
8 Coherent State Path Integral Quantization of

Quantum Field Theory

8.1 Coherent states and path integral quantization.

8.1.1 Coherent States

Let us consider a Hilbert space spanned by a complete set of harmonic oscillator
states {|n〉}, with n = 0, . . . ,∞. Let â† and â be a pair of creation and annihi-
lation operators acting on that Hilbert space, and satisfying the commutation
relations [

â, â†
]

= 1 ,
[
â†, â†

]
= 0 , [â, â] = 0 (1)

These operators generate the harmonic oscillators states {|n〉} in the usual way,

|n〉 =
1√
n!

(
â†
)n |0〉 (2)

â|0〉 = 0 (3)

where |0〉 is the vacuum state of the oscillator.
Let us denote by |z〉 the coherent state

|z〉 = ezâ
†

|0〉 (4)

〈z| = 〈0| ez̄â (5)

where z is an arbitrary complex number and z̄ is the complex conjugate. The
coherent state |z〉 has the defining property of being a wave packet with opti-
mal spread, i.e., the Heisenberg uncertainty inequality is an equality for these
coherent states.

How does â act on the coherent state |z〉?

â|z〉 =
∞∑

n=0

zn

n!
â
(
â†
)n |0〉 (6)

Since [
â,
(
â†
)n]

= n
(
â†
)n−1

(7)

we get

â|z〉 =

∞∑

n=0

zn

n!

([
â,
(
â†
)n]

+
(
â†
)n

â
)

|0〉 (8)

Thus, we find

â|z〉 =
∞∑

n=0

zn

n!
n
(
â†
)n−1 |0〉 ≡ z |z〉 (9)

Therefore |z〉 is a right eigenvector of â and z is the (right) eigenvalue.
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Likewise we get

â†|z〉 = â†
∞∑

n=0

zn

n!

(
â†
)n |0〉

=

∞∑

n=0

zn

n!

(
â†
)n+1 |0〉

=

∞∑

n=0

(n+ 1)
zn

(n+ 1)!

(
â†
)n+1 |0〉

=
∞∑

n=1

n
zn−1

n!

(
â†
)n |0〉

(10)

Thus,

â†|z〉 =
∂

∂z
|z〉 (11)

Another quantity of interest is the overlap of two coherent states, 〈z|z′〉,

〈z|z′〉 = 〈0|ez̄â ez
′â† |0〉 (12)

We will calculate this matrix element using the Baker-Hausdorff formulas

eÂ eB̂ = e
Â+ B̂ +

1

2

[
Â, B̂

]

= e

[
Â, B̂

]

eB̂ eÂ (13)

which holds provided the commutator
[
Â, B̂

]
is a c-number, i.e., it is propor-

tional to the identity operator. Since
[
â, â†

]
= 1, we find

〈z|z′〉 = ez̄z
′

〈0|ez
′â† ez̄â|0〉 (14)

But
ez̄â |0〉 = |0〉 (15)

and

〈0| ez
′â† = 〈0| (16)

Hence we get

〈z|z′〉 = ez̄z
′

(17)

An arbitrary state |ψ〉 of this Hilbert space can be expanded in the harmonic
oscillator basis states {|n〉},

|ψ〉 =

∞∑

n=0

ψn√
n!

|n〉 =

∞∑

n=0

ψn

n!

(
â†
)n |0〉 (18)
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The projection of the state |ψ〉 onto the coherent state |z〉 is

〈z|ψ〉 =

∞∑

n=0

ψn

n!
〈z|
(
â†
)n |0〉 (19)

Since
〈z| â† = z̄ 〈z| (20)

we find

〈z|ψ〉 =

∞∑

n=0

ψn

n!
z̄n ≡ ψ(z̄) (21)

Therefore the projection of |ψ〉 onto |z〉 is the anti-holomorphic (i.e., anti-

analytic) function ψ(z̄). In other words, in this representation, the space of
states {|ψ〉} are in one-to-one correspondence with the space of anti-analytic
functions.

In summary, the coherent states {|z〉} satisfy

â|z〉 = z|z〉 〈z|â = ∂z̄〈z|
â†|z〉 = ∂z|z〉 〈z|â† = z̄〈z|
〈z|ψ〉 = ψ(z̄) 〈ψ|z〉 = ψ̄(z)

(22)

Next we will prove the resolution of identity

Î =

∫
dzdz̄

2πi
e−zz̄|z〉〈z| (23)

Let |ψ〉 and |φ〉 be two arbitrary states

|ψ〉 =

∞∑

n=0

ψn√
n!

|n〉

|ψ〉 =

∞∑

n=0

ψn√
n!

|n〉

〈φ|ψ〉 =

∞∑

n=0

φnψn

n!
(24)

Let us compute the matrix element

〈φ|Î |ψ〉 =
∑

m.n

φ̄nψn

n!
〈n|Î|m〉 (25)

Thus we need to find

〈n|Î|m〉 =

∫
dzdz̄

2πi
e−|z|2〈n|z〉〈z|m〉 (26)

Recall that the integration measure is defined to be given by

dzdz̄

2πi
=
dRezdImz

π
(27)
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where

〈n|z〉 =
1√
n!
〈0| (â)n |z〉 =

zn

√
n!
〈0|z〉 (28)

and

〈z|m〉 =
1√
m!

〈z|
(
â†
)m |0〉 =

z̄m

√
m!

〈z|0〉 (29)

Now, since |〈0|z〉|2 = 1, we get

〈n|Î|m〉 =

∫
dzdz̄

2πi

e−|z|2
√
n!m!

znz̄m =

∫ ∞

0

ρdρ

∫ 2π

0

dϕ

2π

e−ρ
2

√
n!m!

ρn+mei(n−m)ϕ

(30)
Thus,

〈n|Î |m〉 =
δn,m

n!

∫ ∞

0

dx xne−x = 〈n|m〉 (31)

Hence, we have found that
〈φ|Î |ψ〉 = 〈φ|ψ〉 (32)

for any pair of states |ψ〉 and |φ〉. Therefore Î is the identity operator in that
space. We conclude that the set of coherent states {|z〉} is an over-complete set
of states.

Furthermore, since

〈z|
(
â†
)n

(â)
m |z′〉 = z̄nz′m〈z|z′〉 = z̄nz′mez̄z

′

(33)

we conclude that the matrix elements of any arbitrary normal ordered operator
of the form

Â =
∑

n,m

An,m

(
â†
)n

(â)
m

(34)

are equal to

〈z|Â|z′〉 =

(
∑

n,m

An,mz̄
nz′m

)
ez̄z

′

(35)

Therefore, if Â(â, â†) is an arbitrary normal ordered operator (relative to the
state |0〉), its matrix elements are given by

〈z|Â(â, â†)|z′〉 = A(z̄, z′)ez̄z
′

(36)

where A(z̄, z′) is a function of two complex variables z̄ and z′, obtained from Â
by the formal replacement

â↔ z′ , â† ↔ z̄ (37)

For example, the matrix elements of the the operator N̂ = â†â, which measures
the number of excitations, is

〈z|N̂ |z′〉 = 〈z|â†â|z′〉 = z̄z′ ez̄z
′

(38)
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8.1.2 Path Integrals and Coherent States

As usual we will want to compute the matrix elements of the evolution operator
U ,

U = e
−iT

~
Ĥ(â†, â)

(39)

where Ĥ(â†, â) is a normal ordered operator. Thus, if |i〉 and |f〉 denote two
arbitrary initial and final states, we can write the matrix element of U as

〈f |e
−iT

~
Ĥ(â†, â)

|i〉 = lim
ǫ→0,N→∞

〈f |
(
1 −−i ǫ

~
Ĥ(â†, â)

)N

|i〉 (40)

However now, instead of inserting a complete set of states at each intermediate
time tj (with j = 1, . . . , N), we will insert an over-complete set {|zj〉} at each
time tj through the insertion of the resolution of the identity,

〈f |
(
1 − i

ǫ

~
Ĥ(â†, â)

)N

|i〉 =

=

∫ 


N∏

j=1

dzjdz̄j

2πi



 e

−
N∑

j=1

|zj |2

〈f |
(
1 − i

ǫ

~
Ĥ(â†, â)

)
|zN 〉

×〈zN |
(
1 − i

ǫ

~
Ĥ(â†, â)

)
|zN−1〉 . . . 〈z1|

(
1 − i

ǫ

~
Ĥ(â†, â)

)
|i〉 =

≡
∫ 


N∏

j=1

dzjdz̄j

2πi



 e

−
N∑

j=1

|zj |2 [N−1∏

k=1

〈zk+1|
(
1 − i

ǫ

~
Ĥ(â†, â)

)
|zk〉

]

×〈f |
(
1 − i

ǫ

~
Ĥ(â†, â)

)
|zN 〉〈z1|

(
1 − i

ǫ

~
Ĥ(â†, â)

)
|zi〉

(41)

In the limit ǫ→ 0 these matrix elements are

〈zk+1|
(
1 − i

ǫ

~
Ĥ(â†, â)

)
|zk〉 =〈zk+1|zk〉 − i

ǫ

~
〈zk+1|Ĥ(â†, â)|zk〉

=〈zk+1|zk〉
[
1 − i

ǫ

~
H(z̄k+1, zk)

]

(42)

where H(z̄k+1, zk) is a function which is obtained from the normal ordered

Hamiltonian by the substitutions â† → z̄k+1 and â → zk. Hence, we can write
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the following expression for the matrix element

〈f |e
−iT

~
Ĥ(â†, â)

|i〉 =

= lim
ǫ→0,N→∞

∫ 


N∏

j=1

dzjdz̄j

2πi



 e

−
N∑

j=1

|zj |2
e

N−1∑

j=1

z̄j+1zj N−1∏

j=1

[
1 − i

ǫ

~
H(z̄k+1, zk)

]

×〈f |zN 〉〈z1|i〉
[
1 − i

ǫ

~

〈f |Ĥ|zN 〉
〈f |zN 〉

] [
1 − i

ǫ

~

〈z1|Ĥ |i〉
〈z1|i〉

]

(43)

By further expanding the initial and final states in coherent states

〈f | =

∫
dzfdz̄f

2πi
e−|zf |2ψ̄f (zf)〈zf |

|i〉 =

∫
dzidz̄i

2πi
e−|zi|2ψi(z̄i)|zi〉

(44)

we find

〈f |e
−iT

~
Ĥ(â†, â)

|i〉 =

=

∫
DzDz̄ e

i

~

∫ tf

ti

dt

[
~

2i
(z∂tz̄ − z̄∂tz) −H(z, z̄)

]

e

1

2
(|zi|2 + |zf |2)

ψ̄f (zf )ψi(z̄i)

(45)

This is the coherent-state form of the path integral. We can identify in this
expression the Lagrangian L as the quantity

L =
~

2i
(z∂tz̄ − z̄∂tz) −H(z, z̄) (46)

Notice that the Lagrangian in the coherent-state representation is first order in
time derivatives. because of this feature we are not guaranteed that the paths
are necessarily differentiable. This property leads to all kinds of subtleties that
for the most part we will ignore in what follows.

8.1.3 Path integral for a gas of non-relativistic bosons at finite tem-

perature.

The field theoretic description of a gas of (spinless) non-relativistic bosons is

given in terms of the creation and annihilation field operators φ̂†(~x) and φ̂(~x),
which satisfy the equal time commutation relations (in d space dimensions)

[
φ̂(~x), φ̂†(~y)

]
= δd(~x− ~y) (47)
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Relative to the empty state |0〉, i.e.,

φ̂(~x)|0〉 = 0 (48)

the normal ordered Hamiltonian is

Ĥ =

∫
ddx φ̂†(~x)

[
− ~2

2m
~▽2

+ µ+ V (~x)

]
φ̂(~x)

+
1

2

∫
ddx

∫
ddy φ̂†(~x)φ̂†(~y)U(~x− ~y)φ̂(~y)φ̂(~x)

(49)

where m is the mass of the bosons, µ is the chemical potential, V (~x) is an
external potential and U(~x − ~y) is the interaction potential between pairs of
bosons.

Following our discussion of the coherent state path integral we see that it
is immediate to write down a path integral for a thermodynamic system of
bosons. The boson coherent states are now labelled by a complex field φ(~x) and
its complex conjugate φ̄(~x).

|{φ(~x)}〉 = e

∫
d~x φ(~x)φ̂(~x)

|0〉 (50)

which has the coherent state property

φ̂(~x)|{φ}〉 = φ(~x)|{φ}〉 (51)

as well as the resolution of the identity

I =

∫
DφDφ∗e

−
∫
d~x |φ(~x)|2

|{φ}〉〈{φ}| (52)

The matrix element between an initial state |i〉 and a final state |f〉 separated
by a time span T = tf − ti (not to be confused with the temperature!) now
takes the form

〈f |e
− i

~
ĤT

|i〉 =
∫

DφDφ̄ exp

{
i

~

∫ tf

ti

dt

(∫
ddx

~

i

[
φ(~x, t)∂tφ̄(~x, t) − φ̄(~x, t)∂tφ(~x, t)

]
−H [φ, φ̄]

)}

×Ψ̄f(φ(~x, tf ))Ψi(φ̄(~x, ti)) e

1

2

∫
d~x(|φ(~x, tf )|2 + |φ(~x, ti)|2)

(53)

where H [φ, φ̄] is

H [φ, φ̄] =

∫
ddx φ̄(~x)

[
− ~2

2m
~▽2

+ µ+ V (~x)

]
φ(~x) +

1

2

∫
ddx

∫
ddy |φ(~x)|2|φ(~y)|2U(~x− ~y)

(54)
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It is also possible to write the action S in the less symmetric but simpler form
(dx ≡ dtd~x)

S =

∫
dx φ̄(x)

(
i~∂t +

~2

2m
~▽2 − µ− V (~x)

)
φ(x)

−1

2

∫
ddx

∫
ddy |φ(x)|2|φ(y)|2U(x− y)

(55)

where U(x− y) = U(~x− ~y)δ(tx − ty).
This formulation is useful to study superfluid Helium and similar problems.

Suppose for instance that we want to compute the partition function Z for this
system of bosons at finite temperature T ,

Z = tre−βĤ (56)

where β = 1/T (in units where kB = 1). The coherent-state path integral
representation of the partition function is obtained by

1. restricting the initial and final states to be the same |i〉 = |f〉 and arbitrary

2. Summing over all possible states

3. and finally a Wick rotation to imaginary time t→ −iτ , with the time-span

T → −iβ~ (i.e., Periodic Boundary Conditions in imaginary time)

The result is the (imaginary time) path integral

Z =

∫
DφDφ̄ e−SE(φ, φ̄) (57)

where SE is the Euclidean action

SE(φ, φ̄) =
1

~

∫ β

0

dτ

∫
d~x φ̄

[
−~∂τ + µ− ~

2

2m
▽2 −V (x)

]
φ

+
1

2~

∫ β

0

dτ

∫
d~x

∫
d~y U(x− y) |φ(x)|2|φ(y)|2

(58)

The fields φ(x) = φ(~x, τ) satisfy Periodic Boundary Conditions (PBC’s) is imag-
inary time

φ(~x, τ) = φ(~x, τ + β~) (59)

This requirement suggests an expansion of the field φ(x) in Fourier modes of
the form

φ(~x, τ) =

∞∑

n=−∞

eiωnτ φ(~x, ωn) (60)
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where the frequencies ωn (the Matsubara frequencies) must be chosen so that
φ obeys the required PBCs. We find

ωn =
2π

β~
n =

2πT

~
n , n ∈ Z (61)

where n is an arbitrary integer.

8.2 Fermion Coherent States

In this section we will develop a formalism for fermions which follows closely
what we have done for bosons while accounting for the anti-commuting nature
of fermionic operators, i. e. the Pauli Principle.

Let {c†i} be a set of fermion creation operators, with i = 1, . . . , N , and {ci}
the set of their N adjoint operators, i. e. the associated annihilation operators.
The number operator for the i-th fermion is ni = c†i ci. Let us define the kets
|0i〉 and |1i〉, which obey the obvious definitions:

ci|0i〉 = 0 c†i |0i〉 = |1i〉
c†i ci|0i〉 = 0 c†ici|1i〉 = |1i〉

(62)

For N fermions the Hilbert space is spanned by the anti-symmetrized states
|n1, . . . , nN 〉. Let

|0〉 ≡ |01, . . . , 0N〉 (63)

and
|n1, . . . , nN〉 = c†1 . . . c

†
N |0〉 (64)

As we saw before, the wave function 〈n1, . . . , nN |Ψ〉 is a Slater determinant.

8.2.1 Definition of Fermion Coherent States

We now define fermion coherent states. Let {ξ̄i, ξi}, with i = 1, . . . , N , be a
set of 2N Grassmann variables (also known as the generators of a Grassmann
algebra.) These variables satisfy, by definition, the following properties

{ξi, ξj} =
{
ξ̄i, ξ̄j

}
=
{
ξi, ξ̄j

}
= ξ2i = ξ̄2i = 0 (65)

We will also require that the Grassmann variables anti-commute with the fermion
operators:

{ξi, cj} =
{
ξ̄i, c

†
j

}
=
{
ξ̄i, c,j

}
=
{
ξ̄i, c

†
j

}
= 0 (66)

Let us define the fermion coherent states

|ξ〉 ≡ e−ξc
†

|0〉 (67)

〈ξ| ≡ 〈0| eξ̄c (68)

As a consequence of these definitions we have:

e−ξc
†

= 1 − ξc† (69)
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Similarly, if ψ is a Grassmann variable, we have

〈ξ|ψ〉 = 〈0|eξ̄ce−ψc
†

|0〉 = 1 + ξ̄ψ = eξ̄ψ (70)

For N fermions we have,

|ξ〉 ≡ |ξ1, . . . , ξN 〉 = ΠN
i=1e

−ξic†i |0〉 ≡ e

−
N∑

i=1

ξic
†
i

|0〉 (71)

since the following commutator vanishes,

[
ξic

†
i , ξjc

†
j

]
= 0 (72)

8.2.2 Analytic functions of Grassmann variables

We will define ψ(ξ) to be an analytic function of the Grassmann variable if it
has a power series expansion in ξ,

ψ(ξ) = ψ0 + ψ1ξ + ψ2ξ
2 + . . . (73)

where ψn ∈ C. Since
ξn = 0, ∀n ≥ 0 (74)

then, all analytic functions of a Grassmann variable reduce to a first degree
polynomial,

ψ(ξ) ≡ ψ0 + ψ1ξ (75)

Similarly, we define complex conjugation by

ψ(ξ) ≡ ψ̄0 + ψ̄1ξ̄ (76)

where ψ̄0 and ψ̄1 are the complex conjugates of ψ0 and ψ1 respectively.
We can also define functions of two Grassmann variables ξ and ξ̄,

A(ξ̄, ξ) = a0 + a1ξ + ā1ξ̄ + a12ξ̄ξ (77)

where a1, ā1 and a12 are complex numbers; a1 and ā1 are not necessarily complex
conjugates of each other.

1. Differentiation of Grassmann variables:
Since analytic functions of Grassmann variables have such a simple struc-
ture, differentiation is just as simple. Indeed, we define the derivative as
the coefficient of the linear term

∂ξψ(ξ) ≡ ψ1 (78)

Likewise we also have
∂ξ̄ψ(ξ) ≡ ψ̄1 (79)
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Clearly, using this rule we can write

∂ξ(ξ̄ξ) = −∂ξ(ξξ̄) = −ξ̄ (80)

A similar argument shows that

∂ξA(ξ̄, ξ) = a1 − a12 ξ̄ (81)

∂ξ̄A(ξ̄, ξ) = ā1 + a12 ξ (82)

∂ξ̄∂ξA(ξ̄, ξ) = −a12 = −∂ξ∂ξ̄A(ξ̄, ξ) (83)

from where we conclude that ∂ξ and ∂ξ̄ anti-commute,
{
∂ξ̄, ∂ξ

}
= 0, and ∂ξ∂ξ = ∂ξ̄∂ξ̄ = 0 (84)

2. Integration over Grassmann variables

The basic differentiation rule of Eq. (78) implies that

1 = ∂ξξ (85)

which suggests the following definitions:
∫
dξ 1 = 0 (86)

∫
dξ ∂ξξ = 0 (“exact differential”) (87)

∫
dξ ξ = 1 (88)

Analogous rules also apply for the conjugate variables ξ̄.

It is instructive to compare the differentiation and integration rules:
∫
dξ 1 = 0 ↔ ∂ξ1 = 0∫
dξ ξ = 1 ↔ ∂ξξ = 1

(89)

Thus, for Grassmann variables differentiation and integration are exactly
equivalent

∂ξ ⇐⇒
∫
dξ (90)

These rules imply that the integral of an analytic function f(ξ) is
∫
dξ f(ξ) =

∫
dξ (f0 + f1ξ) = f1 (91)

and
∫
dξA(ξ̄, ξ) =

∫
dξ
(
a0 + a1ξ + ā1ξ̄ + a12ξ̄ξ

)
= a1 − a12ξ̄

∫
dξ̄A(ξ̄, ξ) =

∫
dξ
(
a0 + a1ξ + ā1ξ̄ + a12ξ̄ξ

)
= ā1 + a12ξ

∫
dξ̄dξA(ξ̄, ξ) = −

∫
dξdξ̄A(ξ̄, ξ) = −a12

(92)
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It is straightforward to show that with these definitions, the following
expression is a consistent definition of a delta-function:

δ(ξ′, ξ) =

∫
dη e−η(ξ − ξ′) (93)

where ξ, ξ′ and η are Grassmann variables.

Finally, given that we have a vector space of analytic functions we can
define an inner product as follows:

〈f |g〉 =

∫
dξ̄dξ e−ξ̄ξ f̄(ξ) g(ξ̄) = f̄0g0 + f̄1g1 (94)

as expected.

8.2.3 Properties of Fermion Coherent States

We defined above the fermion bra and ket coherent states

|{ξj}〉 = e

−
∑

j

ξjc
†
j

|0〉, 〈{ξj}| = 〈0| e

∑

j

ξ̄jcj

(95)

After a little algebra, using the rules defined above, it is easy to see that the
following identities hold:

ci|{ξj}〉 = ξi |{ξj}〉 (96)

c†i |{ξj}〉 = −∂ξi
|{ξj}〉 (97)

〈{ξj}| ci = ∂ξ̄i
〈{ξj}| (98)

〈{ξj}| c†i = ξ̄i 〈{ξj}| (99)

The inner product of two coherent states |{ξj}〉 and |{ξ′j}〉 is

〈{ξj}|{ξ′j}〉 = e

∑

j

ξ̄jξj

(100)

Similarly, we also have the Resolution of the Identity (which is easy to prove)

I =

∫ (
ΠN

i=1dξ̄idξi
)
e

−
N∑

i=1

ξ̄iξi
|{ξi}〉〈{ξi}| (101)

Let |ψ〉 be some state. Then, we can use Eq. (101) to expand the state |ψ〉 in
fermion coherent states |ξ〉,

|ψ〉 =

∫ (
ΠN

i=1dξ̄idξi
)
e

−
N∑

i=1

ξ̄iξi
ψ(ξ)|{ξi}〉 (102)
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where
ψ(ξ̄) ≡ ψ(ξ̄1, . . . , ξ̄N ) (103)

We can use the rules derived above to compute the following matrix elements

〈ξ|cj |ψ〉 = ∂ξ̄j
ψ(ξ̄) (104)

〈ξ|c†j |ψ〉 = ξ̄j ψ(ξ̄) (105)

which is consistent with what we concluded above.
Let |0〉 be the “empty state” (we will not call it the “vacuum” since it is

not in the sector of the ground state). Let A
(
{c†j}, {cj}

)
be a normal ordered

operator (with respect to the state |0〉). By using the formalism worked out
above one can show without difficulty that its matrix elements in the coherent
states |ξ〉 and |ξ′〉 are

〈ξ|A
(
{c†j}, {cj}

)
|ξ′〉 = e

∑

i

ξ̄iξ
′
i

A
(
{ξ̄j}, {ξ′j}

)
(106)

Thus, for example, the expectation value of the fermion number operator N̂ ,

N̂ =
∑

j

c†jcj (107)

in the coherent state |ξ〉 is

〈ξ|N̂ |ξ〉
〈ξ|ξ〉 =

∑

j

ξ̄jξj (108)

8.2.4 Grassmann Gaussian Integrals

Let us consider a Gaussian integral over Grassmann variables of the form

Z[ζ̄, ζ] =

∫ ( N∏

i=1

dξ̄idξi

)
e

−
∑

i,j

ξ̄iMijξj + ξ̄iζi + ζ̄iξi

(109)

where {ζi} and {ζ̄i} are a set of 2N Grassmann variables, and the matrix Mij

is a complex Hermitian matrix. We will now show that

Z[ζ̄, ζ] = (detM) e

∑

ij

ζ̄i
(
M−1

)
ij
ζj

(110)

Before showing that Eq. (110) is correct let us make a few observations:

1. Eq. (110) looks like the familiar expression for Gaussian integrals for

bosons except that instead of a factor of (detM)
−1/2

= Pf(M) (here
PF(M) denotes the pfaffian of M) we get a factor of detM . This is the
main effect of the statistics!.
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2. If we had considered a system of N Grassmann variables (instead of 2N)
we would have obtained instead a factor of

√
detM where M would now

be an N ×N real anti-symmetric matrix.

To prove that Eq. (110) is correct we will consider only the case ζi = ζ̄i = 0,
since the contribution from these sources is identical to the bosonic case. Using
the Grassmann identities we can write the exponential factor as

e

−
∑

i,j

ξ̄iMijξj

=
∏

ij

(
1 − ξ̄iMijξj

)
(111)

The integral that we need to do is

Z[0, 0] =

∫ ( N∏

i=1

dξ̄iξi

)
∏

ij

(
1 − ξ̄iMijξj

)
(112)

From the integration rules, we can easily see that the only non-vanishing terms
in this expression are those that have the just one ξi and one ξ̄i (for each i).
Hence we can write

Z[0, 0] = (−1)N

∫ ( N∏

i=1

dξ̄i dξi

)
ξ̄1M12ξ2ξ̄2M23ξ3 . . .+ permutations

= (−1)NM12M23M34 . . .

∫ ( N∏

i=1

dξ̄i dξi

)
ξ̄1ξ2ξ̄2ξ3ξ̄3 . . . ξ̄N ξN + permutations

= (−1)2NM12M23M34 . . .MN−1,N + permutations (113)

What is the contribution of the terms labeled “permutations”? It is easy to see
that if we permute any pair of labels, say 2 and 3, we will get a contribution of
the form

(−1)2N(−1)M13M32M24 . . . (114)

Hence we conclude that the Gaussian Grassmann integral is just the determinant
of the matrix M ,

Z[0, 0] =

∫ ( N∏

i=1

dξ̄iξi

)
e

−
∑

ij

ξ̄iMijξj

= detM (115)

(Alternatively, we can diagonalize the quadratic form and notice that the Jaco-
bian is “upside-down”).

8.2.5 Grassmann Path Integrals for Fermions

We are now ready to give a prescription for the construction of a fermion path
integral in a general system. Let H the a normal-ordered Hamiltonian (with

14



respect to some reference state |0〉) of a system of fermions. Let |Ψi〉 be the ket
at the initial time ti and |Ψf〉 be the final state at time tf . The matrix element
of the evolution operator can be written as a Grassmann Path Integral

〈Ψf , tf |Ψi, ti〉 = 〈Ψf |e
− i

~
H(tf − ti)|Ψi〉

≡
∫

Dψ̄Dψ e
i

~
S(ψ̄, ψ)

× projection operators (116)

where we have not written down the explicit form of the projection operators
onto the initial and final states. The action S(ψ̄, ψ) is

S(ψ̄, ψ) =

∫ tf

ti

dt
[
i~ψ̄∂tψ −H(ψ̄, ψ)

]
(117)

This expression of the fermion path integral holds for any theory of fermions,
relativistic or not. Notice that it has the same form as the bosonic path integral.
The only change is that for fermions the determinant appears in the numerator
while for bosons it is in the denominator!

8.3 Path integral quantization of Dirac fermions.

We will now apply the methods we just developed to the case of the Dirac
Theory.

Let us define the Dirac field ψα(x), with α = 1, . . . , 4. It satisfies the Dirac
Equation as an equation of motion,

(
i/∂ −m

)
ψ = 0 (118)

where ψ is a 4-spinor and /∂ = γµ∂µ. Recall that the Dirac γ-matrices satisfy
the algebra

{γµ, γν} = 2gµν (119)

where gµν is the Minkowski space metric tensor (in the Bjorken-Drell form).
We saw before that in the quantum field theory description of the Dirac

theory, ψ is an operator acting on the Fock space of (fermionic) states. We also
saw that the Dirac equation can be regarded as the classical equation of motion
of the Lagrangian density

L = ψ̄
(
i/∂ −m

)
ψ (120)

where ψ̄ = ψ†γ0. We also noted that the momentum canonically conjugate to
the field ψ is iψ†, from where the standard fermionic equal time anti-commutation
relations follow {

ψα(~x, x0), ψ
†
β(~y, x0)

}
= δαβδ

3(~x − ~y) (121)

The Lagrangian density L for a Dirac fermion coupled to sources ηα and η̄α is

L = ψ̄
(
i/∂ −m

)
ψ + ψ̄η + η̄ψ (122)
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and the path-integral is found to be

Z[η̄, η] =
1

〈0|0〉 〈0|T e
i

∫
d4x

(
ψ̄η + η̄ψ

)

|0〉

≡
∫

Dψ̄Dψe iS (123)

where S =
∫
d4xL.

From this result it follows that the Dirac propagator is

iSαβ(x − y) = 〈0|Tψα(x)ψ̄β(y)|0〉

=
(−i)2
Z[0, 0]

δ2Z[η̄, η]

δη̄α(x)δηβ(y)

∣∣∣∣
η̄=η=0

= 〈x, α| 1

i/∂ −m
|y, β〉 (124)

8.4 Functional determinants.

We will now discuss more generally how to compute functional determinants.
We have discussed before how to do that for path-integrals with a few degrees
of freedom (i. e. in Quantum Mechanics). We will now generalize these ideas
to Quantum Field Theory. We will begin by discussing some simple determi-
nants that show up in systems of fermions and bosons at finite temperature and
density.

8.4.1 Functional determinants for Coherent States

Consider a system of fermions (or bosons) with one-body Hamiltonian ĥ at
non-zero temperature T and chemical potential µ. The partition function

Z = tr e
−β
(
Ĥ − µN̂

)

(125)

where β = 1/kBT ,

Ĥ =

∫
dx ψ̂(x)† ĥ ψ̂(x) (126)

and

N̂ =

∫
dx ψ̂(x)† ψ̂(x) (127)

is the number operator. Here x denotes both spacial and internal (spin) labels.
The functional (or path) integral expression for the partition function is

Z =

∫
Dψ∗Dψ e

i

~

∫
dτ ψ∗

(
i~∂τ + ĥ+ µ

)
ψ

(128)

In imaginary time we set t→ −iτ , with 0 ≤ τ ≤ β~.
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The fields ψ(τ) can represent either be bosons, in which case they are just
complex functions of x and τ , or fermions, in which case they are complex
Grassmann functions of x and τ . The only subtlety resides in the choice of
boundary conditions

1. Bosons:
Since the partition function is a trace, in this case the fields (be complex
or real) must obey the usual periodic boundary conditions in imaginary
time, i. e.,

ψ(τ) = ψ(τ + β~) (129)

2. Fermions:
In the case of fermions the fields are complex Grassmann variables. How-
ever, if we want to compute a trace it turns out that, due to the anti-
commutation rules, it is necessary to require the fields to obey anti-periodic

boundary conditions, i. e.

ψ(τ) = −ψ(τ + β~) (130)

Let {|λ〉} be a complete set of eigenstates of the one-body Hamiltonian ĥ, {ελ}
be its eigenvalue spectrum with λ a spectral parameter (i. e. a suitable set of

quantum numbers spanning the spectrum of ĥ), and {φλ(τ)} be the associated
complete set of eigenfunctions. We now expand the field configurations in the
basis of eigenfunctions of ĥ,

ψ(τ) =
∑

λ

ψλ φλ(τ) (131)

The eigenfunctions of ĥ are complete and orthonormal.
Thus if we expand the fields, the path-integral of Eq. (128) becomes (with

~ = 1)

Z =

∫ (∏

λ

dψ∗
λdψλ

)
e

−
∫
dτ
∑

λ

ψ∗
λ (−∂τ − ελ + µ)ψλ

(132)

which becomes (after absorbing all uninteresting constant factors in the inte-
gration measure)

Z =
∏

λ

[Det (−∂τ − ελ + µ)]
σ

(133)

where σ = +1 is the results for fermions and σ = −1 for bosons.
Let ψλ

n(τ) be the solution of eigenvector equation

(−∂τ − ελ + µ)ψλ
n(τ) = αnψ

λ
n(τ) (134)

where αn is the (generally complex) eigenvalue. The eigenfunctions ψλ
n(τ) will

be required to satisfy either periodic or anti-periodic boundary conditions,

ψλ
n(τ) = −σψλ

n(τ + β) (135)
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where, once again, σ = ±1.
The eigenvalue condition, Eq. (134) is solved by

ψn(τ) = ψn e
iαnτ (136)

provided αn satisfies
αn = −iωn + µ− ελ (137)

where the Matsubara frequencies are given by (with kB = 1)

ωn =

{
2πT

(
n+ 1

2

)
, for fermions

2πTn, for bosons
(138)

Let us consider now the function ϕα(τ) which is an eigenfunction of −∂τ−ελ+µ,

(−∂τ − ελ + µ)ϕα(τ) = α ϕα(τ) (139)

which satisfies only an initial condition for ϕλ
α(0), such as

ϕλ
α(0) = 1 (140)

Notice that since the operator is linear in ∂τ we cannot impose additional con-
ditions on the derivative of ϕα.

The solution of
∂τ lnϕλ

α(τ) = µ− ε− α (141)

is
ϕλ

α(τ) = ϕλ
α(0) e(µ− ελ − α) τ (142)

After imposing the initial condition of Eq. (140), we find

ϕλ
α(τ) = e− (α+ ελ − µ) τ (143)

But, although this function ϕλ
α(τ) satisfies all the requirements, it does not have

the same zeros as the determinant Det(−∂τ +µ−ελ−α). However, the function

σF
λ
α (τ) = 1 + σ ϕλ

α(τ) (144)

does satisfies all the properties. Indeed,

σF
λ
α (β) = 1 + σ e− (α+ ελ − µ)β (145)

which vanishes for α = αn. Then, a version of Coleman’s argument tells us that

Det (−∂τ + µ− ελ − α)

σFλ
α (β)

= constant (146)

where the right hand side is a constant in the sense that it does not depend on
the choice of the eigenvalues {ελ}.
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Hence,
Det (−∂τ + µ− ελ) = const. σF

λ
0 (β) (147)

The partition function is

Z = e−βF =
∏

λ

[Det (−∂τ + µ− ελ)]
σ

(148)

where F is the free energy, which we find it is given by

F = −σT
∑

λ

ln Det (−∂τ + µ− ελ − α)

= −σT
∑

λ

ln
(
1 + σeβ(µ− ελ)

)
+ f(βµ) (149)

which is the correct result for non-interacting fermions and bosons. Here, we
have set

f(βµ) =

{
0 fermions

−2TN ln
(
1 − eβµ

)
bosons

(150)

where N is the number of states in the spectrum {λ}.
In some cases the spectrum has the symmetry ελ = −ε−λ, e. g. the Dirac

theory whose spectrum is ε± = ±
√
p2 +m2, and these expressions cam be

simplified further,

∏

λ

Det (−∂t + iελ) =
∏

λ>0

[Det (−∂t + iελ)Det (−∂t − iελ)] (151)

=
∏

λ>0

Det
(
∂2

t + ε2λ
)

after a Wick rotation −→
∏

λ>0

Det
(
−∂2

τ + ε2λ
)

(152)

This last expression we have encountered before. The result is

∏

λ>0

Det
(
−∂2

τ + ε2λ
)

= const. ψ0(β) (153)

where ψ0(τ) is the solution of the differential equation

(
−∂2

τ + ε2λ
)
ψ0(τ) = 0 (154)

which satisfies the initial conditions

ψ0(0) = 0 ∂τψ0(0) = 1 (155)

The solution is

ψ0(τ) =
sinh(|ελ|τ)

|ελ|
(156)
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Hence

ψ0(β) =
sinh(|ελ|β)

|ελ|

−→ e|ελ|β
2|ελ|

as β → ∞, (157)

In particular, since

∏

λ>0

e|ελ|β
2|ελ|

= e

β
∑

λ>0

|ελ|
= e

−β
∑

λ<0

ελ

(158)

we get that the ground state energy EG is the sum of the single particle energies
of the occupied (negative energy) states:

EG =
∑

λ<0

ελ (159)

8.5 Summary of the general strategy

We will now summarize the general strategy to compute path integrals of any
type.

We begin with the path integral for the vacuum persistence amplitude (or
“partition function”) which we write in general as

Z
∫

D (fields) e
i

∫
dDx L(fields)

(160)

and consider a field configuration φc(x) which is a solution of the Classical
Equation of Motion

δL
δφ

− ∂µ δL
∂µφ

= 0 (161)

we then expand about this classical solution

φ(x) = φc(x) + ϕ(x) (162)

the action S[φ] =
∫
dDx L[φ],

S[φc + ϕ] = S[φc] +

∫
dDxδφ(x)

[
δL
δφ

− ∂µ δL
∂µφ

]

φc

+

∫
dDx

∫
dDy

1

2

δ2L
δφ(x)δφ(y)

φ(x)φ(y) +O(φ3) (163)

Thus, for example, for the case of a relativistic scalar field with Lagrangian
density

L =
1

2
(∂µφ)

2 − V (φ) (164)
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we write

L = L[φc] +
1

2
ϕ(x)

[
−∂2 − V ′′[φc]

]
ϕ(x) + . . . (165)

The partition function now takes the form

Z =

∫
Dφ eiS[φ] = const.

[
Det

(
−∂2 − V ′′[φc]

)]−1/2
eiS[φc] [1 + . . .] (166)

For a fermionic system the main difference is that the determinant factor gets
flipped around

[Det (differential operator)]
−n/2 → [Det (differential operator)]

n/2
(167)

where n is the number of real field components.
Thus, if we wished to compute the ground state energy EG, we would use

the fact that
S[φc] = −TE0 (168)

where T is the total time-span and E0 is the ground state energy for the free
field, and that the partition function for large T becomes

Z = e−iEGT , for large real time T (169)

Hence,

EG = lim
T→∞

i

T
lnZ = − 1

T
S[φc] +

i

2
ln Det

(
−∂2 − V ′′[φc]

)
+ . . . (170)

Notice that for fermions the sign of the term with the determinant would be the
opposite.

In imaginary time we have

Z = e−βEG = e−βE0
[
Det

(
−∇2 + V ′′[φc]

)]−1/2 × [1 + . . .] (171)

and

EG = E0 +
1

2β
ln Det

(
−∇2 + V ′′[φc]

)
+ . . . (172)

The correction terms can be computed using perturbation theory; we will do
this later on. Let us note for now that the way will do this will require the we
introduce a set of sources J which couple linearly to the field φ, in the form of
an extra term to the action of the form

∫
dDxJ(x)φ(x). Upon shifting the fields

and expanding we get

Z[J ] = e
iS[φc] + i

∫
dDxJ(x)φc(x)

×
[
Det

(
−∂2 − V ′′[φc]

)]−1/2
e

i

2

∫

x

∫

y

J(x)G(x, y)J(y)
(173)

where G(x, y) is the Green’s function,

G(x, y) = 〈x| 1

−∂2 − V ′′[φc]
|y〉 (174)
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8.6 How to Compute Functional Determinants:

Heat kernels and ζ-function regularization.

We have seen before that the evaluation of the effects of quantum fluctuations
involves the calculation of the determinant of a differential operator. In the case
of non-relativistic single particle Quantum Mechanics we discussed in detail how
to calculate a functional determinant of the form Det

[
−∂2

t +W (t)
]
. However

the method we used for that purpose becomes unmanageably cumbersome if
applied to the calculation of determinants of partial differential operators of the
form Det

[
−D2 +W (x)

]
, where x ≡ xµ. Fortunately there are better and more

efficient ways of doing such calculations.
Let Â be an operator, and {fn(x)} be a complete set of eigenstates of Â,

with the eigenvalue spectrum S(A) = {an},

Âfn(x) = anfn(x) (175)

We will assume that Â has a discrete spectrum of real positive eigenvalues. For
the case of a continuous spectrum we will put the system in a finite box, which
makes the spectrum discrete, and take limits at the end of the calculation.

The function ζ(s),

ζ(s) =

∞∑

n=1

1

ns
, for s > 0 (176)

is the well known Riemann ζ-function. We will now use the eigenvalue spectrum
of the operator Â to define the generalized ζ-function

ζA(s) =
∑

n

1

as
n

(177)

where the sum runs over the labels of the spectrum of the operator Â. Then,
upon differentiation we find

dζA
ds

=
∑

n

d

ds
e−s lnan

= −
∑

n

ln an

as
n

(178)

Then, in the limit s→ 0+ we find,

lim
s→0+

dζA
ds

= −
∑

n

ln an = − ln
∏

n

an ≡ − lnDetA (179)

Hence,
dζA
ds

∣∣∣∣
s→0+

= − ln DetA (180)
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Let us define now the generalized heat kernel,

GA(x, y; τ) =
∑

n

e−anτ fn(x)f∗
n(y) (181)

where τ > 0. The heat kernel GA(x, y; τ) clearly obeys

−∂τGA(x, y; τ) = ÂGA(x, y; τ) (182)

which can be regarded as a Heat equation. Indeed, for Â = −D ∇2, this is
the regular Heat Equation (where D is the diffusion constant); in this case τ
represents time. In general we will refer to τ as proper time.

The heat kernel GA(x, y; τ) satisfies the initial condition

lim
τ→0+

GA(x, y; τ) =
∑

n

fn(x)f∗
n(y) = δ(x− y) (183)

where we have used the completeness relation of the eigenfunctions {fn(x)}.
Hence, GA(x, y; τ) is the solution of a generalized Heat Equation with kernel Â.
It defines a generalized random walk or Markov process.

We will now show thatGA(x, y; τ) is related to the function ζA(s). Indeed, let
us consider the heat kernel GA(x, y; τ) at short distances, y → x, and compute
the integral (below D is the dimensionality of space-time)

∫
dDx lim

y→x
GA(x, y; τ) =

∑

n

e−anτ
∫
dDx fn(x)f∗

n(x)

=
∑

n

e−anτ ≡
(

tr e−τÂ
)

(184)

where we assumed that the eigenfunctions are normalized to unity

∫
dDx |fn(x)|2 = 1 (185)

i. e. normalized inside a box.
We will now use that, for s > 0,

∫ ∞

0

dτ τs−1 e−anτ =
Γ(s)

as
n

(186)

where Γ(s) is the Gamma function:

Γ(s) =

∫ ∞

0

dτ τs−1 e−τ (187)

Then, ∫ ∞

0

dτ τs−1

∫
dDx lim

y→x
GA(x, y; τ) =

∑

n

Γ(s)

as
n

(188)

23



Therefore, we find that the generalized ζ-function, ζA(s), can be written ob-
tained from the generalized heat kernel GA(x, y; τ):

ζA(s) =
1

Γ(s)

∫ ∞

0

dτ τs−1

∫
dDx lim

y→x
GA(x, y; τ) (189)

This result suggests the following strategy for the computation of determinants:

1. Given the Hermitian operator Â, we solve the Generalized Heat Equation

Â GA = −∂τ GA (190)

subject to the initial condition

lim
τ→0+

GA(x, y; τ) = δD(x − y) (191)

2. Next we evaluate find the associated ζ-function, ζA(s), using the expres-
sion

ζA(s) =
1

Γ(s)

∫ ∞

0

dτ τs−1

∫
dDx lim

y→x
GA(x, y; τ)

︸ ︷︷ ︸

tr e−τÂ

(192)

3. We next take the limit s→ 0+ to relate the ζ-function to the determinant:

lim
s→0+

dζA(s)

ds
= − ln det Â (193)

In practice we will have to exercise some care in this step since we will find
singularities as we take this limit. Most often we will keep the points x
and y apart by a small but finite distance a, which we will eventually take
to zero. Hence, we will need to understand in detail the short distance
behavior of the heat kernel.

Furthermore, the propagator

SA(x, y) = 〈x| Â−1 |y〉 (194)

can also be related to the heat kernel. Indeed by expending Eq.(194) in the
eigenstates of Â, we find

S(x, y) =
∑

n

〈x|n〉 〈n|y〉
an

=
∑

n

fn(x)f∗
n(y)

an
(195)

We can now write the following integral of the heat kernel as
∫ ∞

0

dτ GA(x, y; τ) =
∑

n

fn(x)f∗
n(y)

∫ ∞

0

dτ e−anτ

=
∑

n

fn(x)f∗
n(y)

an
= S(x, y) (196)
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Hence, the propagator SA(x, y) is an integral over the heat kernel:

SA(x, y) =

∫ ∞

0

dτ GA(x, y; τ) (197)

Equivalently, we can say that since GA satisfies the Heat Equation

ÂGA = −∂τGA =⇒ GA(x, y; τ) = 〈x| e−τÂ |y〉 (198)

Thus,

SA(x, y) =

∫ ∞

0

dτ 〈x| e−τÂ |y〉 = 〈x| Â−1 |y〉 (199)

and that it is indeed the Green’s function of Â,

ÂxS(x, y) = δ(x− y) (200)

It is worth to note that the heat kernel GA(x, y; τ), as can be seen from Eq.
(198), is also the density matrix of the bounded Hermitian operator Â. As such
it has an imaginary time (τ !) path-integral representation.(To actually insure
convergence we must also require that the spectrum of Â be positive.) In that
picture we view GA(x, y; τ) as the amplitude for the imaginary-time (proper
time) evolution from the initial state |y〉 to the final state |x〉. In other words,
we picture SA(x, y) as the amplitude to go from y to x in an arbitrary time.

8.6.1 The determinant of the Euclidean Klein-Gordon Operator

As an example of the use of the heat kernel method we will use it to compute
the determinant of the Euclidean Klein-Gordon operator. Thus, we will take
the hermitian operator Â to be

Â = −∇2 +m2 (201)

in D Euclidean space-time dimensions. This operator has a bounded positive
spectrum. Here we will be interested in a system with infinite size L→ ∞, and
a large volume V = LD. We will follow the steps outlined above.

1. We begin by constructing the heat kernel G(x, y; τ). By definition it is
the solution of the partial differential equation

(
−∇2 +m2

)
G(x, y; τ) = −∂τG(x, y; τ) (202)

satisfying the initial condition

lim
τ→0+

G(x, y; τ) = δD(x − y) (203)

We will find G(x, y; τ) by Fourier transforms,

G(x, y; τ) =

∫
dDp

(2π)D
G(~p, τ) e i~p · (~x − ~y) (204)
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We find that in order for G(x, y; τ) to satisfy Eq.(202), its Fourier trans-
form G(~p; τ) must satisfy the differential equation

−∂τG(~p; τ) =
(
~p 2 +m2

)
G(~p; τ) (205)

The solution of this equation, consistent with the initial condition of
Eq.(203) is

G(~p; τ) = e−
(
~p 2 +m2

)
τ (206)

We can now easily find G(x, y; τ) by simply finding the anti-transform of
G(~p; τ):

G(x, y; τ) =

∫
dDp

(2π)D
e−
(
~p 2 +m2

)
τ + i~p · (~x− ~y)

=
e

−
[
m2τ +

|~x− ~y|2
4τ

]

(4πτ)D/2
(207)

Notice that for m → 0, G(x, y; τ) reduces to the usual diffusion kernel
(with unit diffusion constant.)

lim
m→0

G(x, y; τ) =
e
−|x− y|2

4τ

(4πτ)
D/2

(208)

2. Next we construct the ζ-function

ζ−∇2+m2(s) =
1

Γ(s)

∫ ∞

0

dτ τs−1

∫
dDx lim

y→x
G(x, y; τ) (209)

We first do the integral

∫ ∞

0

dτ τs−1

∫
dDx G(x, y; τ) =

V

(4π)D/2

∫ ∞

0

dτ τs−1−D/2 e
−
(
m2τ +

R2

4τ

)

(210)
where R = |~x− ~y|. Upon scaling the variable τ = λt, with λ = R/2m, we
find that

∫ ∞

0

dτ τs−1 G(x, y; τ) =
2

(4π)
D/2

(
R

2m

)s−D
2

KD
2
−s(mR) (211)

where Kν(z),

Kν(z) =
1

2

∫ ∞

0

dt tν−1e
−z

2

(
t+

1

t

)

(212)
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is a modified Bessel function. Its short argument behavior is

Kν(z) ∼ Γ(ν)

2

(
2

z

)ν

+ . . . (213)

As a check, we notice that for s = 1 the integral of Eq.(210) does reproduce
the Euclidean Klein-Gordon propagator that we discussed earlier in these
lectures.

3. The next step is to take the short distance limit

lim
R→0

∫ ∞

0

dτ τs−1G(~x, ~y; τ) = lim
R→0

21−s

(2π)D/2

mD−2s

(mR)
D
2
−s
KD

2
−s(mR)

=
Γ
(
s− D

2

)

(4π)D/2m2s−D
(214)

Notice that we have exchanged the order of the limit and the integration.
Also, after we took the short distance limit R → 0, the expression above
acquired a factor of Γ (s−D/2), which is singular as s−D/2 approaches
zero (or any negative integer). Thus, a small but finite R smears this
singularity.

4. Finally we find the ζ-function by doing the (trivial) integration over space

ζ(s) =
1

Γ(s)

∫ ∞

0

dτ

∫
dDx lim

~y→~x
G(~x, ~y; τ)

= V µ−2s mD

(4π)D/2

Γ
(
s− D

2

)

Γ(s)

(
m

µ

)−2s

(215)

where µ = 1/R plays the role of a cutoff mass (or momentum) scale that
we will need to make some quantities dimensionless. The appearance of
this quantity is also a consequence of the singularities.

We will now consider the specific case of D = 4 dimensions. For D = 4 the
ζ-function is

ζ(s) = V
m4

16π2

µ−2s

(s− 1)(s− 2)

(
m

µ

)−2s

(216)

We can now compute the desired (logarithm of the) determinant for D = 4
dimensions:

ln Det
[
−∇2 +m2

]
= − lim

s→0+

dζ

ds
=

m4

16π2

[
ln
m

µ
− 3

4

]
V (217)

where V = L4. A similar calculation for D = 2 yields the result

ln Det
[
−∇2 +m2

]
=
m2

2π

[
ln
m

µ
− 1

2

]
V (218)

where V = L2.
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8.7 Path integral for spin.

We will now discuss the use of path integral methods to describe a quantum
mechanical spin. Consider a quantum mechanical system which consists of a
spin in the spin-S representation of the group SU(2). The space of states of
the spin-S representation is 2S + 1-dimensional, and it is spanned by the basis
{|S,M〉} which are the eigenstates of the operators ~S2 and S3, i.e.,

~S2 |S,M〉 = S(S + 1) |S,M〉
S3 |S,M〉 = M |S,M〉

(219)

with |M | ≤ S (in integer-spaced intervals). This set of states is complete ad
it forms a basis of this Hilbert space. The operators S1, S2 and S3 obey the
SU(2) algebra,

[Sa, Sb] = iǫabcSc (220)

where a, b, c = 1, 2, 3.
The simplest physical problem involving spin is the coupling to an external

magnetic field ~B through the Zeeman interaction

HZeeman = µ ~B · ~S (221)

where µ is the Zeeman coupling constant ( i.e., the product of the Bohr mag-
neton and the gyromagnetic factor).

Let us denote by |0〉 the highest weight state |S, S〉. Let us define the spin
raising and lowering operators S±,

S± = S1 ± iS2 (222)

The highest weight state |0〉 is annihilated by S+,

S+|0〉 = S+|S, S〉 = 0 (223)

Clearly, we also have

~S2|0〉 = S(S + 1)|0〉
S3|0〉 = S|0〉

(224)

Let us consider now the state |~n〉 ,

|~n〉 = eiθ(~n0 × ~n · ~S |0〉 (225)

where ~n is a three-dimensional unit vector (~n2 = 1), ~n0 is a unit vector pointing
along the direction of the quantization axis (i.e., the “North Pole” of the unit
sphere) and θ is the colatitude, (see Fig. 2)

~n · ~n0 = cos θ (226)
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noxn

θ ~n
~n0

Figure 1:

As we will see the state |~n〉 is a coherent spin state which represents a spin
polarized along the ~n axis. The state |~n〉 can be expanded in the basis |S,M〉,

|~n〉 =

S∑

M=−S

D
(S)
MS(~n) |S,M〉 (227)

Here D
(S)
MS(~n) are the representation matrices in the spin-S representation.

It is important to note that there are many rotations that lead to the same
state |~n〉 from the highest weight |0〉. For example any rotation along the di-
rection ~n results only in a change in the phase of the state |~n〉. These rotations
are equivalent to a multiplication on the right by a rotation about the z axis.
However, in Quantum Mechanics this phase has no physically observable conse-
quence. Hence we will regard all of these states as being physically equivalent.
In other terms, the states for equivalence classes (or rays) and we must pick
one and only one state from each class. These rotations are generated by S3,
the (only) diagonal generator of SU(2). Hence, the physical states are not in
one-to-one correspondence with the elements of SU(2) but instead with the el-
ements of the right coset SU(2)/U(1), with the U(1) generated by S3. (In the
case of a more general group we must divide out the Maximal Torus generated
by all the diagonal generators of the group.) In mathematical language, if we
consider all the rotations at once , the spin coherent states are said to form a
Hermitian line bundle.

A consequence of these observations is that the D matrices do not form a
group under matrix multiplication. Instead they satisfy

D(S)(~n1)D
(S)(~n2) = D(S)(~n3) e

iΦ(~n1, ~n2, ~n3)S3 (228)

where the phase factor is usually called a cocycle. Here Φ(~n1, ~n2, ~n3) is the
(oriented) area of the spherical triangle with vertices at ~n1, ~n2, ~n3. However,
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since the sphere is a closed surface, which area do we actually mean? “Inside”
or “outsider”? Thus, the phase factor is ambiguous by an amount determined
by 4π, the total area of the sphere,

ei4πM (229)

However, since M is either an integer or a half-integer this ambiguity in Φ has
no consequence whatsoever,

ei4πM = 1 (230)

(we can also regard this result as a requirement that M be quantized).

~n1 ~n2

~n3

Figure 2:

The states |~n〉 are coherent states which satisfy the following properties (see
Perelomov’s book Coherent States). The overlap of two coherent states |~n1〉 and
|~n2〉 is

〈~n1|~n2〉= 〈0|D(S)(~n1)
†D(S)(~n2)|0〉

= 〈0|D(S)(~n0)e
iΦ(~n1, ~n2, ~n0)S3 |0〉

=

(
1 + ~n1 · ~n2

2

)S

eiΦ(~n1, ~n2, ~n0)S

(231)

The (diagonal) matrix element of the spin operator is

〈~n|~S|~n〉 = S ~n (232)

Finally, the (over-complete) set of coherent states {|~n〉} have a resolution of the
identity of the form

Î =

∫
dµ(~n) |~n〉〈~n| (233)

30



where the integration measure dµ(~n) is

dµ(~n) =

(
2S + 1

4π

)
δ(~n2 − 1)d3n (234)

Let us now use the coherent states {|~n〉} to find the path integral for a spin.
In imaginary time τ (and with periodic boundary conditions) the path integral
is simply the partition function

Z = tre−βH (235)

where β = 1/T (T is the temperature) and H is the Hamiltonian. As usual
the path integral form of the partition function is found by splitting up the
imaginary time interval 0 ≤ τ ≤ β in Nτ steps each of length δτ such that
Nτδτ = β. Hence we have

Z = lim
Nτ→∞,δτ→0

tr
(
e−δτH

)Nτ

(236)

and insert the resolution of the identity at every intermediate time step,

Z = lim
Nτ→∞,δτ→0




Nτ∏

j=1

∫
dµ(~nj)








Nτ∏

j=1

〈~n(τj)|e−δτH |~n(τj+1)〉





≃ lim
Nτ→∞,δτ→0




Nτ∏

j=1

∫
dµ(~nj)








Nτ∏

j=1

[〈~n(τj)|~n(τj+1)〉 − δτ〈~n(τj)|H |~n(τj+1)〉]





(237)

However, since

〈~n(τj)|H |~n(τj+1)〉
〈~n(τj)|~n(τj+1)〉

≃ 〈~n(τj)|H |~n(τj)〉 = µS ~B · ~n(τj) (238)

and

〈~n(τj)|~n(τj+1)〉 =

(
1 + ~n(τj) · ~n(τj+1)

2

)S

eiΦ(~n(τj), ~n(τj+1), ~n0)S (239)

we can write the partition function in the form

Z = lim
Nτ→∞,δτ→0

∫
D~n e−SE[~n] (240)

where SE [~n] is given by

−SE [~n] = iS

Nτ∑

j=1

Φ(~n(τj), ~n(τj+1), ~n0)

+S

Nτ∑

j=1

ln

(
1 + ~n(τj) · ~n(τj+1)

2

)
−

Nτ∑

j=1

(δτ)µS ~n(τj) · ~B

(241)
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The first term of the r. h. s. of Eq. 251 contains the expression Φ(~n(τj), ~n(τj+1), ~n0)
which has a simple geometric interpretation: it is the sum of the areas of the Nτ

contiguous spherical triangles. These triangles have the pole ~n0 as a common
vertex, and their other pairs of vertices trace a spherical polygon with vertices at
{~n(τj)}. In the time continuum limit this spherical polygon becomes the history

of the spin, which traces a closed oriented curve Γ = {~n(τ)} (with 0 ≤ τ ≤ β).
Let us denote by Ω+ the region of the sphere whose boundary is Γ and which
contains the pole ~n0. The complement of this region is Ω− and it contains the
opposite pole −~n0. Hence we find that

lim
Nτ→∞,δτ→0

Φ(~n(τj), ~n(τj+1), ~n0) = A[Ω+] = 4π −A[Ω−] (242)

where A[Ω] is the area of the region Ω. Once again, the ambiguity of the area
leads to the requirement that S should be an integer or a half-integer.

~n(τj)

~n0

~n(τj+1

Ω+

Ω−

Figure 3:

There is a simple an elegant way to write the area enclosed by Γ. Let ~n(τ) be
a history and Γ be the set of points o the 2-sphere traced by ~n(τ) for 0 ≤ τ ≤ β.
Let us define ~n(τ, s) (with 0 ≤ s ≤ 1) to be an arbitrary extension of ~n(τ) from
the curve Γ to the interior of the upper cap Ω+, such that

~n(τ, 0) = ~n(τ)

~n(τ, 1) = ~n0

~n(τ, 0) = ~n(τ + β, 0)

(243)

Then the area can be written in the compact form

A[Ω+] =

∫ 1

0

ds

∫ β

0

dτ ~n(τ, s) · ∂τ~n(τ, s) × ∂s~n(τ, s) ≡ SWZ[~n] (244)
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In Mathematics this expression for the area is called the (simplectic) 2-form,
and in the Physics literature is usually called a Wess-Zumino action, SWZ, or
Berry’s Phase.

Φ = 4πS
Total Flux

Figure 4: A hairy ball or monopole

Thus, in the (formal) time continuum limit, the action SE becomes

SE = −iS SWZ[~n] +
Sδτ

2

∫ β

0

dτ (∂τ~n(τ))
2

+

∫ β

0

dτ µS ~B · ~n(τ) (245)

Notice that we have kept (temporarily) a term of order δτ , which we will drop
shortly.

How do we interpret Eq. 245 ? Since ~n(τ) is constrained to be a point on
the surface of the unit sphere, i.e., ~n2 = 1, the action SE [~n] can be interpreted
as the action of a particle of mass M = Sδτ → 0 and ~n(τ) is the position vector
of the particle at (imaginary) time τ . Thus, the second term is a (vanishingly
small) kinetic energy term, and the last term of Eq. (245) is a potential energy
term.

What is the meaning of the first term? In Eq. (244) we saw that SWZ[~n],
the the so-called Wess-Zumino or Berry phase term in the action, is the area of
the (positively oriented) region A[Ω+] “enclosed” by the “path” ~n(τ). In fact,

SWZ[~n] =

∫ 1

0

ds

∫ β

0

dτ~n · ∂τ~n× ∂s~n (246)

is the area of the oriented surface Ω+ whose boundary is the oriented path
Γ = ∂Ω+ (see Fig. 3). Using Stokes Theorem we can write the the expression

SA[~n] as the circulation of a vector field ~A[~n],

∮

∂Ω

d~n · ~A[~n(τ)] =

∫∫

Ω+

d~S · ~∇~n × ~A[~n(τ)] (247)
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provided the “magnetic field” ~∇~n × ~A is “constant”, namely

~B = ~∇~n × ~A[~(τ)] = S ~n(τ) (248)

What is the total flux Φ of this magnetic field?

Φ =

∫

sphere

d~S · ~∇~n × ~A[~n]

= S

∫
d~S · ~n ≡ 4πS (249)

Thus, the total number of flux quanta Nφ piercing the unit sphere is

Nφ =
Φ

2π
= 2S = magnetic charge (250)

We reach the condition that the magnetic charge is quantized, a result known
as the Dirac quantization condition.

Is this result consistent with what we know about charged particles in mag-
netic fields? In particular, how is this result related to the physics of spin? To
answer these questions we will go back to real time and write the action

S[~n] =

∫ T

0

dt

[
M

2

(
d~n

dt

)2

+ ~A[~n(t)] · d~n
dt

− µS~n(t) · ~B
]

(251)

with the constraint ~n 2 = 1 and where the limit M → 0 is implied.
The classical hamiltonian associated to the action of Eq. (251) is

H =
1

2M

[
~n×

(
~p− ~A[~n]

)]2
+ µS~n · ~B ≡ H0 + µS~n · ~B (252)

It is easy to check that the vector ~Λ,

~Λ = ~n×
(
~p− ~A

)
(253)

satisfies the algebra
[Λa,Λb] = i~ǫabc (Λc − ~Snc) (254)

where a, b, c = 1, 2, 3, ǫabc is the (third rank) Levi-Civita tensor, and with

~Λ · ~n = ~n · ~Λ = 0 (255)

the generators of rotations for this system are

~L = ~Λ + ~S~n (256)

The operators ~L and ~Λ satisfy the (joint) algebra

[La, Lb] = −i~ǫabcLs

[
La, ~L

2
]

= 0

[La, nb] = i~ǫabcnc [La,Λb] = i~ǫabcΛc

(257)
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Hence [
La, ~Λ

2
]

= 0 ⇒ [La, H ] = 0 (258)

since the operators La satisfy the angular momentum algebra, we can diagonal-
ize ~L2 and L3 simultaneously. Let |m, ℓ〉 be the simultaneous eigenstates of ~L2

and L3,

~L2|m, ℓ〉 = ~
2ℓ(ℓ+ 1)|m, ℓ〉 (259)

L3|m, ℓ〉 = ~m|m, ℓ〉 (260)

H0|m, ℓ〉 =
~2

2MR2

(
ℓ(ℓ+ 1) − S

2S

)
|m, ℓ〉 (261)

where R = 1 is the radius of the sphere. The eigenvalues ℓ are of the form
ℓ = S + n, |m| ≤ ℓ, with n ∈ Z+ ∪ {0} and 2S ∈ Z+ ∪ {0}. Hence each level is
2ℓ+1-fold degenerate, or what is equivalent, 2n+1+2S-fold degenerate. Then,
we get

~Λ 2 = ~L 2 − ~n 2
~

2S2 = ~L 2 − ~
2S2 (262)

Since M = Sδt → 0, the lowest energy in the spectrum of H0 are those with
the smallest value of ℓ, i. e. states with n = 0 and ℓ = S. The degeneracy of
this ”Landau” level is 2S + 1, and the gap to the next excited states diverges
as M → 0. Thus, in the M → 0 limit, the lowest energy states have the same
degeneracy as the spin-S representation. Moreover, the operators ~L 2 and L3

become the corresponding spin operators. thus, the equivalency found is indeed
correct.

Thus, we have shown that the quantum states of a scalar (non-relativistic)
particle bound to a magnetic monopole of magnetic charge 2S, obeying the Dirac
quantization condition, are identical to those of those of a spinning particle!

We close this section with some observations on the semi-classical motion.
From the (real time) action (already in the M → 0 limit)

S = −
∫ T

0

dt µS ~n · ~B + S

∫ T

0

dt

∫ 1

0

ds ~n · ∂t~n× ∂s~n (263)

we can derive a Classical Equation of Motion by looking at the stationary con-
figurations. The variation of the second term in Eq. (263) is

δS = S δ

∫ T

0

dt

∫ 1

0

ds ~n · ∂t~n× ∂s~n = S

∫ T

0

dtδ~n(t) · ~n(t) × ∂t~n(t) (264)

the variation of the first term in Eq. (263) is

δ

∫ T

0

dt µS~n(t) · ~B =

∫ T

0

dt δn(t) · µS ~B (265)

Hence,

δS =

∫ T

0

dt δ~n(t) ·
(
−µS ~B + S~n(t) × ∂t~n(t)

)
(266)
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which implies that the classical trajectories must satisfy the equation of motion

µ~B = ~n× ∂t~n (267)

If we now use the vector identity

~n× ~n× ∂t~n = (~n · ∂t~n)~n− ~n 2∂t~n (268)

and
~n · ∂t~n = 0, and ~n 2 = 1 (269)

we get the classical equation of motion

∂t~n = µ~B × ~n (270)

Therefore, the classical motion is precessional with an angular velocity ~Ωpr =

µ~B.
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