what follows we
will fix A0 = 0 and associate to the three spatial components Aj of the vector

potential an operator, Âj which acts on a Hilbert space of states. Similarly, to

the canonical momentum Πj = −Ej , we assign an operator Π̂j . These operators
obey the equal-time commutation relations

[Âj(~x), Π̂j′ (~x
′)] = iδ(~x− ~x ′)δjj′ (37)

Hence the vector potential ~A and the electric field ~E do not commute since
they are canonically conjugate operators

[Âj(~x), Êj′ (~x
′)] = −iδjj′δ(~x − ~x ′) (38)

Let us now specify the Hilbert space to be the space of states |Ψ〉 with wave
functions which, in the field representation, have the form Ψ({Aj(~x)}). When
acting on these states, the electric field is the functional differential operator

Êj(~x) ≡ i
δ

δAj(~x)
(39)

In this Hilbert space, the inner product is

〈{Aj(~x)}|{Aj(~x)}〉〉 ≡ Π~x,jδ (Aj(~x) −Aj(~x)) (40)

This Hilbert space is actually much too large. Indeed states with wave functions
that differ by time-independent gauge transformations

Ψφ({Aj(~x)}) ≡ Ψ({Aj(~x) −▽jφ(~x)}) (41)

are physically equivalent since the matrix elements of the electric field operator
Êj(~x) and magnetic field operator B̂j(~x) = ǫjkℓ ▽k Âℓ(~x) are the same for all
gauge-equivalent states, i.e.,

〈Ψ′
φ′({Aj(~x)})|Êj(~x)|Ψφ({Aj(~x)})〉 = 〈Ψ′({Aj(~x)})|Êj(~x)|Ψ({Aj(~x)})〉

〈Ψ′
φ′({Aj(~x)})|B̂j(~x)|Ψφ({Aj(~x)})〉 = 〈Ψ′({Aj(~x)})|B̂j(~x)|Ψ({Aj(~x)})〉

(42)
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The (local) operator Q̂(~x)
Q̂(~x) = ▽jÊj(~x) (43)

commutes locally with the Hamiltonian

[Q̂(~x), Ĥ ] = 0 (44)

and, hence, it can be diagonalized simultaneously with Ĥ . Let us show now
that Q̂(~x) generates local infinitesimal time-independent gauge transformations.
From the canonical commutation relation

[Âj(~x), Êj′ (~x
′)] = −iδjj′δ(~x − ~x ′) (45)

we get (by differentiation)

[Âj(~x), Q̂(~x′)] = [Âj(~x),▽jÊj′ (~x
′)] = i▽x

j δ(~x− ~x ′) (46)

Hence, we also find

[i

∫
d~zφ(~z)Q̂(~z), Âj(~x)] = −

∫
d~zφ(~z) ▽z

j δ(~z − ~x) = ▽jφ(~x) (47)

and

e
i

∫
d~zφ(~z)Q̂(~z)

Âj(~x)e
−i
∫
d~zφ(~z)Q̂(~z)

=

= e
−i
∫
d~z ▽k φ(~z)Êk(~z)

Âj(~x) e
i

∫
d~z) ▽k φ(~z)Êk(~z)

= Âj(~x) + ▽jφ(~x)

(48)

The physical requirement that states that differ by time-independent gauge
transformations be equivalent to each other leads to the demand that we should
restrict the Hilbert space to the space of gauge-invariant states. These states,
which we will denote by |Phys〉, satisfy

Q̂(~x)|Phys〉 ≡ ~▽ · ~̂E(~x)|Phys〉 = 0 (49)

Thus, the constraint means that only the states which obey Gauss’ law are in
the physical Hilbert space. Unlike the quantization in the Coulomb gauge, in
the A0 = 0 gauge the commutators are canonical and the states are constrained
to obey Gauss’ law.

In the Schrödinger picture, the eigenstates of the system obey the Schrödinger
equation ∫

d~x
1

2
[− δ2

δAj(~x)2
+Bj(~x)

2]Ψ[A] = EΨ[A] (50)
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where Ψ[A] is a shorthand for the wave functional Ψ({Aj(~x)}). In this notation,
the constraint of Gauss’ law is

▽x
j Êj(~x)Ψ[A] ≡ i▽x

j

δ

δAj(~x)
Ψ[A] = 0 (51)

This constraint can be satisfied by separating the real field Aj(~x) into longitu-
dinal AL

j (~x) and transverse AT
j (~x) parts

Aj(~x) = AL
j (~x) +AT

j (~x) =

∫
d3p

(2π)3
(
AL

j (~p) +AT
j (~p)

)
ei~p·~x (52)

where AL
j (~x) and AT

j (~x) satisfy

▽jA
T
j (~x) = 0 AL

j (~x) = ▽jφ(~x) (53)

and φ(~x) is, for the moment, arbitrary. In terms of AL
j and AT

j the constraint
of Gauss’ law simply becomes

▽x
j

δ

δAL
j (~x)

Ψ[A] = 0 (54)

and the Hamiltonian now is

Ĥ =

∫
d3p

1

2
{− δ2

δAT
j (~p)δAT

j (~−p) − δ2

δAL
j (~p)δAL

j (~−p) + ~p2AT
j (~p)AT

j (~−p)} (55)

We satisfy the constraint by looking only at gauge-invariant states. Their wave
functions do not depend on the longitudinal components of ~A(~x). Hence, Ψ[A] =
Ψ[AT ]. When acting on those states, the Hamiltonian is

HΨ =

∫
d3p

1

2
[− δ2

δAT
j (~p)δAT

j (~−p) + ~p 2AT
j (~p)AT

j (~−p)]Ψ = EΨ (56)

Let ~ǫ1(~p) and ~ǫ2(~p) be two vectors which together with the unit vector ~np = ~p/|~p|
form an orthonormal basis. Let us define the operators (α = 1, 2; j = 1, 2, 3)

â(~p, α) =
1√
2|~p|

ǫαj (~p)[
δ

δAT
j (−~p) + |~p|AT

j (~p)]

â†(~p, α) =
1√
2|~p|

ǫαj (~p)[− δ

δAT
j (~p)

+ |~p|AT
j (−~p)

(57)

These operators satisfy the commutation relations

[â(~p, α), â†(~p ′, α′)] = δαα′δ3(~p− ~p ′) (58)
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In terms of these operators, the Hamiltonian Ĥ and the expansion of the trans-
verse part of the vector potential are

Ĥ =

∫
d3p

|~p|
2

∑

α=1,2

[â†(~p, α)â(~p, α) + â(~p, α)â†(~p, α)]

AT
j (~x) =

∫
d3p√

(2π)32|~p|
∑

α=1,2

ǫjα(~p)[â(~p, α)ei~p·~x + â†(~p, α)e−i~p·~x]

(59)

We recognize these expressions to be the same ones that we obtained before in
the Coulomb gauge (except for the normalization factors).

It is instructive to derive the wave functional for the ground state. The
ground state |0〉 is the state annihilated by all the oscillators â(~p, α). Hence its
wave function Ψ0[A] satisfies

〈{Aj(~x)}|â(~p, α)|0〉 = 0 (60)

This equation is the functional differential equation

j∑

α

(~p)[
δ

δAT
j (−~p) + |~p|AT

j (~p)]Ψ0({AT
j (~p)}) = 0 (61)

It is easy to check that the unique solution of this equation is

Ψ0[A] = N exp[−1

2

∫
d3p|~p|AT

j (~p)AT
j (−~p)] (62)

Since the transverse components of Aj(~p) satisfy

AT
j (~p) = ǫjkℓ

pkAℓ(~p

|~p| =

(
~p× ~A(~p)

|~p|

)

j

(63)

we can write Ψ0[A] in the form

Ψ0[A] = N exp[−1

2

∫
d3p

|~p|
(
~p× ~A(~p)

)
·
(
~p× ~A(−~p)

)
] (64)

It is instructive to write this wave function in position space, i.e., as a functional
of the configuration of magnetic fields { ~B(~x)}. Clearly, we have

~p× ~A(~p) = −i
∫

d3x

(2π)3/2

(
~▽x × ~A(~x)

)
e−i~p·~x

~p× ~A(−~p) = i

∫
d3x

(2π)3/2

(
~▽x × ~A(~x)

)
ei~p·~x

(65)
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By substitution of these identities back into the exponent of the wave function,
we get

Ψ0[A] = N exp{−1

2

∫
d3x

∫
d3x′ ~B(~x) · ~B(~x′)G(~x, ~x′)} (66)

where G(~x, ~x′) is given by

G(~x, ~x′) =

∫
d3p

(2π)3
e−i~p·(~x−~x′)

|~p| (67)

This function has a singular behavior at large values of |~p|. We will define a
smoothed version GΛ(~x, ~x′) to be

GΛ(~x, ~x′) =

∫
d3p

(2π)3
e−i~p·(~x−~x′)

|~p| e−|~p|/Λ (68)

which cuts off the contributions with |~p| ≫ Λ. Also, GΛ(~x, ~x′) formally goes
back to G(~x, ~x′) as Λ → ∞ . GΛ(~x, ~x′) can be evaluated explicitly to give

GΛ(~x, ~x′) =
1

2π2|~x− ~x′|2
∫ ∞

0

dt sin t e−t/Λ|~x−~x′|

=
1

2π2|~x− ~x′|2ℑ[
1

1
Λ|~x−~x′| − i

]

(69)

Thus,

lim
Λ→∞

GΛ(~x, ~x′) =
1

2π2|~x− ~x′|2 (70)

Hence, the ground state wave functional Ψ0[A] is

Ψ0[A] = N exp{− 1

4π2

∫
d3x

∫
d3x

~B(~x) · ~B(~x′)

|~x− ~x′|2 } (71)

which is only a functional of the configuration of magnetic fields.

9.4 Path Integral Quantization of Gauge Theories

We have discuss at length the quantization of the abelian gauge theory (i.e.,
Maxwell’s electromagnetism) within canonical quantization in the A0 = 0 and
in the Coulomb gauges. Conceptually what we have done is perfectly correct
although it poses a number of problems.

1. The canonical formalism is natural in the gauge A0 = 0 and it can be
generalized to other gauge theories. However, this gauge is highly non-
covariant and it is necessary to prove covariance of physical observables
at the end. In addition the gauge field propagator in this gauge is very
complicated.
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2. The particle spectrum is most transparent in the transverse (or Coulomb)
gauge. However, in addition of being non-covariant, it is not possible
to generalize this gauge to non-Abelian theories due to subtle topologi-
cal problems (they will be discussed in Physics 583). The propagator is
equally awful in this gauge. The commutation relations in real space look
quite different from those in scalar field theory.

3. In non-Abelian theories, even in the absence of matter fields, the theory
is already non-linear and needs to be regularized in a manner that gauge
invariance is preserved.

4. Although it is possible to use covariant gauges, such as the Lorentz gauge
∂µA

µ = 0, the quantization of the theory is these gauges requires a labo-
rious approach (known as Gupta-Bleuer) of difficult generalization.

At the root of this problems is the issue of quantizing a theory which has a local
(or gauge) symmetry in a manner that both Lorentz and gauge invariance are
kept explicitly. It turns out that path-integral quantization is the most direct
approach to deal with these problems.

Let us construct the path integral for the free electromagnetic field. However,
formally the procedure that we will use can be applied to any gauge theory. We
will begin with the theory quantized canonically in the gauge A0 = 0.

We saw above that, in the gauge A0 = 0, the electric field ~E is (minus) the

momentum canonically conjugate to ~A, the spatial components of the gauge
field, and obey the equal-time canonical commutation relations

[Ej(~x), Ak(~x ′)] = iδ3(~x− ~x ′) (72)

In addition, in this gauge Gauss’ Law becomes a constraint on the space of
states, i.e.,

~▽ · ~E(~x)|Phys〉 = J0(~x)|Phys〉 (73)

which defines the physical Hilbert space. Here J0(x) is a charge density distri-
bution. In the presence of a set of conserved sources Jµ(x) (i.e., ∂µJ

µ = 0) the
Hamiltonian of the free field theory is

Ĥ =

∫
d3x

1

2

(
~E2 + ~B2

)
+

∫
d3x ~J · ~A (74)

We will construct the path-integral in this space.
Let su denote by Z[Jµ] the quantity

Z[J ] = tr′Te
−i
∫
dx0Ĥ

≡ tr


Te

−i
∫
dx0Ĥ

P̂


 (75)

where tr′ means a trace (or sum) over the space of states that satisfy the con-
straint of Gauss’ Law. We implement this constraint by means of the operator
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P̂ which projects onto these states

P̂ =
∏

~x

δ
(
~▽ · ~E(x) − J0(x)

)
(76)

We will now follow the standard construction of the path integral but making
sure that we only sum over histories that are consistent with the constraint.
In principle all we need to do is to insert complete sets of states which are
eigenstates of the field operator ~A(x) at all intermediate times. These states,

denoted by |{ ~A(~x, x0)}〉, are not gauge invariant (i.e., they do not satisfy the
constraint). However, the projection operator P̂ weeds out the unphysical com-
ponents of these states. Hence, if the projection operator is included in the
evolution operator, the inserted states actually are gauge-invariant. Thus, to
insert at every intermediate time xk

0 (k = 1, . . . , N with N → ∞ and ∆x0 → 0)
a complete set of gauge-invariant eigenstates amounts to writing Z[J ] as

Z[J ] =

N∏

k=1

∫
DAj(~x, x

k
0)

〈{Aj(~x, x
k
0)}|

(
1 − i∆x0Ĥ

)∏

~x

δ
(
~▽ · ~E(~x, xk

0) − J0(~x, x
k
0)
)
|{Aj(~x, x

k+1
0 )}〉

(77)

As an operator, the projection operator P̂ is naturally spanned by the eigen-
states of the electric field operator |{ ~E(~x, x0)}〉, i.e.,

∏

~x

δ
(
~▽ · ~E(~x, x0) − J0(~x, x0)

)
≡

∫
D ~E(~x, x0) |{ ~E(~x, x0)}〉〈{ ~E(~x, x0)}|

∏

~x

δ
(
~▽ · ~E(~x, x0) − J0(~x, x0)

)

(78)

The delta function has the integral representation

∏

~x

δ
(
~▽ · ~E(~x, x0) − J0(~x, x0)

)
=

= N
∫

DA0(~x, x0)e
i∆x0

∫
d3x A0(~x, x0)

(
~▽ · ~E(~x, x0) − J0(~x, x0)

)

(79)
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Hence, the matrix elements of interest become

∫
D ~A

∏

x0

〈{ ~A(~x, x0)}|
(
1 − i∆x0Ĥ

)∏

~x

δ
(
▽jÊj − J0

)
|{ ~A(~x, x0 + ∆x0)}〉

=

∫
DA0D ~AD ~E

∏

x0

〈{ ~A(~x, x0)}|{ ~E(~x, x0)}〉〈{ ~E(~x, x0)}|{ ~A(~x, x0 + ∆x0)}〉

× e

i∆x0

[∫
d3x A0(~x, x0)

(
~▽ · ~E(~x, x0) − J0(~x, x0)

)
− 〈{ ~A(~x, x0)}|Ĥ|{ ~E(~x, x0)}〉

〈{ ~A(~x, x0)}|{ ~E(~x, x0)}〉

]

(80)

The overlaps are equal to

〈{ ~A(~x, x0)}|{ ~E(~x, x0)}〉 = e
i

∫
d3x ~A(~x, x0) · ~E(~x, x0)

(81)

Hence, we find that the product of the overlaps is given by

∏

x0

〈{ ~A(~x, x0)}|{ ~E(~x, x0)}〉〈{ ~E(~x, x0)}|{ ~A(~x, x0 + ∆x0)}〉 =

= e
−i
∫
dx0

∫
d3x ~E(~x, x0) · ∂0

~A(~x, x0)
(82)

The matrix elements of the Hamiltonian are

〈{ ~A(~x, x0)}|Ĥ|{ ~E(~x, x0)}〉
〈{ ~A(~x, x0)}|{ ~E(~x, x0)}〉

=

∫
d3x

[
1

2

(
~E2 + ~B2

)
+ ~J · ~A

]
(83)

Putting everything together we find that the path integral expression for Z[J ]
has the form

Z[J ] =

∫
DAµD ~EeiS[Aµ, ~E] (84)

where
DAµ = D ~ADA0 (85)

and the action S[Aµ, ~E] is given by

S[Aµ, ~E] =

∫
d4x

[
− ~E · ∂0

~A− 1

2

(
~E2 + ~B2

)
− ~J · ~A+A0

(
~▽ · ~E − J0

)]

(86)
Notice that the Lagrange multiplier field A0, which appeared when we intro-
duced the integral representation of the delta function, has become the time
component of the vector potential (that is the reason why I called it A0).
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Since the action is quadratic in the electric fields, we can integrate them out
explicitly to find

∫
D ~E e

i

∫
d4x

(
−1

2
~E2 + ~E ·

(
∂0
~A− ~▽A0

))

=

const. e
i

∫
d4x

1

2

(
∂0
~A− ~▽A0

)2

(87)

We now collect everything and find that the path integral is

Z[J ] =

∫
DAµ e

i

∫
d4xL

(88)

where the Lagrangian is

L = −1

4
FµνF

µν + JµA
µ (89)

which is what we should have expected. We should note here that this results is
valid for all Gauge Theories, Abelian or non-Abelian. In other words, the path
integral is always the sum over the histories of the field Aµ with a weight factor
which is the exponential of i/~ times the action S of the Gauge Theory.

Therefore we found that, at least formally, we can write a functional integral
which will play the role of the generating functional of the N -point functions of
this theories,

−i〈0|TAµ1
(x1) . . . AµN

(xN )|0〉 (90)

9.5 Path Integrals and Gauge Fixing

We must emphasize that the expression for the path integral in Eq. (88) is formal
because we are summing over all histories of the field without restriction. In fact,
since the action S and the integration measure DAµ are both gauge invariant,
histories that differ by gauge transformations have the same weight and the
partition function has an apparent divergence of the form v(G)V , where v(G)
is the volume of the gauge group G and V is the (infinite) volume of space-
time. In order to avoid this problem we must implement some sort of gauge
fixing condition on the sum over histories. We will do so by means of a method
introduced by L. Faddeev and V. Popov. Although the method works for all
Gauge Theories, the non-Abelian theories have subtleties and technical issues
that we will discus below. We will begin with a general discussion of the method
and then we will specialize it for the case of Maxwell’s theory, the U(1) gauge
theory without matter fields.

Let the vector potential Aµ be a field which takes values in the algebra of
a gauge group G, i.e., Aµ is a linear combination of the group generators, and
let U(x) be an unitary-matrix field that takes values on a representation of the
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group G (please recall our earlier discussion on this subject). For the Abelian
group U(1), we have

U(x) = eiφ(x) (91)

where φ(x) is a real (scalar) field. A gauge transformation is, for a group G

AU
µ = UAµU

† − iU∂µU
† (92)

For the Abelian group U(1) we have

AU
µ = Aµ + ∂µφ (93)

In order to avoid infinities in Z[J ] we must impose restrictions on the sum over
histories such that histories that are related via a gauge transformation are
counted exactly once. In order to do that we must find a way to classify the
vector potentials in classes. We will do this by defining gauge fixing conditions.
Each class is labelled by a representative configuration and other elements in
the class are related to it by smooth gauge transformations. Hence, all configu-
rations in a given class are characterized by a set of gauge invariant data (such
as field strengths in the Abelian theory). We must choose gauge conditions such
that the theory remains local and, if possible, Lorentz covariant. It is essential
that, whatever gauge condition we use that each class is counted exactly once by
the gauge condition. It turns out that for the Abelian theory this is trivially the
case but in non-Abelian theories there are many gauges (such as the Coulomb
gauge) in which, for topological reasons, a class may be counted more than once.
(This question is known as the Gribov problem.) Finally we must also keep in
mind that we are only fixing the local gauge invariance but we should not alter
the boundary conditions since they represent physical degrees of freedom.

classes

gauge
transformations

representative of
a class

Figure 1: The gauge fixing condition selects a manifold of configurations.
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How do we impose a gauge condition consistently? We will do it in the
following way. Let us denote by

g(Aµ) = 0 (94)

the gauge condition we wish to impose, where g(Aµ) is a local differentiable
function of the gauge fields and/or their derivatives. e. g. g(Aµ) = ∂µA

µ

for the Lorentz gauge or g(Aµ) = nµA
µ for an axial gauge. Note that the

discussion that follows is valid for all compact Lie groups G of volume v(G).
For the special case of Maxwell’s gauge theory, the gauge group is U(1). Up to
topological considerations, the group U(1) is isomorphic to the real numbers R,
even though v(U(1)) = 2π and v(R) = ∞.

Naively, to impose a gauge condition would mean to restrict the path integral
by inserting Eq. (94) as a delta function in the integrand,

Z[J ] ∼
∫

DAµ δ (g(Aµ)) eiS[A, J ] (95)

We will see below that in general this is an inconsistent (and wrong) prescription.
Following Faddeev and Popov we begin by considering the following integral

∆−1
g [Aµ] ≡

∫
DU δ

(
g(AU

µ )
)

(96)

where AU
µ (x) are the configurations of gauge fields related by the gauge trans-

formation U(x) to the configuration Aµ(x), i.e., we move inside one class.
Let us show that ∆−1

g [Aµ] is gauge invariant. We now observe that the
integration measure DU , usually called the Haar measure, is invariant under
the composition rule U → UU ′,

DU = D(UU ′) (97)

where U ′ is and arbitrary but fixed element of G. For the case of G = U(1),
U = exp(iφ) and DU ≡ Dφ.

Using the invariance of the measure, Eq. (97) we can write

∆−1
g [AU ′

µ ] =

∫
DU δ

(
g(AU ′U

µ )
)

=

∫
DU ′′ δ

(
g(AU ′′

µ )
)

= ∆−1
g [Aµ] (98)

where we have set U ′U = U ′′. Therefore ∆−1
g [Aµ] is gauge invariant, i.e., it is

a function of the class and not of the configuration Aµ itself. Obviously we can
also write Eq. (96) in the form

1 = ∆g[Aµ]

∫
DU δ

(
g(AU

µ )
)

(99)

We will now insert the number 1, as given by Eq. (99), in the path integral for
a general Gauge Theory and find

Z[J ] =

∫
DAµ × 1 × eiS[A, J ]

=

∫
DAµ ∆g[Aµ]

∫
DU δ

(
g(AU

µ )
)
eiS[A, J ] (100)
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We now make the change of variables

Aµ → AV
µ (101)

where V = V (x) is an arbitrary gauge transformation, and find

Z[J ] =

∫ ∫
DU DAV

µ eiS[AV , J ] ∆g[A
V
µ ] δ

(
g(AV U

µ )
)

(102)

(Notice that we have changed the order of integration.) We now choose V =
U−1, and use the gauge invariance of the action S[A, J ], of the measure DAµ

and of ∆g[A] to write the partition as

Z[J ] =

[∫
DU

] ∫
DAµ ∆g[Aµ] δ (g(Aµ)) eiS[A, J ] (103)

The factor in brackets in Eq. (103) is the infinite constant
∫

DU = v(G)V (104)

where v(G) is the volume of the gauge group and V is the (infinite) volume of
space-time. This infinite constant is nothing but the result of summing over
gauge-equivalent states.

Thus, provided the quantity ∆g[Aµ] is finite and it does not vanish identi-
cally, we find that the consistent rule for fixing the gauge consists in dividing
out the (infinite) factor of the volume of the group element but, more impor-
tantly, to insert together with the constraint δ (g(Aµ)) the factor ∆g[Aµ] in the
integrand of Z[J ],

Z[J ] ∼
∫

DAµ ∆g[Aµ] δ (g(Aµ)) eiS[A, J ] (105)

We are only left to compute ∆g[Aµ]. We will show now that ∆g[Aµ] is a determi-
nant of a certain operator. The quantity ∆g[Aµ] is known as the Faddeev-Popov
determinant. We will only compute first this determinant for the case of the
Abelian theory U(1). Below we will also discuss the non-Abelian case, relevant
for Yang-Mills gauge theories.

We will compute ∆g[Aµ] by using the fact that g[AU
µ ] can be regarded as a

function of U(x) (for Aµ(x) fixed). We will now change variables from U to g.
The price we pay is a Jacobian factor since

DU = Dg Det

∣∣∣∣
δU

δg

∣∣∣∣ (106)

where the determinant is the Jacobian of the change of variables. Since this is a
non-linear change of variables, we expect a non-trivial Jacobian. Therefore we
can write

∆−1
g [Aµ] =

∫
DU δ

(
g(AU

µ )
)

=

∫
Dg Det

∣∣∣∣
δU

δg

∣∣∣∣ δ(g) (107)
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and we find

∆−1
g [Aµ] = Det

∣∣∣∣
δU

δg

∣∣∣∣
g=0

(108)

or, conversely

∆g[Aµ] = Det

∣∣∣∣
δg

δU

∣∣∣∣
g=0

(109)

Thus far all we have done holds for all gauge theories (with a compact gauge
group). We will specialize our discussion first for the case of the U(1) gauge
theory, Maxwell’s electromagnetism. We will discuss how this applies to non-
Abelian Yang-Mill gauge theories below. For example, for the particular case of
the Abelian U(1) gauge theory, the Lorentz gauge condition is obtained by the
choice g(Aµ) = ∂µA

µ. Then, for U(x) = exp(iφ(x)), we get

g(AU
µ ) = ∂µ (Aµ + ∂µφ) = ∂µA

µ + ∂2φ (110)

Hence,
δg(x)

δφ(y)
= ∂2δ(x − y) (111)

Thus, for the Lorentz gauge of the Abelian theory, the Faddeev-Popov determi-
nant is given by

∆g[Aµ] = Det∂2 (112)

which is a constant independent of Aµ. This is a peculiarity of the Abelian
theory and, as we will see below, it is not true in the non-Abelian case.

Let us return momentarily to the general case of Eq. (105), and modify the
gauge condition from g(Aµ) = 0 to g(Aµ) = c(x), where c(x) is some arbitrary
function of x. The partition function now reads

Z[J ] ∼
∫

DAµ ∆g[Aµ] δ (g(Aµ) − c(x)) eiS[A, J ] (113)

We will now average over the arbitrary functions with a Gaussian weight (prop-
erly normalized to unity)

Zα[J ] = N
∫

DAµ Dc e
−i
∫
d4x

c(x)2

2α ∆g[Aµ] δ (g(Aµ) − c(x)) eiS[A, J ]

= N
∫

DAµ ∆g(Aµ) e
+i

∫
d4x

[
L[A, J ] − 1

2α
(g(Aµ))

2

]

(114)

From now on we will restrict our discussion to the U(1) Abelian gauge theory
(the electromagnetic field) and g(Aµ) = ∂µA

µ. From Eq. (114) we find that in
this gauge the Lagrangian is

Lα = −1

4
F 2

µν − JµA
µ − 1

2α
(∂µA

µ)
2

(115)
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The parameter α labels a family of gauge fixing conditions known as the Feynman-

’t Hooft gauges. For α → 0 we recover the strong constraint ∂µA
µ = 0, the

Lorentz gauge. From the point of view of doing calculations the simplest is the
gauge α = 1 (the Feynman gauge) as we will see now. After some algebra is
straightforward to see that, up to surface terms, the Lagrangian is equal to

Lα =
1

2
Aµ

[
gµν ∂2 − α− 1

α
∂µ∂ν

]
Aν − JµA

µ (116)

and the partition function reduces to

Z[J ] = N Det
[
∂2
] ∫

DAµ e
i

∫
d4x Lα[A, J ]

(117)

Hence, in a general gauge labelled by α, we get

Z[J ] = N Det
[
∂2
]

Det

[
gµν ∂2 − α− 1

α
∂µ∂ν

]−1/2

× e
− i

2

∫
d4x

∫
d4y Jµ(x) Gµν(x− y) Jν(y)

(118)

where Gµν(x− y) is the propagator in that gauge.
The form of Eq. (118) may seem to imply that Z[J ] is gauge dependent. This

cannot be correct since the path integral is by construction gauge-invariant. We
will show in the next subsection that gauge invariance is indeed protected. This
result comes about because Jµ is a conserved current, and as such it satisfies
the continuity equation ∂µJ

µ = 0. For this family of gauges, the propagator
takes the form

Gµν(x− y) =

[
gµν +

α− 1

α

∂µ∂ν

∂2

]
G(x − y) (119)

where G(x− y) is the propagator of the scalar field.
Thus, as expected for a free field theory, Z[J ] is a product of two factors:

a functional (or fluctuation) determinant, and a factor that depends solely on
the sources Jµ which contains all the information on the correlation functions.
For the case of a single scalar field we also found a contribution in the form of a
determinant factor but its power was −1/2. Here there are two such factors. The
first one is the Faddeev-Popov determinant. The second one is the determinant
of the fluctuation operator for the gauge field. However, in the Feynman gauge,
α = 1, this operator is just gµν∂2, and its determinant has the same form as
the Faddeev-Popov determinant except that it has a power −4/2. This is what
one would have expected for a theory with four independent fields (one for each
component of Aµ). The Faddeev-Popov determinant has power +1. Thus the
total power is just 1 − 4/2 = −1, which is the correct answer for a theory with
only two independent fields.
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9.6 The Propagator

For general α, Gµν(x− y) is the solution of the Green’s function equation

[
gµν ∂2 − α− 1

α
∂µ∂ν

]
Gνλ(x− y) = gµ

λδ
4(x− y) (120)

Notice that in the special case of the Feynman gauge, α = 1, this equation
becomes

∂2Gµν(x− y) = gµνδ4(x − y) (121)

Hence, in the Feynman gauge, Gµν(x− y) takes the form

Gµν(x− y) = gµν G(x− y) (122)

where G(x− y) is just the propagator of a free scalar field, i.e.,

∂2G(x− y) = δ4(x − y) (123)

However, in a general gauge the propagator

Gµν(x− y) = −i〈0|TAµ(x)Aν (y)|0〉 (124)

does not coincide with the propagator of a scalar field. Therefore, Gµν(x − y),
as expected, is a gauge dependent quantity. In spite of that it does contain
physical information. Let us examine this issue by calculating the propagator
in a general gauge α.

The Fourier transform of Gµν(x − y) in D space-time dimensions is

Gµν(x− y) =

∫
dDp

(2π)D
G̃µν(p) eip · x (125)

This a solution of Eq. (120) provided G̃µν(p) satisfies

[
−gµνp2 +

α− 1

α
pµpν

]
G̃νλ(p) = gµ

λ (126)

The formal solution is

G̃µν(p) = − 1

p2

[
gµν +

α− 1

α

pµpν

p2

]
(127)

In space-time the form of this (still formal ) solution is given by Eq. (119).
In particular, in the Feynman gauge α = 1, we get

G̃F
µν(p) = − 1

p2
gµν (128)

whereas in the Lorentz gauge we find instead

G̃L
µν(p) = − 1

p2

[
gµν − pµpν

p2

]
(129)
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Hence, in all cases there is a pole in p2 in front of the propagator and a matrix
structure that depends on the gauge choice. Notice that the matrix in brackets
in the Lorentz gauge, known as the transverse projection operator, satisfies

pµ

[
gµν − pµpν

p2

]
= 0 (130)

which follows from the gauge condition ∂µA
µ = 0.

The physical information of this propagator is condensed in its analytic
structure. It has a pole at p2 = 0 which implies that p0 =

√
~p 2 = |~p | is the

singularity of G̃µν(p). Hence the pole in the propagator tells us that this theory
has a massless particle, the photon.

To actually compute the propagator in space-time from G̃µν(p) requires that
we define the integrals in momentum space carefully. As it stands, the Fourier
integral Eq. (125) is ill defined due to the pole in G̃µν(p) at p2 = 0. A proper
definition requires that we move the pole into the complex plane by shifting
p2 → p2 + iǫ, where ǫ is real and ǫ→ 0+. This prescription yields the Feynman

propagator. We will see in the next section that this rule applies to any theory
and that it always yields the vacuum expectation value of the time ordered

product of fields. For the rest of this section we will use the propagator in the
Feynman gauge which reduces to the propagator of a scalar field. This is a
quantity we know quite well, both in Euclidean and Minkowski space-times.

9.7 Physical meaning of Z[J ] and the Wilson loop operator

We discussed before that a general property of the path integral of any theory
is that, in imaginary time, Z[0] is just

Z[0] = 〈0|0〉 ∼ e−TE0 (131)

where T is the time span (i.e., T → ∞) (watch out, here T is not the tem-
perature!), and E0 is the vacuum energy. Thus, if the sources Jµ are static (or
quasi-static) we get instead

Z[J ]

Z[0]
∼ e−T [E0(J) − E0] (132)

Thus, the change in the vacuum energy due to the presence of the sources is

U(J) = E0(J) − E0 = lim
T→∞

ln
Z[J ]

Z[0]
(133)

As we will see, the behavior of this quantity has a lot of information about the
physical properties of the vacuum (i.e., the ground state) of a theory. Quite
generally, if the quasi-static sources Jµ are well separated from each other, U(J)
can be split into two terms: a self-energy of the sources, and an interaction
energy, i.e.,

U(J) = Eself−energy[J ] + Vint[J ] (134)
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As an example, we will now compute the expectation value of the Wilson
loop operator,

WΓ = 〈0|Te
ie

∮

Γ

dxµA
µ

|0〉 (135)

where Γ is the closed path in space-time shown in the figure. Physically, what
we are doing is looking at the electromagnetic field created by the current

Jµ(x) = eδ(xµ − sµ) ŝµ (136)

where sµ is the set of points of space-time on the loop Γ , and ŝµ is a unit
vector field tangent to Γ. The loop Γ has time span T and spatial width R.
We will be interested in loops such that T ≫ R so that the sources are turned
on adiabatically in the remote past and switched off also adiabatically in the
remote future. By current conservation the loop must be oriented. Thus, at
a fixed time x0 the loop looks like a pair of static sources with charges ±e at
±R/2. In other words we are looking of the affects of a particle-antiparticle
pair which is created at rest in the remote past, the members of the pair are
slowly separated (to avoid bremsstrahlung radiation) and live happily apart
from each other, at a prudent distance R, for a long time T , and are finally
(and adiabatically) annihilated in the remote future. Thus, we are in the quasi-
static regime described above and Z[J ]/Z[0] should tell us what is the effective
interaction between this pair of sources (“electrodes”).

T

R Γ

adiabatic

adiabatic
switching off

turning on

+e −e

Figure 2: The Wilson loop operator can be viewed as representing a pair of
quasi-static sources of charge ±e separated a distance R from each other.

23



What are the possible behaviors of the Wilson loop operator in general
(that is for any gauge theory)? The answer to this depends on the nature of
the vacuum state. We will se that a given theory may have different vacua

or phases (as in thermodynamic phases) and that the behavior of the physical
observables is different in different vacua (or phases). Here we will do an explicit
computation for the case of Maxwell’s U(1) gauge theory. However the behavior
that will find only holds for a free field and it is not generic. What are the
possible behaviors, then? A loop is an extended object (as opposed to a local
field operator) characterized by its geometric properties: its area, perimeter,
aspect ratio, and so on. We will show later on that these geometric properties
of the loop to characterize the behavior of the Wilson loop operator. Here are
the generic cases:

1. Area Law: Let A = RT be the area of the loop. One possible behavior of
the Wilson loop operator is the area law

WΓ ∼ e−σRT (137)

w We will show later on that this is the fastest possible decay of the Wilson
loop operator as a function of size. The quantity σ is known as the string

tension. If the area law is obeyed the effective potential for R large (but
still small compared to T ) behaves as

Vint(R) = lim
T→∞

−1

T
lnWΓ = σR (138)

Hence, in this case the energy to separate a pair of sources grows linearly
with distance and the sources are confined. We will say that in this case
the the theory is in confined phase.

2. Perimeter Law: Another possible decay behavior (weaker than the area
law) is a perimeter law

WΓ ∼ e−ρ(R+ T ) +O
(
e−R/ξ

)
(139)

where ρ is a constant with units of energy, and ξ is a length scale. This
decay law implies that in this case

Vint ∼ ρ+ const. e−R/ξ (140)

Thus, in this case the energy to separate two sources is finite. This is a
deconfined phase. However since it is massive (with a mass scale m ∼ ξ−1)
there are no long range gauge bosons. This is the Higgs phase. It bears a
close analogy with a superconductor.

3. Scale Invariant: Yet another possibility is that the Wilson loop behavior
is determined by the aspect ratio R/T or T/R,

WΓ ∼ e
−α

(
R

T
+
T

R

)

(141)
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where α is a dimensionless constant. This behavior leads to an interaction

Vint ∼ −α

R
(142)

which coincides with the Coulomb law in 4 dimensions. We will see that
this is a deconfined phase with massless gauge bosons (photons).

We will now compute the expectation value of the Wilson loop operator in
Maxwell’s U(1) gauge theory. We will return to the general problem when we
discuss the strong coupling behavior of gauge theories. We begin by using the
analytic continuation of Eq. (118) to imaginary time, i.e.,

Z[J ] = N Det
[
∂2
]−1

e
−1

2

∫
d4x

∫
d4y Jµ(x) 〈Aµ(x)Aν(y)〉 Jν(y)

= N Det
[
∂2
]−1

e
−e

2

2

∮

Γ

dxµ

∮

Γ

dyν 〈Aµ(x)Aν (y)〉
(143)

where 〈Aµ(x)Aν(y)〉 is the Euclidean propagator of the gauge fields in the family
of gauges labelled by α. In the Feynman gauge α = 1 the propagator is given
by the expression

〈Aµ(x)Aν (y)〉 = δµν

∫
dDp

(2π)D

1

p2
eipµ · (xµ − yµ) (144)

where µ = 1, . . . , D. After doing the integral we find that the Euclidean propa-
gator (the correlation function) in the Feynman gauge is

〈Aµ(x)Aν (y)〉 = δµν

Γ

(
D

2
− 1

)

4πD/2 |x− y|D−2
(145)

Therefore E[J ] − E0 is equal to

E[J ] − E0 = lim
T→∞

e2

2T

∮

Γ

∮

Γ

d~x · d~x
Γ

(
D

2
− 1

)

4πD/2 |x− y|D−2

= 2 × self − energy − e2

2T
2

∫ +T/2

−T/2

dxD

∫ +T/2

−T/2

dyD

Γ

(
D

2
− 1

)

4πD/2 |x− y|D−2

(146)
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where |x− y|2 = (xD − yD)2 +R2. The integral in Eq. (146) is equal to

∫ +T/2

−T/2

dxD

∫ +T/2

−T/2

dyD

Γ

(
D

2
− 1

)

4πD/2 |x− y|D−2

=

∫ +T/2

−T/2

ds

∫ +(T/2−s)/R

−(T/2+s)/R

dt

(t2 + 1)(D−2)/2

1

RD−3
× Γ

(
D−2

2

)

4πD/2

≈ 1

RD−3

∫ +T/2

−T/2

ds

∫ +∞

−∞

dt

(t2 + 1)(D−2)/2
× Γ

(
D−2

2

)

4πD/2

=
T
√
π

RD−3

Γ
(

D−3
2

)

Γ
(

D−2
2

) × Γ
(

D−2
2

)

4πD/2

(147)

where

Γ(ν) =

∫ ∞

0

dt tν−1e−t (148)

is the Euler Gamma function. In Eq. (147) we already took the limit T/R→ ∞.
Putting it all together we find that the interaction energy of a pair of static
sources of charges ±e separated a distance R in D dimensional space-time is
given by

Vint(R) = − Γ(D−1
2 )

2π(D−1)/2(D − 3)

e2

RD−3
(149)

This is the Coulomb potential in D space-time dimensions. In particular, in
D = 4 dimensions we find

Vint(R) = −
(
e2

4π

)
1

R
(150)

where the quantity e2/4π is the fine structure constant.
Therefore we find that, even at the quantum level, the effective interaction

between a pair of static sources is the Coulomb interaction. This is true because
Maxwell’s theory is a free field theory. It is also true in Quantum Electrodynam-
ics (QED), the Quantum Field Theory of electrons and photons, at distances R
much greater than the Compton wavelength of the electron. However it is not
true at short distances where the effective charge is screened by fluctuations of
the Dirac field and the potential becomes exponentially suppressed. In contrast,
in Quantum Chromodynamics (QCD) the situation is quite different: even in
the absence of matter, for R large compared with a scale ξ determined by the
dynamics, the effective potential grows linearly with R. This effect in known as
confinement, and the scale ξ is the confinement scale. Conversely, the potential
is Coulomb-like at short distances, a behavior known as asymptotic freedom.
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9.8 Path-Integral Quantization of Non-Abelian Gauge The-

ories

Most of what we did for the Abelian case, carries over to non-Abelian gauge
theories where, as we will see, it plays a much more central role. In this section
we will discuss the general properties of the path-integral quantization of non-
Abelian gauge theories, but we will not deal with the non-linearities here.

The path integral Z[J ] for a non-Abelian gauge field Aµ = Aa
µλ

a in the
algebra of a simply connected compact Lie group G, whose generators are the
Hermitian matrices λa, with gauge condition(s) ga[A] is

Z[J ] =

∫
DAa

µ e
iS[A, J ] δ(g[A]) ∆FP[A] (151)

where we will use the family of covariant gauge conditions

ga[A] = ∂µAa
µ(x) + ca(x) = 0 (152)

and where ∆FP[A] is the Faddeev-Popov determinant. Notice that we impose
one gauge condition for each direction in the algebra of the gauge group G.
We will proceed as we did in the Abelian case and consider an average over
gauges. In other words we will work in the manifestly covariant Feynman-‘t
Hooft gauges.

Let us work out the structure of the Faddeev-Popov determinant for a general
gauge fixing condition ga[A]. Let U be an infinitesimal gauge transformation,

U ≃ 1 + iǫa(x)λa + . . . (153)

Under a gauge transformation the vector field Aµ becomes

AU
µ = UAµU

−1 + i (∂µU)U−1 ≡ Aµ + δAµ (154)

For an infinitesimal transformation the change of Aµ is

δAµ = iǫa [λa, Aµ] − ∂µǫ
aλa +O(ǫ2) (155)

where λa are the generators of the algebra of the gauge group G.
On the other hand, since

δga

δǫb
=

∂ga

∂Ac
µ

δAc
µ

δǫb
(156)

we can also write

δAc
µ = 2iǫb tr

(
λc
[
λb, Aµ

])
− 2 ∂µǫ

b tr
(
λcλb

)
+O(ǫ2)

= iǫbtr
(
λc
[
λb, λd

])
Ad

µ − ∂µǫ
bδbc

= −2 f bde ǫbtr (λcλe)Ad
µ − ∂µǫ

b δbc

= −f bde ǫb Ad
µ − ∂µǫ

b δbc (157)
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where fabc are the structure constants of the Lie group G.
Hence, we find

δAc
µ(x)

δǫb(y)
= −

[
∂µδbc + f bcd Ad

µ

]
δ(x− y) ≡ −Dcd

µ [A]δ(x − y) (158)

where we have denoted by Dµ[A] the covariant derivative in the adjoint repre-
sentation, which in components is given by

Dab
µ [A] = δab ∂µ − fabc Ac

µ (159)

Using these results we can put the Faddeev-Popov determinant (or Jacobian)
in the form

∆FP [A] = Det

(
δg

δǫ

)
= Det

(
∂ga

∂Ac
µ

δAc
µ

δǫb

)
(160)

We will now define an operator MFP whose matrix elements are

〈x, a|MFP |y, b〉 = 〈x, a| ∂g
∂Ac

µ

δAc
µ

δǫ
|y, b〉

=

∫

z

∂ga(x)

∂Ac
µ(z)

δAc
µ(z)

δǫb(y)

= −
∫

z

∂ga(x)

∂Ac
µ(z)

Dcb
µ δ(z − y) (161)

For the case of ga[A] = ∂µAa
µ(x) − ca(c), appropriate for the Feynman-‘t Hooft

gauges, we have
∂ga(x)

∂Ac
µ(z)

= δac ∂
µδ(x− z) (162)

and also

〈x, a|MFP |y, b〉 = −
∫

z

δac∂
µ
x δ(x − z)Dcb

µ [A]δ(z − y)

= −
∫

z

δacδ(x− z) ∂µ
zD

cb
µ δ(x − y)

= −∂µDab
µ δ(x− y) (163)

Thus, the Faddeev-Popov determinant now is

∆FP = Det (∂µDµ[A]) (164)

Notice that in the non-Abelian case this determinant is an explicit function of
the gauge field. Since it is a determinant, it can be written as a path integral
over a set of fermionic ghost fields, denoted by ηa(x) and η̄a(x), one per gauge
condition (i.e. one per generator):

Det [∂µDµ] =

∫
DηaDη̄a e

i

∫
dDx η̄a(x) ∂µDab

µ [A] ηb(x)
(165)
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Notice that these are fields quantized with the “wrong” statistics. In other
words, these “particles” do not satisfy the general conditions for causality and
unitarity to be obeyed. Hence these ghosts cannot create physical states (thereby
their ghostly character).

The full form of the path integral of a Yang-Mills gauge theory with coupling
constant g, in the Feynman-‘t Hooft covariant gauges with gauge parameter λ,
is given by

Z =

∫
DADηDη̄ e

i

∫
dDx LY M [A, η, η̄]

(166)

where LY M is the effective Lagrangian density

LY M [A, η, η̄] = − 1

2g2
trFµνF

µν +
λ

2g2
(∂µA

µ)
2 − η̄ ∂µD

µ[A] η (167)

Thus the pure gauge theory, even in the absence of matter fields, is non-linear.
We will return to this problem later on when we look at both the perturbative
and non-perturbative aspects of Yang-Mills gauge theories.

10 BRST Invariance

In the previous section we developed in detail the path-integral quantization of
non-Abelian Yang-Mills gauge theories. We payed close attention to the role
of gauge invariance and how to consistently fix the gauge in order to define
the path-integral. Here we will show that the effective Lagrangian of a Yang-
Mills gauge field, Eq. (167), has an extended symmetry, closely related to
supersymmetry. This extended symmetry plays a crucial role in proving the
renormalizability of non-Abelian gauge theories.

Let us consider the QCD Lagrangian in the Feynman-‘t Hooft covariant
gauges (with gauge parameter λ and coupling constant g). The Lagrangian
density L of this theory is

L = ψ̄
(
i/D −m

)
ψ − 1

4
F a

µνF
µν
a − 1

2λ
BaBa +Ba∂

µAa
µ − η̄a∂µDab

µ η
b

(168)

Here ψ is a Dirac Fermi field, which represents quarks and it transforms under
the fundamental representation of the gauge groupG; the “Hubbard-Stratonovich”
field Ba is an auxiliary field which has no dynamics of its own and it transforms
as a vector in the adjoint representation of G.

Becchi, Rouet, Stora and Tyutin realized that this gauge-fixed Lagrangian
has the following (“BRST”) symmetry, where ǫ is an infinitesimal anti-commuting
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parameter:

δAa
µ = ǫDab

µ ηb (169)

δψ = igǫηataψ (170)

δηa = −1

2
gǫfabcηbηc (171)

δη̄a = ǫBa (172)

δBa = 0 (173)

Here Eq. (169) and Eq. (170) are local gauge transformations and as such leave
invariant the first two terms of the effective Lagrangian L of Eq. (168). The
third term of Eq. (168) is trivial. The invariance of the fourth and fifth terms
holds because the change of δA in the fourth term cancels against the change
of η̄ in the fifth term. Finally, it remains to see that the changes of the fields
Aµ and η in the fifth term of Eq. (168) cancel out. To see that this is the case
we check that

δ
(
Dab

µ η
b
)

= Dab
µ δη

b+gfabcδAb
µη

c = −1

2
g2ǫfabcf cde

(
Ab

µη
dηe +Ad

µη
eηb +Ae

µη
bηd
)

(174)
which vanishes due to the Jacobi identity for the structure constants

fadef bcd + f bdef cad + f cdefabd = 0 (175)

or, equivalently, from the nested commutators of the generators ta:

[
ta,
[
tb, tc

]]
+
[
tb, [tc, ta]

]
+
[
tc,
[
ta, tb

]]
= 0 (176)

Hence, BRST is at least a global symmetry of the gauge-fixed action with gauge
fixing parameter λ.

This symmetry has a remarkable property which follows from its fermionic
nature. Let φ be any of the fields of the Lagrangian and Qφ be the BRST
transformation of the field,

δφ = ǫQφ (177)

For instance,
QaAa

µ = Dab
µ η

b (178)

and so on. It follows that for any field φ

Q2φ = 0 (179)

i.e. the BRST transformation of Qφ vanishes. This rule works for the field Aµ

due to the transformation property of δ(Dab
µ η

b). It also holds for the ghosts
since

Q2ηa =
1

2
g2fabcf bdeηcηdηe = 0 (180)

which holds due to the Jacobi identity.
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What are the implications of the existence of BRST as a continuous sym-
metry? To begin with it implies that there is a conserved self-adjoint charge
Q that must necessarily commute with the Hamiltonian H of the Yang-Mills
gauge theory. Above we saw how Q acts on the fields, Q2φ = 0, for all the fields
in the Lagrangian. Hence, as an operator Q2 = 0, that is, the BRST charge
Q is nilpotent, and it commutes with H . Let us now show that Q divides the
Hilbert space of the eigenstates of H is three sectors

1. Many eigenstates of H must be annihilated by Q for Q2 = 0 to hold. Let
H1 be the set of eigenstates of H which are not annihilated by Q. Hence,
if |ψ1〉 ∈ H1, then Q|ψ1〉 6= 0. Thus, the states in H1 are not BRST
invariant.

2. Let us consider the subspace of states H2 of the form |ψ2〉 = Q|ψ1〉, i.e.

H2 = QH1. Then, for these states Q|ψ2〉 = Q2|ψ1〉 = 0. Hence, the states
in H2 are BRST invariant but are the BRST transform of states in H1.

3. Finally, let H0 be the set of eigenstates of H that are annihilated by Q,
Q|ψ0〉 = 0, but which are not in H2, i.e. |ψ0〉 6= Q|ψ1〉. Hence, the states
in H0 are BRST invariant and are not the BRST transform of any other
state. This is the physical space of states.

It follows from the above classification that the inner product of any pair of
states in H2, |ψ2〉 and |ψ′

2〉, have zero inner product:

〈ψ2|ψ′
2〉 = 〈ψ1|Q|ψ′

2〉 = 0 (181)

where we used that |ψ2〉 is the BRST transform of a state in H1, |ψ1〉. Similarly,
one can show that if |ψ0〉 ∈ H0, then 〈ψ2|ψ0〉 = 0.

What is the physical meaning of BRST and of this classification? Peskin
and Schroeder give a simple argument. Consider the weak coupling limit of
the theory, g → 0. In this limit we can find out what BRST does by looking
at the transformation properties of the fields that appear in the Lagrangian of
Eq. (168). In particular, Q transforms a forward polarized (i.e. longitudinal)
component of Aµ into a ghost. At g = 0, we see that Qη = 0 and that the anti-
ghost η̄ transforms into the auxiliary field B. Also, at the classical level, B =
λ∂µAµ. Hence, the auxiliary fields B are backward (longitudinally) polarized
quanta of Aµ. Thus, forward polarized gauge bosons and anti-ghosts are in
H1, since they are not the BRST transform of states created by other fields.
Ghosts and backward polarized gauge bosons are in H2 since they are the BRST
transform of the former. Finally, transverse gauge bosons are in H0. Hence,
in general, states with ghosts, anti-ghosts, and gauge bosons with unphysical
polarization belong either to H1 or H2. Only the physical states belong to H0.
It turns out that the S-matrix, when restricted to the physical space H0, is
unitary (as it should).
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