
6 Non-Relativistic Field Theory

6.1 Non-Relativistic Field Theories, Second Quantization

and the Many-Body Problem

Let us consider now the problem of a system of N identical non-relativistic
particles. For the sake of simplicity I will assume that the physical state of each
particle j is described by its position ~xj relative to some reference frame. This
case is easy to generalize.

The wave function for this system is Ψ(x1, . . . , xN ). If the particles are
identical then the probability density, |Ψ(x1, . . . , xN )|2, must be invariant (i.e.,
unchanged) under arbitrary exchanges of the labels that we use to identify (or
designate) the particles. In quantum mechanics, the particles do not have well
defined trajectories. Only the states of a physical system are well defined. Thus,
even though at some initial time t0 the N particles may be localized at a set
of well defined positions x1, . . . , xN , they will become delocalized as the system
evolves. Furthermore the Hamiltonian itself is invariant under a permutation
of the particle labels. Hence, permutations constitute a symmetry of a many-
particle quantum mechanical system. In other terms, identical particles are
indistinguishable in quantum mechanics. In particular, the probability density
of any eigenstate must remain invariant if the labels of any pair of particles
are exchanged. If we denote by Pjk the operator which exchanges the labels of
particles j and k, the wave functions must satisfy

PjkΨ(x1, . . . , xj , . . . , xk, . . . , xN ) = eiφΨ(x1, . . . , xj , . . . , xk, . . . , xN ) (1)

Under a further exchange operation, the particles return to their initial labels
and we recover the original state. This sample argument then requires that
φ = 0, π since 2φ must not be an observable phase. We then conclude that
there are two possibilities: either Ψ is even under permutation and PΨ = Ψ,
or Ψ is odd under permutation and PΨ = −Ψ. Systems of identical particles
which have wave functions which are even under a pairwise permutation of
the particle labels are called bosons. In the other case, Ψ odd under pairwise
permutation, they are Fermions. It must be stressed that these arguments only
show that the requirement that the state prioriΨ be either even or odd is only a
sufficient condition. It turns out that under special circumstances other options
become available and the phase factor φ may take values different from 0 or π.
These particles are called anyons. For the moment the only cases in which they
may exist appears to be in situations in which the particles are restricted to
move on a line or on a plane. In the case of relativistic quantum field theories,
the requirement that the states have well defined statistics (or symmetry) is
demanded by a very deep and fundamental theorem which links the statistics
of the states of the spin of the field. This is the spin-statistics theorem which
we will discuss later on.
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6.1.1 Fock Space

We will now discuss a procedure, known as Second Quantization, which will
enable us to keep track of the symmetry of the states in a simple way. Let us
consider now a system of N particles. The wave functions in the coordinate
representation are Ψ(x1, . . . , xN ) where the labels x1, . . . , xN denote both the
coordinates and the spin states of the particles in the state |Ψ〉. For the sake of
definiteness we will discuss physical systems describable by Hamiltonians Ĥ of
the form

Ĥ = − ~
2

2m

N∑

j=1

▽2
j +

N∑

j=1

V (xj) + g
∑

j,k

U(xj − xk) + . . . (2)

Let {φn(x)} be the wave functions for a complete set of one-particle states.
Then an arbitrary N -particle state can be expanded in a basis which is the
tensor product of the one-particle states, namely

Ψ(x1, . . . , xN ) =
∑

{nj}

C(n1, . . . nN )φn1(x1) . . . φnN (xN ) (3)

Thus, if Ψ is symmetric (antisymmetric) under an arbitrary exchange xj → xk,
the coefficients C(n1, . . . , nN ) must be symmetric (antisymmetric) under the
exchange nj ↔ nk.

A set of N -particle basis states with well defined permutation symmetry is
the properly symmetrized or antisymmetrized tensor product

|Ψ1, . . .ΨN〉 ≡ |Ψ1〉×|Ψ2〉×· · ·×|ΨN〉 =
1√
N !

∑

P

ξP |ΨP (1)〉×· · ·×|ΨP (N)〉 (4)

where the sum runs over the set of all possible permutation P . The weight
factor ξ is +1 for bosons and −1 for fermions. Notice that, for fermions, the
N -particle state vanishes if two particles are in the same one-particle state. This
is the exclusion principle.

The inner product of two N -particle states is

〈χ1, . . . χN |ψ1, . . . , ψN 〉 =
1

N !

∑

P,Q

ξP+Q〈χQ(1)|ψP (1)〉 · · · 〈χQ(N)|ψP (1)〉 =

=
∑

P ′

ξP
′〈χ1|ψP (1)〉 · · · 〈χN |ψP (N)〉

(5)

which is nothing but the permanent (determinant) of the matrix 〈χj |ψk〉 for
symmetric (antisymmetric) states, i.e.,

〈χ1, . . . χN |ψ1, . . . ψN 〉 =

∣∣∣∣∣∣∣

〈χ1|ψ1〉 . . . 〈χ1|ψN 〉
...

...
〈χN |ψ1〉 . . . 〈χN |ψN 〉

∣∣∣∣∣∣∣
ξ

(6)
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In the case of antisymmetric states, the inner product is the familiar Slater
determinant. Let us denote by {|α〉} the complete set of one-particle states
which satisfy

〈α|β〉 = δαβ
∑

α

|α〉〈α| = 1 (7)

TheN -particle states are {|α1, . . . αN 〉}. Because of the symmetry requirements,
the labels αj can be arranged in the form of a monotonic sequence α1 ≤ α2 ≤
· · · ≤ αN for bosons, or in the form of a strict monotonic sequence α1 < α2 <

· · · < αN for fermions. Let nj be an integer which counts how many particles are
in the j-th one-particle state. The boson states |α1, . . . αN 〉 must be normalized
by a factor of the form

1√
n1! . . . nN !

|α1, . . . , αN 〉 (α1 ≤ α2 ≤ · · · ≤ αN ) (8)

and nj are non-negative integers. For fermions the states are

|α1, . . . , αN 〉 (α1 < α2 < · · · < αN ) (9)

and nj = 0 > 1. These N -particle states are complete and orthonormal

1

N !

∑

α1,...,αN

|α1, . . . , αN 〉〈α1, . . . , αN | = Î (10)

where the sum over the α’s is unrestricted and the operator Î is the identity
operator in the space of N -particle states.

We will now consider the more general problem in which the number of
particles N is not fixed a-priori. Rather, we will consider an enlarged space of
states in which the number of particles is allowed to fluctuate. In the language
of Statistical Physics what we are doing is to go from the Canonical Ensemble
to the Grand Canonical Ensemble. Thus, let us denote by H0 the Hilbert space
with no particles, H1 the Hilbert space with only one particle and, in general,
HN the Hilbert space for N -particles. The direct sum of these spaces H

H = H0 ⊕H1 ⊕ · · · ⊕ HN ⊕ · · · (11)

is usually called the Fock space. An arbitrary state |ψ〉 in Fock space is the sum
over the subspaces HN ,

|ψ〉 = |ψ(0)〉 + |ψ(1)〉 + · · · + |ψ(N)〉 + · · · (12)

The subspace with no particles is a one-dimensional space spanned by the vector
|0〉 which we will call the vacuum. The subspaces with well defined number of
particles are defined to be orthogonal to each other in the sense that the inner
product in the Fock space

〈χ|ψ〉 ≡
∞∑

j=0

〈χ(j)|ψ(j)〉 (13)

vanishes if |χ〉 and |ψ〉 belong to different subspaces.
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6.1.2 Creation and Annihilation Operators

Let |φ〉 be an arbitrary one-particle state. Let us define the creation operator
â†(φ) by its action on an arbitrary state in Fock space

â†(φ)|ψ1, . . . , ψN 〉 = |φ, ψ1, . . . , ψN 〉 (14)

Clearly, â†(φ) maps the N -particle state with proper symmetry |ψ1, . . . , ψN 〉
onto the N + 1-particle state |φ, ψ, . . . , ψN 〉, also with proper symmetry . The
destruction or annihilation operator â(φ) is defined to be the adjoint of â†(φ) ,

〈χ1, . . . , χN−1|â(φ)|ψ1, . . . , ψN 〉 = 〈ψ1, . . . , ψN |â†(φ)|χ1, . . . , χN−1〉
∗

(15)

Hence

〈χ1, . . . , χN−1|â(φ)|ψ1, . . . , ψN 〉 = 〈ψ1, . . . , ψN |φ, χ1, . . . , χN−1〉∗ =

=

∣∣∣∣∣∣∣

〈ψ1|φ〉 〈ψ1|χ1〉 · · · 〈ψ1|χN−1〉
...

...
...

〈ψN |φ〉 〈ψN |χ1〉 · · · 〈ψN |χN−1〉

∣∣∣∣∣∣∣

∗

ξ

(16)

We can now expand the permanent (or determinant) to get

〈χ1, . . . , χN−1|â(φ)|ψ1, . . . , ψN 〉 =

=

N∑

k=1

ξk−1〈ψk|φ〉

∣∣∣∣∣∣∣∣∣

〈ψ1|χ1〉 . . . 〈ψ1|χN−1〉
...

...
. . . (noψk) . . .

〈ψN |χ1〉 . . . 〈ψN |χN−1〉

∣∣∣∣∣∣∣∣∣

∗

ξ

=

N∑

k=1

ξk−1〈ψk|φ〉 〈χ1, . . . , χN−1|ψ1, . . . ψ̂k . . . , ψN 〉

(17)

where ψ̂k indicates that ψk is absent. Thus, the destruction operator is given
by

â(φ)|ψ1, . . . , ψN 〉 =

N∑

k=1

ξk−1〈φ|ψk〉|ψ1, . . . , ψ̂k, . . . , ψN 〉 (18)

With these definitions, we can easily see that the operators â†(φ) and â(φ) obey
the commutation relations

â†(φ1)â
†(φ2) = ξ â†(φ2)â

†(φ1) (19)

Let us introduce the notation
[
Â, B̂

]

−ξ
≡ ÂB̂ − ξ B̂Â (20)
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where Â and B̂ are two arbitrary operators. For ξ = +1 (bosons) we have the
commutator [

â†(φ1), â
†(φ2)

]
+1

≡
[
â†(φ1), â

†(φ2)
]

= 0 (21)

while for ξ = −1 it is the anticommutator

[
â†(φ1), â

†(φ2)
]
−1

≡
{
â†(φ1), â

†(φ2)
}

= 0 (22)

Similarly for any pair of arbitrary one-particle states |φ1〉 and |φ2〉 we get

[â(φ1), â(φ2)]−ξ = 0 (23)

It is also easy to check that the following identity holds

[
â(φ1), â

†(φ2)
]
−ξ

= 〈φ1|φ2〉 (24)

So far we have not picked any particular representation. Let us consider the
occupation number representation in which the states are labelled by the number
of particles nk in the single-particle state k. In this case, we have

|n1, . . . , nk, . . .〉 ≡
1√

n1!n2! . . .
|

n1︷ ︸︸ ︷
1 . . . 1,

n2︷ ︸︸ ︷
2 . . . 2 . . .〉 (25)

In the case of bosons, the nj ’s can be any non-negative integer, while for fermions
they can only be equal to zero or one. In general we have that if |α〉 is the αth
single-particle state, then

â†α|n1, . . . , nα, . . .〉 =
√
nα + 1|n1, . . . , nα + 1, . . .〉

âα|n1, . . . , nα, . . .〉 =
√
nα|n1, . . . , nα − 1, . . .〉

(26)

Thus for both fermions and bosons, âα annihilates all states with nα = 0, while
for fermions â†α annihilates all states with nα = 1.

The commutation relations are

[âα, âβ] =
[
â†α, â

†
β

]
= 0

[
âα, â

†
β

]
= δαβ (27)

for bosons, and

{âαâβ} =
{
â
†
β, â

†
β

}
= 0

{
âαâ

†
β

}
= δαβ (28)

for fermions. Here,
{
Â, B̂

}
is the anticommutator of the operators Â and B̂

{
Â, B̂

}
≡ ÂB̂ + B̂Â (29)
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If a unitary transformation is performed in the space of one-particle state
vectors, then a unitary transformation is induced in the space of the operators
themselves, i.e., if |χ〉 = α|ψ〉 + β|φ〉, then

â(χ) = α∗â(ψ) + β∗â(φ)

â†(χ) = αâ†(ψ) + βâ†(φ)

(30)

and we say that â†(χ) transforms like the ket |χ〉 while â(χ) transforms like the
bra 〈χ|.

For example, we can pick as the complete set of one-particle states the
momentum states {|~p〉}. This is “momentum space”. With this choice the
commutation relations are

[
â†(~p), â†(~q)

]
−ξ

= [â(~p), â(~q)]−ξ = 0
[
â(~p), â†(~q)

]
−ξ

= (2π)dδd(~p− ~q)

(31)

where d is the dimensionality of space. In this representation, an N -particle
state is

|~p1, . . . , ~pN〉 = â†(~p1) . . . â
†(~pN )|0〉 (32)

On the other hand, we can also pick the one-particle states to be eigenstates of
the position operators, i.e.,

|~x1, . . . ~xN 〉 = â†(~x1) . . . â
†(~xN )|0〉 (33)

In position space, the operators satisfy
[
â†(~x1), â

†(~x2)
]
−ξ

= [â(~x1), â(~x2)]−ξ = 0
[
â(~x1), â

†(~x2)
]
−ξ

= δd(~x1 − ~x2)

(34)

This is the position space or coordinate representation. A transformation from
position space to momentum space is the Fourier transform

|~p〉 =

∫
ddx |~x〉〈~x|~p〉 =

∫
ddx |~x〉ei~p·~x (35)

and, conversely

|~x〉 =

∫
ddp

(2π)d
|~p〉e−i~p·~x (36)

Then, the operators themselves obey

â†(~p) =

∫
ddx â†(~x)ei~p·~x

â†(~x) =

∫
ddp

(2π)d
â†(~p)e−i~p·~x

(37)
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6.1.3 General Operators in Fock Space

Let A(1) be an operator acting on one-particle states. We can always define an
extension of A acting on any arbitrary state |ψ〉 of the N -particle Hilbert space
as follows:

Â|ψ〉 ≡
N∑

j=1

|ψ1〉 × . . .×A(1)|ψj〉 × . . .× |ψN 〉 (38)

For instance, if the one-particle basis states {|ψj〉} are eigenstates of A with
eigenvalues {aj} we get

Â|ψ〉 = (

N∑

j=1

aj)|ψ〉 (39)

We wish to find an expression for an arbitrary operator A in terms of creation

and annihilation operators. Let us first consider the operator A
(1)
αβ = |α〉〈β|

which acts on one-particle states. The operators A
(1)
αβ form a basis of the space

of operators acting on one-particle states. Then, the N -particle extension of
Aαβ is

Âαβ |ψ〉 =

N∑

j=1

|ψ1〉 × · · · × |α〉 × · · · × |ψN 〉〈β|ψj〉 (40)

Thus

Âαβ |ψ〉 =
N∑

j=1

|ψ1, . . . ,

j︷︸︸︷
α , . . . , ψN 〉 〈β|ψj〉 (41)

In other words, we can replace the one-particle state |ψj〉 from the basis with
the state |α〉 at the price of a weight factor, the overlap 〈β|ψj〉. This operator
has a very simple expression in terms of creation and annihilation operators.
Indeed,

â†(α)â(β)|ψ〉 =
N∑

k=1

ξk−1〈β|ψk〉 |α, ψ1, . . . , ψk−1, ψk+1, . . . , ψN 〉 (42)

We can now use the symmetry of the state to write

ξk−1|α, ψ1, . . . , ψk−1, ψk+1, . . . , ψN 〉 = |ψ1, . . . ,

k︷︸︸︷
α , . . . , ψN 〉 (43)

Thus the operatorAαβ , the extension of |α〉〈β| to the N -particle space, coincides
with â†(α)â(β)

Âαβ ≡ â†(α)â(β) (44)

We can use this result to find the extension for an arbitrary operator A(1) of
the form

A(1) =
∑

α,β

|α〉〈α|A(1)|β〉 〈β| (45)
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we find
Â =

∑

α,β

â†(α)â(β)〈α|A(1)|β〉 (46)

Hence the coefficients of the expansion are the matrix elements of A(1) between
arbitrary one-particle states. We now discuss a few operators of interest.

1. The Identity Operator:
The Identity Operator 1̂ of the one-particle Hilbert space

1̂ =
∑

α

|α〉〈α| (47)

becomes the number operator N̂

N̂ =
∑

α

â†(α)â(α) (48)

In position and in momentum space we find

N̂ =

∫
ddp

(2π)d
â†(~p)â(~p) =

∫
ddx â†(~x)â(~x) =

∫
ddx ρ̂(~x) (49)

where ρ̂(x) = â†(~x)â(~x) is the particle density operator.

2. The Linear Momentum Operator:
In the space H1, the linear momentum operator is

p̂
(1)
j =

∫
ddp

(2π)d
pj |~p〉〈~p| =

∫
ddx |~x〉 ~

i
∂j 〈~x| (50)

Thus, we get that the total momentum operator P̂j is

P̂j =

∫
ddp

(2π)d
pjâ

†(~p)â(~p) =

∫
ddx â†(~x)

~

i
∂j â(~x) (51)

3. Hamiltonian:
The one-particle Hamiltonian H(1)

H(1) =
~p 2

2m
+ V (~x) (52)

has the matrix elements

〈~x|H(1)|~y〉 = − ~
2

2m
▽2 δd(~x − ~y) + V (~x)δd(~x− ~y) (53)

Thus, in Fock space we get

Ĥ =

∫
ddx â†(~x)

(
− ~

2

2m
▽2 +V (~x)

)
â(~x) (54)
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in position space. In momentum space we can define

Ṽ (~q) =

∫
ddx V (~x)e−i~q·~x (55)

the Fourier transform of the potential V (x), and get

Ĥ =

∫
ddp

(2π)d
~p 2

2m
â†(~p)â(~p) +

∫
ddp

(2π)d

∫
ddq

(2π)d
Ṽ (~q)â†(~p+ ~q)â(~p) (56)

The last term has a very simple physical interpretation. When acting on
a one-particle state with well-defined momentum, say |~p〉, the potential
term yields another one-particle state with momentum ~p + ~q, where ~q is
the momentum transfer, with amplitude Ṽ (~q). This process is usually
depicted by the diagram of the following figure.

â(~p )

â†(~p+ ~q)

~p+ ~q

~p

~q

Ṽ (~q)

Figure 1: One-body scattering.

4. Two-Body Interactions:
A two-particle interaction is a operator V̂ (2) which acts on the space of
two-particle states H2, has the form

V (2) =
1

2

∑

α,β

|α, β〉V (2)(α, β)〈α, β| (57)

The methods developed above yield an extension of V (2) to Fock space of
the form

V̂ =
1

2

∑

α,β

â†(α)â†(β)â(β)â(α) V (2)(α, β) (58)
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In position space, ignoring spin, we get

V̂ =
1

2

∫
ddx

∫
ddy â†(~x) â†(~y) â(~y) â(~x) V (2)(~x, ~y)

≡ 1

2

∫
ddx

∫
ddy ρ̂(~x)V (2) (~x, ~y)ρ̂(~y) +

1

2

∫
ddx V (2)(~x, ~x) ρ̂(~x)

(59)

while in momentum space we find

V̂ =
1

2

∫
ddp

(2π)d

∫
ddq

(2π)d

∫
ddk

(2π)d
Ṽ (~k) â†(~p+ ~k)â†(~q − ~k)â(~q)â(~p) (60)

where Ṽ (~k) is only a function of the momentum transfer ~k. This is a
consequence of translation invariance. In particular for a Coulomb inter-
action,

V (2)(~x, ~y) =
e2

|~x− ~y| (61)

for which we have

Ṽ (~k) =
4πe2

~k 2
(62)

â(~p) ~p

â†(~p+ ~k) ~p+ ~k

~k

Ṽ (~k)

â(~q)~q

â†(~q − ~k)

~q − ~k

Figure 2: Two-body interaction.

6.2 Non-Relativistic Field Theory and Second Quantiza-

tion

We can now reformulate the problem of anN -particle system as a non-relativistic
field theory. The procedure described in the previous section is commonly
known as Second Quantization. If the (identical) particles are bosons, the op-
erators â(φ) obey canonical commutation relations. If the (identical) particles
are Fermions, the operators â(φ) obey canonical anticommutation relations. In
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position space, it is customary to represent â†(φ) by the operator ψ̂(~x) which
obeys the equal-time algebra

[
ψ̂(~x), ψ̂†(~y)

]

−ξ
= δd(~x− ~y)

[
ψ̂(~x), ψ̂(~y)

]

−ξ
=

[
ψ̂†(~x), ψ̂†(~y)

]

−ξ
= 0

(63)

In this framework, the one-particle Schrödinger equation becomes the clas-
sical field equation [

i~
∂

∂t
+

~
2

2m
▽2 −V (~x)

]
ψ̂ = 0 (64)

Can we find a Lagrangian density L from which the one-particle Schrödinger
equation follows as its classical equation of motion? The answer is yes and L is
given by

L = i~ψ†∂tψ − ~
2

2m
~▽ψ† · ▽ψ − V (~x)ψ†ψ (65)

Its Euler-Lagrange equations are

∂t
δL
δ∂tψ†

= −~▽ · δL
δ ~▽ψ†

+
δL
δψ†

(66)

which are equivalent to the field Equation Eq. 64. The canonical momenta Πψ

and Π†
ψ are

Πψ =
δL
δ∂tψ†

= −i~ψ (67)

and

Π†
ψ =

δL
δ∂tψ

= i~ψ† (68)

Thus, the (equal-time) canonical commutation relations are
[
ψ̂(~x), Π̂ψ(~y)

]

−ξ
= i~δ(~x− ~y) (69)

which require that [
ψ̂(~x), ψ̂†(~y)

]

−ξ
= δd(~x− ~y) (70)

6.3 Non-Relativistic Fermions at Zero Temperature

The results of the previous sections tell us that the action for non-relativistic
fermions (with two-body interactions) is (in D = d+ 1 space-time dimensions)

S =

∫
dDx

[
ψ̂†i~∂tψ̂ − ~

2

2m
~▽ψ̂† · ~▽ψ̂ − V (~x)ψ̂†(x)ψ̂(x)

]

− 1

2

∫
dDx

∫
dDx′ψ̂†(x)ψ̂†(x′)U(x− x′)ψ̂(x′)ψ̂†(x)ψ̂(x)]

(71)
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where U(x− x′) represents instantaneous pair-interactions,

U(x− x′) ≡ U(~x− ~x′)δ(x0 − x′0) (72)

The Hamiltonian Ĥ for this system is

Ĥ =

∫
ddx [

~
2

2m
~▽ψ̂† · ~▽ψ̂ + V (~x)ψ̂†(~x)ψ(~x)]

+
1

2

∫
ddx

∫
ddx′ψ̂†(x)ψ̂†(x′)U(x− x′)ψ̂(x′)ψ̂(x)

(73)

For Fermions the fields ψ̂ and ψ̂† satisfy equal-time canonical anticommutation
relations

{ψ̂(~x), ψ̂†(~x)} = δ(~x − ~x′) (74)

while for Bosons they satisfy

[ψ̂(~x), ψ̂†(~x′)] = δ(~x− ~x′) (75)

In both cases, the Hamiltonian Ĥ commutes with the total number operator
N̂ =

∫
ddxψ̂†(x)ψ̂(x) since Ĥ conserves the total number of particles. The Fock

space picture of the many-body problem is equivalent to the Grand Canoni-
cal Ensemble of Statistical Mechanics. Thus, instead of fixing the number of
particles we can introduce a Lagrange multiplier µ, the chemical potential, to
weigh contributions from different parts of the Fock space. Thus, we define the
operator H̃.

H̃ ≡ Ĥ − µN̂ (76)

In a Hilbert space with fixed N̂ this amounts to a shift of the energy by µN .
We will now allow the system to choose the sector of the Fock space but with
the requirement that the average number of particles 〈N̂〉 is fixed to be some
number N̄ . In the thermodynamic limit (N → ∞), µ represents the difference
of the ground state energies between two sectors with N + 1 and N particles
respectively. The modified Hamiltonian H̃ is

H̃ =

∫
ddx

∑

σ

ψ̂†
σ(~x)

(
− ~

2

2m
▽2 +V (~x) − µ

)
ψ̂σ(~x)

+
1

2

∫
ddx

∫
ddy

∑

σ,σ′

ψ̂†
σ(~x)ψ̂

†
σ′ (~y)U(~x− ~y)ψ̂σ′ (~y)ψ̂σ(~x)

(77)

6.3.1 The Ground State

Let us discuss now the very simple problem of finding the ground state for a
system of N spinless free fermions. In this case, the pair-potential vanishes and,
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Figure 3: The Fermi Sea.

if the system is isolated, so does the potential V (~x). In general there will be a
complete set of one-particle states {|α〉} and, in this basis, Ĥ is

Ĥ =
∑

α

Eαâ
†
αaα (78)

where the index α labels the one-particle states by increasing order of their
single-particle energies

E1 ≤ E2 ≤ · · · ≤ En ≤ · · · (79)

Since were are dealing with fermions, we cannot put more than one particle in
each state. Thus the state the lowest energy is obtained by filling up all the first
N single particle states. Let |gnd〉 denote this ground state

|gnd〉 =

N∏

α=1

â†α|0〉 ≡ â
†
1 · · · â†N |0〉 = |

N︷ ︸︸ ︷
1 . . . 1, 00 . . .〉 (80)

The energy of this state is Egnd with

Egnd = E1 + · · · + EN (81)

The energy of the top-most occupied single particle state, EN , is called the
Fermi energy of the system and the set of occupied states is called the filled
Fermi sea.

6.3.2 Excited States

A state like |ψ〉

|ψ〉 = |
N−1︷ ︸︸ ︷

1 . . .1 010 . . .〉 (82)

13
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is an excited state. It is obtained by removing one particle from the single
particle state N (thus leaving a hole behind) and putting the particle in the
unoccupied single particle state N + 1. This is a state with one particle-hole
pair, and it has the form

|1 . . . 1010 . . .〉 = â
†
N+1âN |gnd〉 (83)

The energy of this state is

Eψ = E1 + · · · + EN−1 + EN+1 (84)

Hence
Eψ = Egnd + EN+1 − EN (85)

and, since EN+1 ≥ EN , Eψ ≥ Egnd. The excitation energy ǫψ = Eψ − Egnd is

ǫψ = EN+1 − EN ≥ 0 (86)

6.3.3 Normal Ordering and Particle-Hole transformation: Construc-

tion of the Physical Hilbert Space

It is apparent that, instead of using the empty state |0〉 for reference state, it
is physically more reasonable to use instead the filled Fermi sea |gnd〉 as the
physical reference state or vacuum state. Thus this state is a vacuum in the
sense of absence of excitations. These arguments motivate the introduction of
the particle-hole transformation.

Let us introduce the fermion operators bα such that

b̂α = â†α for α ≤ N (87)

Since â†α|gnd〉 = 0 (for α ≤ N) the operators b̂α annihilate the ground state
|gnd〉, i.e.,

b̂α|gnd〉 = 0 (88)
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The following anticommutation relations hold

{âα, â′α} =
{
âα, b̂β

}
=

{
b̂β, b̂

′
β

}
=

{
âα, b̂

†
β

}
= 0

{
âα, â

†
α′

}
= δαα′

{
b̂β, b̂

†
β′

}
= δββ′

(89)

where α, α′ > N and β, β′ ≤ N . Thus, relative to the state |gnd〉, â†α and b̂
†
β

behave like creation operators. An arbitrary excited state has the form

|α1 . . . αm, β1 . . . βn; gnd〉 ≡ â†α1
. . . â†αm

b̂
†
β1
. . . b̂

†
βn
|gnd〉 (90)

This state has m particles (in the single-particle states α1, . . . , αm) and n holes
(in the single-particle states β1, . . . , βn). The ground state is annihilated by the

operators âα and b̂β

âα|gnd〉 = b̂β|gnd〉 = 0 (α > N β ≤ N) (91)

The Hamiltonian Ĥ is normal ordered relative to the empty state |0〉, i. e.
Ĥ|0〉 = 0, but is not normal ordered relative to the actual ground state |gnd〉.
The particle-hole transformation enables us to normal order Ĥ relative to |gnd〉.

Ĥ =
∑

α

Eαâ
†
αâα =

∑

α≤N

Eα +
∑

α>N

Eαâ
†
αâα −

∑

β≤N

Eβ b̂
†
β b̂β (92)

Thus
Ĥ = Egnd+ :Ĥ : (93)

where

Egnd =

N∑

α=1

Eα (94)

is the ground state energy, and the normal ordered Hamiltonian is

:Ĥ :=
∑

α>N

Eαâ
†
aâα −

∑

β≤N

b̂
†
β b̂βEβ (95)

The number operator N̂ is not normal-ordered relative to |gnd〉 either. Thus,
we write

N̂ =
∑

α

â†αâα = N +
∑

α>N

â†αaα −
∑

β≤N

b̂
†
β b̂β (96)

We see that particles raise the energy while holes reduce it. However, if we deal
with Hamiltonians that conserve the particle number N̂ (i.e., [N̂ , Ĥ] = 0) for
every particle that is removed a hole must be created. Hence particles and holes
can only be created in pairs. A particle-hole state |α, β gnd〉 is

|α, β gnd〉 ≡ â†αb̂
†
β|gnd〉 (97)
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It is an eigenstate with an energy

Ĥ |α, β gnd〉 =
(
Egnd+ :Ĥ :

)
â†αb̂

†
β |gnd〉

= (Egnd + Eα − Eβ) |α, β gnd〉
(98)

This state has exactly N particles since

N̂ |α, β gnd〉 = (N + 1 − 1)|α, β gnd〉 = N |α, β gnd〉 (99)

Let us finally notice that the field operator ψ̂†(x) in position space is

ψ̂†(~x) =
∑

α

〈~x|α〉â†α =
∑

α>N

φα(~x)â†α +
∑

β≤N

φβ(~x)b̂β (100)

where {φα(~x)} are the single particle wave functions.
The procedure of normal ordering allows us to define the physical Hilbert

space. The physical meaning of this approach becomes more transparent in
the thermodynamic limit N → ∞ and V → ∞ at constant density ρ. In this
limit, the space of Hilbert space is the set of states which is obtained by act-
ing with creation and annihilation operators finitely on the ground state. The
spectrum of states that results from this approach consists on the set of states
with finite excitation energy. Hilbert spaces which are built on reference states
with macroscopically different number of particles are effectively disconnected
from each other. Thus, the normal ordering of a Hamiltonian of a system with
an infinite number of degrees of freedom amounts to a choice of the Hilbert
space. This restriction becomes of fundamental importance when interactions
are taken into account.

6.3.4 The Free Fermi Gas

Let us consider the case of free spin one-half electrons moving in free space. The
Hamiltonian for this system is

H̃ =

∫
ddx

∑

σ=↑,↓

ψ̂†
σ(~x)[−

~
2

2m
▽2 −µ]ψ̂σ(~x) (101)

where the label σ =↑, ↓ indicates the z-projection of the spin of the electron.
The value of the chemical potential µ will be determined once we satisfy that
the electron density is equal to some fixed value ρ̄.

In momentum space, we get

ψ̂σ(~x) =

∫
ddp

(2π)d
ψ̂σ(~p) e

−i ~p·~x
~ (102)
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where the operators ψ̂σ(~p) and ψ̂†
σ(~p) satisfy

{
ψ̂σ(~p), ψ̂

†
σ′(~p)

}
= (2π)dδσσ′δd(~p− ~p′)

{
ψ̂†
σ(~p), ψ̂

†
σ′(~p)

}
= {ψ̂(~p), ψ̂σ′ (~p′)} = 0

(103)

The Hamiltonian has the very simple form

H̃ =

∫
ddp

(2π)d

∑

σ=î,↓

(ǫ(~p) − µ) ψ̂†
σ(~p)ψ̂σ(~p) (104)

where ǫ(~p) is given by

ǫ(~p) =
~p2

2m
(105)

For this simple case, ǫ(~p) is independent of the spin orientation.
It is convenient to measure the energy relative to the chemical potential (or

Fermi energy) µ = EF . The relative energy E(~p) is

E(~p) = ǫ(~p) − µ (106)

i. e. E(~p) is the excitation energy measured from the Fermi energy EF = µ.
The energy E(~p) does not have a definite sign since there are states with ǫ(~p) > µ

as well as states with ǫ(~p) < µ. Let us define by pF the value of |~p| for which

E(pF ) = ǫ(pF ) − µ = 0 (107)

This is the Fermi momentum. Thus, for |~p| < pF , E(~p) is negative while for
|~p| > pF , E(~p) is positive.

We can construct the ground state of the system by finding the state with
lowest energy at fixed µ. Since E(~p) is negative for |~p| ≤ pF , we see that by
filling up all of those states we get the lowest possible energy. It is then natural
to normal order the system relative to a state in which all one-particle states
with |~p| ≤ pF are occupied. Hence we make the particle- hole transformation

b̂σ(~p) = ψ̂†
σ(~p) for |~p| ≤ pF

âσ(~p) = ψ̂σ(~p) for |~p| > pF
(108)

In terms of the operators âσ and b̂σ, the Hamiltonian is

H̃ =
∑

σ=↑,↓

∫
ddp

(2π)d
[E(~p)θ(|~p| − pF )â†σ(~p)âσ(~p) + θ(pF − |~p|)E(~p)b̂σ(~p)b̂

†
σ(~p)]

(109)
where θ(x) is the step function

θ(x) =

{
1 x > 0
0 x ≤ 0

(110)
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Using the anticommutation relations in the last term we get

H̃ =
∑

σ=↑,↓

∫
ddp

(2π)d
E(~p)[θ(|~p| − pF )â†σ(~p)âσ(~p)− θ(pF − |(~p)|)b̂†σ(~p)b̂σ(~p)] + Ẽgnd

(111)
where Ẽgnd, the ground state energy measured from the chemical potential µ,
is given by

Ẽgnd =
∑

σ=↑,↓

∫
ddp

(2π)d
θ(pF − |~p|)E(~p)(2π)dδd(0) = Egnd − µN (112)

Recall that (2π)dδ(0) is equal to

(2π)dδd(0) = lim
~p→0

(2π)dδd(~p) = lim
~p→0

∫
ddxei~p·~x = V (113)

where V is the volume of the system. Thus, Ẽgnd is extensive

Ẽgnd = V ǫ̃gnd (114)

and the ground state energy density ǫ̃gnd is

ǫ̃gnd = 2

∫

|~p|≤pF

ddp

(2π)d
E(~p) = ǫgnd − µρ̄ (115)

where the factor of 2 comes from the two spin orientations. Putting everything
together we get

ǫ̃gnd = 2

∫

|~p|≤pF

ddp

(2π)d

(
~p2

2m
− µ

)
= 2

∫ pF

0

dp pd−1 Sd

(2π)d

(
p2

2m
− µ

)
(116)

where Sd is the area of the d-dimensional hypersphere. Our definitions tell us

that the chemical potential is µ =
p2F
2m ≡ EF where EF , is the Fermi energy.

Thus the ground state energy density ǫgnd ( measured from the empty state) is
equal to

Egnd =
1

m

Sd

(2π)d

∫ pF

0

dp pd+1 =
pd+2
F

m(d+ 2)

Sd

(2π)d
= 2EF

pdFSd

(d+ 2)(2π)d
(117)

How many particles does this state have? To find that out we need to look at
the number operator. The number operator can also be normal-ordered with
respect to this state

N̂ =

∫
ddp

(2π)d

∑

σ=↑,↓

ψ̂†
σ(~p)ψ̂σ(~p) =

=

∫
ddp

(2π)d

∑

σ=↑,↓

{θ(|~p| − pF )â†σ(~p)âσ(~p) + θ(pF − |~p|)b̂σ(~p)b̂†σ(~p)}

(118)
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Hence, N̂ can also be written in the form

N̂ =:N̂ : +N (119)

where the normal-ordered number operator :N̂ : is

:N̂ :=

∫
ddp

(2π)d

∑

σ=↑,↓

[θ(|~p| − pF )â†σ(~p)âσ(~p) − θ(pF − |~p|)b̂†σ(~p)b̂σ(~p)] (120)

and N , the number of particles in the reference state |gnd〉, is

N =

∫
ddp

(2π)d

∑

σ=↑,↓

θ(pF − |~p|)(2π)dδd(0) =
2

d
pdF

Sd

(2π)d
V (121)

Therefore, the particle density ρ̄ = N
V

is

ρ̄ =
2

d

Sd

(2π)d
pdF (122)

This equation determines the Fermi momentum pF in terms of the density ρ̄.
Similarly we find that the ground state energy per particle is

Egnd

N
= 2d

d+2EF .
The excited states can be constructed in a similar fashion. The state |+, σ, ~p〉

|+, σ, ~p〉 = â†α(~p)|gnd〉 (123)

is a state which represents an electron with spin σ and momentum ~p while the
state |−, σ, ~p〉

|−, σ, ~p〉 = b̂†σ(~p)|gnd〉 (124)

represents a hole with spin σ and momentum ~p. From our previous discussion we
see that electrons have momentum ~p with |~p| > pF while holes have momentum
~p with |~p| < pF . The excitation energy of a one-electron state is E(~p) ≥ 0(for
|~p| > pF ), while the excitation energy of a one-hole state is −E(~p) ≥ 0 (for
|~p| < pF ).

Similarly, an electron-hole pair is a state of the form

|σ~p, σ′~p′〉 = â†σ(~p)b̂
†
σ′(~p

′)|gnd〉 (125)

with |~p| > pF and |~p′| < pF . This state has excitation energyE(~p)−E(~p′), which
is positive. Hence, states which are obtained from the ground state without
changing the density, can only increase the energy. This proves that |gnd〉 is
indeed the ground state. However, if the density is allowed to change, we can
always construct states with energy less than Egnd by creating a number of holes
without creating an equal number of particles.
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