
5 Path Integrals in Quantum Mechanics and Quan-

tum Field Theory

In the past chapter we gave a summary of the Hilbert space picture of Quantum
Mechanics and of a Scalar Quantum Field Theory. Here we will present the Path

Integral picture of Quantum Mechanics ans Scalar Quantum Field Theory.
The Path Integral picture is important for two reasons. First, it offers an

alternative, complementary, picture of Quantum Mechanics in which the role
of the classical limit is apparent. Secondly, it gives a direct route to the study
regimes where perturbation theory is either inadequate or fails completely. A
standard approach to these problems is the WKB approximation (Wentzel,
Kramers and Brillouin). As it happens, it is extremely difficult (if not im-
possible) the generalize the WKB approximation to a Quantum Field Theory.
Instead, the non-perturbative treatment of the Feynman path integral, which
is equivalent to WKB, is generalizable to non-perturbative problems in QFT.
In this chapter we will use path integrals only for bosonic systems, such as
scalar and abelian gauge fields. In the following chapters we will also give a
full treatment of the path integral, including its applications to fermionic fields,
non-relativistic many body systems, and Abelian gauge fields. Non-Abelian
gauge fields will be discussed in the following course, Physics 583.

5.1 Path Integrals and Quantum Mechanics

Consider a simple quantum mechanical system whose dynamics can be described
by a (generalized) time-dependent coordinate operator q̂(t), i.e., the position
operator in the Heisenberg representation. We will denote by |q, t〉 an eigenstate
of q̂(t) with eigenvalue q,

q̂(t)|q, t〉 = q|q, t〉 (1)

We want to compute the amplitude

F (qf , tf |qi, ti) = 〈qf , tf |qi, ti〉 (2)

Let q̂S be the Schrödinger operator, related to the Heisenberg operator q̂(t) by
the action of the time evolution operator:

q̂(t) = eiĤt/~q̂S e
−iĤt/~ (3)

and whose eigenstates are |q〉,
q̂S |q〉 = q|q〉 (4)

The states |q〉 and |q, t〉 are related via the evolution operator

|q〉 = e−iĤt/~|q, t〉 (5)

Therefore the amplitude F (qf , tf |qi, ti) is a matrix element of the evolution
operator

F (qf , tf |qi, ti) = 〈qf |eiĤ(ti−tf )/~|qi〉 (6)
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The amplitude F (qf , tf |qi, ti) has a simple physical interpretation. Let us set,
for simplicity, |qi, ti〉 = |0, 0〉 and |qf , tf 〉 = |q, t〉. Then, from the definition of
this matrix element, we find out that it obeys

lim
t→0

F (q, t|0, 0) = 〈q|0〉 = δ(q) (7)

Furthermore, after some algebra we also find that

i~
∂F

∂t
= i~

∂

∂t
〈q, t|0, 0〉

= i~
∂

∂t
〈q|e−iĤt/~|0〉

= 〈q|Ĥe−iĤt/~|0〉

=

∫

dq′〈q|Ĥ |q′〉〈q′|e−iĤt/~|0〉

(8)

where we have used that, since {|q〉} is a complete set of states, the identity
operator I has the expansion, called the resolution of the identity,

I =

∫

dq′|q′〉〈q′| (9)

Here we have assumed that the states are orthonormal, i.e.,

〈q|q′〉 = δ(q − q′) (10)

Hence,

i~
∂F

∂t
=

∫

dq′〈q|Ĥ |q′〉F (q′, t|0, 0) ≡ ĤqF (q, t|0, 0) (11)

In other terms, F (q, t|0, 0) is the solution of the Schrödinger Equation that
satisfies the initial condition of Eq. 7. The amplitude F (q, t|0, 0) is called the
Schrödinger Propagator. Let us next define a partition of the time interval
[ti, tf ] into N intervals of length ∆t,

tf − ti = N∆t (12)

Let {tj} (with j = 0, . . . , N + 1) denote a set of points in the interval [t, tf ],
such that

ti = t0 ≤ t1 ≤ . . . ≤ tN ≤ tN+1 = tf (13)

Clearly, tk = t0 + k∆t (for k = 1, . . . , N + 1.
The superposition principle tells us that

F (qf , tf |qi, ti) =

∫

dq′〈qf , tf |q′, t′〉〈q′, t′|qi, ti〉 (14)
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where we have inserted I in the form of the resolution of the identity of Eq. 14.
By repeating this process many times we find

F (qf , tf |qi, ti) =

∫

dq1 . . . dqN 〈qf , tf |qN , tN 〉〈qN , tN |qN−1, tN−1〉 × . . .

× . . . 〈qj , tj |qj−1, tj−1〉 . . . 〈q1, t1|qi, ti〉
(15)

Each factor 〈qj , tj |qj−1, tj−1〉 has the form

〈qj , tj |qj−1, tj−1〉 = 〈qj |e−iĤ(tj−tj−1)/~|qj−1〉 ≡ 〈qj |e−iĤ∆t/~|qj−1〉 (16)

In the limit N → ∞, with |tf − ti| fixed and finite, the interval ∆t becomes
infinitesimally small and ∆t → 0. Hence, as N → ∞ we can write the approxi-
mate expression for 〈qj , tj |qj−1, tj−1〉,

〈qj , tj |qj−1, tj−1〉 = 〈qj |e−iH∆t/~|qj−1〉

= 〈qj |I − i
∆t

~
Ĥ +O((∆t)2)|qj−1〉

= δ(qj − qj−1) − i
∆t

~
〈qj |Ĥ |qj−1〉 +O((∆t)2)

(17)

which becomes asymptotically exact as N → ∞.
We can also introduce a complete set of momentum eigenstates {|p〉} and

their resolution of the identity

I =

∫ ∞

−∞

dp |p〉〈p| (18)

Recall that the overlap between |q〉 and |p〉 is

〈q|p〉 =
1√
2π~

eipq/~ (19)
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Figure 1: A history q(t) of the system.

For a typical Hamiltonian of the form

Ĥ =
p̂2

2m
+ V (q̂) (20)

its matrix elements are

〈qj |Ĥ|qj−1〉 =

∫ ∞

−∞

dp

2π~
eip(qj−qj−1)/~

[

p2

2m
+ V (qj)

]

(21)

Within the same level of approximation we can also write

〈qj , tj |qj−1, tj−1〉 ≈
∫

dp

2π~
exp

[

i

(

p

~
(qj − qj−1) − ∆t H

(

p,
qj + qj−1

2

))]

(22)
where we have introduce the “mid-point rule” which amounts to the replacement
qj → 1

2 (qj + qj−1) inside the Hamiltonian H(p, q). Putting everything together
we find that the matrix element 〈qf , tf |qi, ti〉 becomes

〈qf , tf |qi, ti〉 = lim
N→∞

∫ N
∏

j=1

dqj

∫ ∞

−∞

N+1
∏

j=1

dpj

2π~

exp







i

~

N+1
∑

j=1

[

pj(qj − qj−1) − ∆t H

(

pj ,
qj + qj−1

2

)]







(23)

Therefore, in the limit N → ∞, holding |t−tf | fixed, the amplitude 〈qf , tf |qi, ti〉
is given by the (formal) expression

〈qf , tf |qi, ti〉 =

∫

DpDq e

i

~

∫ tf

ti

dt [pq̇ −H(p, q)]
(24)
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where we have used the notation

DpDq ≡ lim
N→∞

N
∏

j=1

dpjdqj
2π~

(25)

which defines the integration measure. The functions, or configurations, (q(t), p(t))
must satisfy the initial and final conditions

q(ti) = qi, q(tf ) = qf (26)

Thus the matrix element 〈qf , tf |qi, ti〉 is expressible as a sum over histories in
phase space. The weight of each history is the exponential factor of Eq. 24.
Notice that the quantity in brackets it is just the Lagrangian

L = pq̇ −H(p, q) (27)

Thus the matrix element is just

〈qf , tf |q, t〉 =

∫

DpDq eiS(q,p)/~ (28)

where S(q, p) is the action of each history (q(t), p(t)). Also notice that the sum
(or integral) runs over independent functions q(t) and p(t) which are not required
to satisfy any constraint (apart from the initial and final conditions) and, in
particular they are not the solution of the equations of motion. Expressions of
these type are known as path-integrals. They are also called functional integrals,
since the integration measure is a sum is over functions, instead of numbers as
in a conventional integral.

Using a Gaussian integral of the form (which involves an analytic continua-
tion)

∫ ∞

−∞

dp

2π~
e
i(pq̇ − p2

2m
)
∆t

~ =

√

m

2πi~∆t
e
i
∆t

2~
q̇2

(29)

we can integrate out explicitly the momenta in the path-integral and find a
formula that involves only the histories of the coordinate alone. (Notice that
there are no initial and final conditions on the momenta since the initial and
final states have well defined positions.) The result is

〈qf , tf |qi, ti〉 =

∫

Dq e

i

~

∫ tf

ti

dt L(q, q̇)
(30)

which is known as the Feynman Path Integral. Here L(q, q̇) is

L(q, q̇) =
1

2
mq̇2 − V (q) (31)

and the sum over histories q(t) is restricted by the boundary conditions q(ti) = qi
and q(tf ) = qf .
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Figure 2: Two histories with the same initial and final states.

Notice now that the Feynman path-integral tells us that in the correspon-
dence limit ~ → 0, the action S must be stationary since otherwise the con-
tributions of the rapidly oscillating exponential will add up to zero. In other
words, in the classical limit there is only one history qc(t) that contributes. For
this history, qc(t), the action S is stationary, δS = 0, and qc(t) is the solution
of the Classical Equation of Motion

∂L

∂q
− d

dt

∂L

∂q̇
(32)

In other terms, in the correspondence limit ~ → 0, the evaluation of the Feynman
path integral reduces to the requirement that the Least Action Principle should
hold. We are in the classical limit.

5.2 Evaluating Path Integrals in Quantum Mechanics

Let us first discuss the following problem. We wish to know how to compute
the amplitude 〈qf , tf |qi, ti〉 for a dynamical system whose Lagrangian has the
standard form of Eq. 31. For simplicity we will begin with a linear harmonic
oscillator.

The Hamiltonian for a linear harmonic oscillator is

H =
p2

2m
+
mω2

2
q2 (33)

and the associated Lagrangian is

L =
m

2
q̇2 − mω2

2
q2 (34)
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Let qc(t) be the classical trajectory. It is the solution of the classical equations
of motion

d2qc
dt2

+ ω2qc = 0 (35)

Let us denote by q(t) an arbitrary history of the system and by ξ(t) its deviation
from the classical solution qc(t). Since all the histories, including the classical
trajectory qc(t), obey the same initial and final conditions

q(ti) = qi q(tf ) = qf (36)

it follows that ξ(t) obeys instead vanishing initial and final conditions:

ξ(ti) = ξ(tf ) = 0 (37)

After some trivial algebra it is easy to show that the action S for an arbitrary
history q(t) has the property

S(q, q̇) = S(qc, q̇c) + S(ξ, ξ̇) +

∫ tf

ti

dt
d

dt

[

mξ
dqc
dt

]

+

∫ tf

ti

dt mξ

(

d2qc
dt2

+ ω2qc

)

(38)
The third term vanishes due to the boundary conditions on ξ, Eq. 37, and the
last term also vanishes since qc is a solution of the classical equation of motion
Eq. 35. These two features hold for all systems, even if they are not harmonic.
However, the Lagrangian (and hence the action) for ξ, the second term in Eq.
38, in general is not the same as the action for the classical trajectory (the first
term). Only for the harmonic oscillator S(ξ, ξ̇) has the same form as S(qc, q̇c).

Hence, for a harmonic oscillator we get

〈qf , tf |qi, ti〉 = eiS(qc,q̇c)/~

∫

ξ(ti)=ξ(tf )=0

Dξe(i/~)
R tf

ti
dtL(ξ,ξ̇) (39)

Notice that the information on the initial and final states enters only through
the factor associated with the classical trajectory. For the linear harmonic
oscillator, the quantum mechanical contribution is independent of the initial
and final states. Thus, we need to do two things: 1) we need an explicit solution
qc(t) of the equation of motion, for which we will compute S(qc, q̇c), and 2) we
need to compute the quantum mechanical correction, the last factor in Eq. 39,
which measures the strength of the quantum fluctuations.

For a general dynamical system, whose Lagrangian has the form of Eq. 31,
the action of Eq. 38 takes the form

S(q, q̇) = S(qc, q̇c) + Seff(ξ, ξ̇; qc)

+

∫ tf

ti

dt
d

dt

[

mξ
dqc
dt

]

+

∫ tf

ti

dt

(

m
d2qc
dt2

+
∂V

∂q

∣

∣

∣

∣

qc

)

ξ(t)

(40)
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where the effective Lagrangian Leff(ξ, ξ̇; qc) is

Leff(ξ, ξ̇) =
1

2
mξ̇2 − 1

2

∂2V

∂q2

∣

∣

∣

∣

qc

ξ2 −O(ξ3) (41)

Once again, the boundary conditions ξ(ti) = ξ(tf ) = 0 and the fact the qc(t) is
a solution of the equation of motion together imply that the last two terms of
Eq. 40 vanish identically.

Thus, to the extent that we are allowed to neglect O(ξ3) the corrections,
the effective Lagrangian Leff can be approximated by a Lagrangian which is
quadratic in the fluctuation ξ. In general, the effective Lagrangian will depend
on the actual classical trajectory, since V

′′

(qc) in general is not a constant,
but a function of time determined by qc(t). However, if one is interested in
the quantum fluctuations about a minimum of the potential V (q), then qc(t) is
constant (and equal to the minimum). We will discuss below this case in detail.

Before we embark in an actual computation it is worthwhile to ask when
should the neglecting of the O(ξ3) terms be a good approximations. Since we
are expanding about the classical path qc, we expect that this approximation
should be correct as we formally take the limit ~ → 0. In the path integral
the effective action always appears in the combination Seff/~. Hence, for an
effective action which is quadratic in ξ, we can eliminate the dependence on ~

by the rescaling
ξ =

√
~ξ̃ (42)

This rescaling leaves the classical contribution S(qc)/~ unaffected. However,
terms with higher powers in ξ, say O(ξ̃n), scale like ~

n/2. Thus the action
(divided by ~) has an expansion of the form

S

~
=

1

~
S(0)(qc) + S(2)(ξ̃; qc) +

∞
∑

n=3

~
n/2S(n)(ξ̃; qc) (43)

Thus, in the limit ~ → 0, we can expand the weight of the path integral in
powers of ~. The matrix element we are calculating then takes the form

〈qf , tf |qi, ti〉 = eiS(0)(qc)/~ Z(2)(qc) (1 +O(~)) (44)

The quantity Z(2)(qc) is the result of keeping only the quadratic approximation.
The higher order terms are a power series expansion in ~ and are analytic in ~.
(Here I have used the fact that by symmetry the odd powers in ξ in general do
not contribute, although there are some cases where they do.)

Let us now calculate the effect of the quantum fluctuations to quadratic
order. This is the WKB approximation. Let us denote this factor by Z,

Z(2)(qc) =

∫

ξ̃(ti)=ξ̃(tf )=0

Dξ ei
R tf

ti
dt L

(2)
eff (ξ̃, ˙̃ξ;qc) (45)

It is elementary to show that, due to the boundary conditions, the action
Seff(ξ, ξ̇) becomes

Seff(ξ̃,
˙̃
ξ) =

1

2

∫ tf

ti

dt ξ̃(t)

[

−m d2

dt2
− V

′′

(qc(t))

]

ξ̃(t) (46)
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The differential operator

Â = −m d2

dt2
− V

′′

(qc(t)) (47)

has the form of a Schrödinger operator for a particle on a “coordinate” t in a
potential −V ′′

(qc(t)).
Let ψn(t) be a complete set of eigenfunctions of Â satisfying the boundary

conditions ψ(ti) = ψ(tf ) = 0. Completeness and othonormality implies that the
eigenfunctions {ψn(t)} satisfy

∑

n

ψ∗
n(t)ψn(t′) = δ(t− t′)

∫ tf

ti

dt ψ∗
n(t)ψm(t) = δn,m

(48)

We can expand ξ̃(t) as a linear combination of the eigenfunctions {ψn(t)},

ξ(t) =
∑

n

cnψn(t) (49)

Clearly, we have ξ̃(ti) = ξ̃(tf ) = 0 as we should.
For the special case of qi = qf = q0, where q0 is a minimum of the potential

V (q), V ′′(q0) = ωeff > 0 is a constant, and the eigenvectors of the Schrödinger
operator are just plane waves. (For a linear harmonic oscillator ωeff = ω.) Thus,
in this case the eigenvectors are

ψn(t) = bn sin(kn(t− ti)) (50)

where
kn =

πn

tf − ti
n = 1, 2, 3, . . . (51)

and bn = 1/
√
tf − ti. The eigenvalues of Â are

An = k2
n − ω2

eff =
π2

(tf − ti)2
n2 − ω2

eff (52)

By using the expansion of Eq. 49, we find that the action S(2) takes the form

S(2) =
1

2

∫ tf

ti

dt ξ̃(t) Â ξ̃(t) =
1

2

∑

n

Anc
2
n (53)

where we have used the completeness and orthonormality of the basis functions
{ψn(t)}. Furthermore, the expansion is a canonical transformation ξ̃(t) → cn.
More to the point, the expansion is actually a parametrization of the possible
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histories in terms of a set of orthonormal functions, and it can be used to define
the integration measure to be

Dξ̃ = N
∏

n

dcn√
2π

(54)

with unit Jacobian. Here N is an irrelevant normalization constant that will be
defined below.

Finally, the (formal) Gaussian integral (defined by a suitable analytic con-
tinuation)

∫ ∞

−∞

dcn√
2π

e(i/2)Anc2
n = [−iAn]

−1/2
(55)

can be used to write the amplitude as

Z(2) = N
∏

n

A−1/2
n ≡ N (DetÂ)−1/2 (56)

where we have used the definition that the determinant of an operator is equal
to the product of its eigenvalues. Therefore, up to a normalization constant,
Z(2) = (DetÂ)−1/2. We have thus reduced the problem of the computation of
the leading (Gaussian) fluctuations to the path-integral to the computation of
a determinant of the fluctuation operator, a differential operator defined by the
choice of classical trajectory. Below you will see how this is done.

It is useful to consider the related problem obtained by an analytic continua-
tion to imaginary time, t → −iτ . We saw before that there is a relation between
this situation and Statistical Physics. We will now work out one example that
will be very instructive.

Formally, upon the analytic continuation t→ −iτ we get

〈qf | exp

(

i

~
H(tf − ti)

)

|qi〉 → 〈qf | exp

(

−1

~
H(τf − τi)

)

|qi〉 (57)

Let us choose
τi = 0 τf = β~ (58)

where β = 1/T , and T is the temperature (in units of kB = 1). Hence, we find
that

〈qf ,−iβ/~|qi, 0〉 = 〈qf |e−βH |qi〉 (59)

The operator ρ̂
ρ̂ = e−βH (60)

is the Density Matrix in the Canonical Ensemble of Statistical Mechanics for a
system with Hamiltonian H in thermal equilibrium at temperature T .

It is customary to define the Partition Function Z,

Z = tre−βH ≡
∫

dq 〈q|e−βH |q〉 (61)
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where I inserted a complete set of eigenstates of Q̂. Using the results that were
derived above, we see that the partition function Z can be written as a Feynman

path integral in imaginary time, of the form

Z =

∫

Dq[τ ] exp

{

−1

~

∫ β~

0

dτ

[

1

2
m

(

∂q

∂τ

)2

+ V (q)

]}

≡
∫

Dq[τ ] exp

{

−
∫ β

0

dτ

[

m

2~2

(

∂q

∂τ

)2

+ V (q)

]}

(62)

where, in the last equality we have rescaled τ → τ/~. Eq. 62 is known as the
Feynman-Kac Formula.

Since the Partition Function is a trace over states, we must use boundary
conditions such that the initial and final states are the same state, and to do
a sum over all such states. In other terms, we must have periodic boundary
conditions in imaginary time (PBC’s),i.e.,

q(τ) = q(τ + β) (63)

Therefore a quantum mechanical system at finite temperature T can be de-
scribed in terms of an equivalent system in classical statistical mechanics with
Hamiltonian (or energy)

H =
m

2~2

(

∂q

∂τ

)2

+ V (q) (64)

on a segment of length 1/T and obeying PBC’s. This effectively means that the
segment is actually a ring of length β = 1/T .

Alternatively, upon inserting a complete set of eigenstates of the Hamilto-
nian, it is easy to see that an arbitrary matrix element of the density matrix
has the form

〈q′|e−βH |q〉 =

∞
∑

n=0

〈q′|n〉〈n|q〉e−βEn

=

∞
∑

n=0

e−βEnψ∗
n(q′)ψn(q) −−−−→

β → ∞ e−βE0ψ∗
0(q′)ψ0(q)

(65)

where {En} are the eigenvalues of the Hamiltonian, E0 is the ground state
energy and ψ0(q) is the ground state wave function.

Therefore, we can calculate both the ground state energy E0 and the ground
state wave function from the density matrix and consequently from the (imagi-
nary time) path integral.For example, from the identity

E0 = − lim
β→∞

1

β
ln tre−βH (66)
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we see that the ground state energy is given by

E0 = − lim
β→∞

1

β
ln

∫

q(0)=q(β)

Dq exp

{

−
∫ β

0

dτ

[

m

2~2

(

∂q

∂τ

)2

+ V (q)

]}

(67)

Mathematically, the imaginary time path integral is a better behaved object
than its real time counterpart, since it is a sum of positive quantities, the sta-
tistical weights. In contrast, the Feynman path integral (in real time) is a sum
of phases and as such it is an ill-defined object. It is actually conditionally con-
vergent and to make sense of it a number of convergence factors (or regulators)
will have to be introduced. The effect of these convergence factors is actually an
analytic continuation to imaginary time. We will encounter the same problem
in the calculation of propagators. Thus, the imaginary time path integral, often
referred to as the Euclidean path integral (as opposed to Minkowski), can be
used to describe both a quantum system and a statistical mechanics system.

Finally, we notice that at low temperatures T → 0, the Euclidean Path
Integral can be approximated using methods similar to the ones we discussed
for the (real time) Feynman Path Integral. The main difference is that we
must sum over trajectories which are periodic in imaginary time with period
β = 1/T . In practice this sum can only be done exactly for simple systems
such as the harmonic oscillator, and for more general systems one has to resort
to some form of perturbation theory. Here we will consider a physical system
described by a dynamical variable q and a potential energy V (q) which has a
minimum at q0 = 0. For simplicity we will take V (0) = 0 and we will denote by
mω2 = V

′′

(0) (in other words, an effective harmonic oscillator). The partition
function is given by the Euclidean path integral

Z =

∫

Dq[τ ] exp

{

−1

2

∫ β

0

ξ(τ)ÂEξ(τ)dτ

]

(68)

where ÂE is the imaginary time, or Euclidean, version of the operator Â, and
it is given by

ÂE = −m

~2

d2

dτ2
+ V

′′

(qc(τ)) (69)

The functions this operator acts on obey periodic boundary conditions with
period β. Notice the important change in the sign of the term of the potential.
Hence, once again we will need to compute a functional determinant, although
the operator now acts on functions obeying periodic boundary conditions. In
Physics 582 we will see that in the case of fermionic theories, the boundary
conditions become antiperiodic.

5.2.1 Computation of the Functional Determinant

We will now do the computation of the determinant in Z(2). We will do the cal-
culation in imaginary time and then we will carry out the analytic continuation
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to real time. We want to compute

D = Det

[

−m

~2

d2

dτ2
+ V

′′

(qc(τ))

]

(70)

subject to the requirement that the space of functions that the operator acts on
obeys specific boundary conditions in (imaginary) time. We will be interested
in two cases: (a) Vanishing Boundary Conditions (VBC’s), which are useful
to study quantum mechanics at T = 0, and (b) Periodic Boundary Conditions
(PBC’s) with period β = 1/T . The approach is somewhat different in the two
situations.

1. Vanishing Boundary Conditions:
This method is explained in detail in Sidney Coleman’s book, Aspects of

Symmetry. I will follow his approach closely.

We define the (real) variable x = ~

mτ . The range of x is the interval [0, L],
with L = ~β/

√
m. Let us consider the following eigenvalue problem for

the Schrödinger operator −∂2 +W (x), i.e.,

(

−∂2 +W (x)
)

ψ(x) = λψ(x) (71)

subject to the boundary conditions ψ(0) = ψ(L) = 0. Formally, the
determinant is given by

D =
∏

n

λn (72)

where {λn} is the spectrum of eigenvalues of the operator −∂2 +W (x) for
a space of functions satisfying a given boundary condition.

Let us define an auxiliary function ψλ(x), with λ a real number not neces-
sarily in the spectrum of the operator, such that the following requirements
are met:

(a) ψλ(x) is a solution of Eq. 71, and

(b) ψλ obeys the initial conditions, ψλ(0) = 0 and ∂xψλ(0) = 1.

It is easy to see that −∂2 + W (x) has an eigenvalue at λn if and only
if ψλn

(L) = 0. (Because of this property this procedure is known as the
Shooting Method.) Hence, the determinant D of Eq. 72 is equal to the
product of the zeros of ψλ(x) at x = L.

Consider now two potentials W (1) and W (2), and the associated functions,

ψ
(1)
λ (x) and ψ

(2)
λ (x). Let us show that

Det

[−∂2 +W (1)(x) − λ

−∂2 +W (2)(x) − λ

]

=
ψ

(1)
λ (L)

ψ
(2)
λ (L)

(73)

The l. h. s. of Eq. 73 is a meromorphic function of λ in the complex plane,
which has simple zeros at the eigenvalues of −∂2 + W (1)(x) and simple
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poles at the eigenvalues of −∂2 + W (2)(x). Also, the l. h. s. of Eq. 73
approaches 1 as |λ| → ∞, except along the positive real axis which is
where the spectrum of eigenvalues of both operators is. Here we have
assumed that the eigenvalues of the operators are non-degenerate, which
is the general case. Similarly, the r. h. s. of Eq. 73 is also a meromorphic
function of λ, which has exactly the same zeros and the same poles as the
l. h. s. . It also goes to 1 as |λ| → ∞ (again, except along the positive
real axis), since the wave-functions ψλ are asymptotically plane waves in
this limit . Therefore, the function formed by taking the ratio r. h. s. / l.
h. s. is an analytic function on the entire complex plane and it approaches
1 as |λ| → ∞. Then, general theorems of the Theory of Functions of a
Complex Variable tell us that this function is equal to 1 everywhere.

From these considerations we conclude that the following ratio is indepen-
dent of W (x),

Det
(

−∂2 +W (x) − λ
)

ψλ(L)
(74)

We now define a constant N such that

Det
(

−∂2 +W (x)
)

ψ0(L)
= π~N 2 (75)

Then, we can write

N
[

Det
(

−∂2 +W
)]−1/2

= [π~ψ0(L)]
−1/2

(76)

Thus we reduced the computation of the determinant (including the nor-
malization constant) to finding the function ψ0(L). For the case of the
linear harmonic oscillator, this function is the solution of

[

− ∂2

∂x2
+mω2

]

ψ0(x) = 0 (77)

with the initial conditions, ψ0(0) = 0 and ψ′
0(0) = 1. The solution is

ψ0(x) =
1√
mω

sinh(
√
mωx) (78)

Hence,

Z = N
[

Det

(

− ∂2

∂x2
+mω2

)]−1/2

= [π~ψ0(L)]
−1/2

(79)

and we find

Z =

[

π~√
mω

sinh(βω)

]−1/2

(80)

where we have used L == ~β/
√
m. From this result we find that the

ground state energy is

E0 = lim
β→∞

−1

β
lnZ =

~ω

2
(81)
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as it should be.

Finally, by means of an analytic continuation back to real time, we can
use these results to find, for instance, the amplitude to return to the origin
after some time T . Thus, for tf − ti = T and qf = qi = 0, we get

〈0, T |0, 0〉 =

[

iπ~√
mω

sin(ωT )

]−1/2

(82)

2. Periodic Boundary Conditions:
Periodic boundary conditions imply that the histories satisfy q(τ) = q(τ+
β). Hence, these functions can be expanded in a Fourier series of the form

q(τ) =
∞
∑

n=−∞

eiωnτqn (83)

where ωn = 2πn/β. Since q(τ) is real, we have the constraint q−n = q∗n.
For such configurations (or histories) the action becomes

S =

∫ β

0

dτ

[

m

2~2

(

∂q

∂τ

)2

+
1

2
V

′′

(0)q2

]

=
β

2
V

′′

(0)q20 +
β

2

∑

n≥1

[m

~2
ω2

n + V
′′

(0)
]

|qn|2

(84)

The integration measure now is

Dq[τ ] = N dq0√
2π

∏

n≥1

dReqn dImqn
2π

(85)

where N is a normalization constant that will be discussed below. After
doing the Gaussian integrals, the partition function becomes,

Z = N 1
√

βV ′′(0)

∏

n≥1

1
βm
~2 ω2

n + βV ′′(0)
= N

[

∞
∏

n=−∞

1
βm
~2 ω2

n + βV ′′(0)

]1/2

(86)
Formally, the infinite products that enter in this equation are divergent.
The normalization constant N eliminates this divergence. This is an ex-
ample of what is called a regularization. The regularized partition function
is

Z =

√

m

~2β

1
√

βV ′′(0)

∏

n≥1

[

1 +
~

2V
′′

(0)

mω2
n

]−1

(87)

Using the identity
∏

n≥1

(

1 +
a2

n2π2

)

=
a

sinh a
(88)
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we find

Z =
1

2 sinh





β~

2

(

V
′′

(0)

m

)1/2




(89)

which is the standard partition function for a linear harmonic oscillator,
see L. D. Landau and E. M. Lifshitz, Statistical Physics.

5.3 Path Integrals for a Scalar Field Theory

We will now develop the path-integral quantization picture for a scalar field
theory. Our starting point will be the canonically quantized scalar field. As we
saw before in canonical quantization the scalar field φ̂(x) is an operator that acts
on a Hilbert space of states. We will use the field representation, which is the
analog of the conventional coordinate representation in Quantum Mechanics.
Thus, the basis states are labelled by the field configuration at some fixed time
x0, i.e., a set of states of the form { |{φ(~x, x0)}〉 }. The field operator φ̂(~x, x0)
acts trivially on these states,

φ̂(~x, x0)|{φ(~x, x0)}〉 = φ(~x, x0)|{φ(~x, x0)}〉 (90)

The set of states { |{φ(~x, x0)}〉 } is both complete and orthonormal. Complete-
ness here means that these states span the entire Hilbert space. Consequently
the identity operator Î in the full Hilbert space can be expanded in a complete
basis in the usual manner, which for this basis it means

Î =

∫

Dφ(~x, x0) |{φ(~x, x0)}〉〈{φ(~x, x0)}| (91)

Notice that since the completeness condition involves a sum over all the states
in the basis and since this basis is the set of field configurations at a given time
x0, we will need to give a definition for integration measure which represents
the sums over the field configurations. In this case there is a trivial definition,

Dφ(~x, x0) =
∏

~x

dφ(~x, x0) (92)

Likewise, othonormality of the basis states is the condition

〈φ(~x, x0)|φ′(~x, x0)〉 =
∏

~x

δ (φ(~x, x0) − φ′(~x, x0)) (93)

Thus, we have a working definition of the Hilbert space for a real scalar field.
Naturally, there are many other definitions of this Hilbert space and they are
all equally good.

We saw in the previous section that in canonical quantization the classical
canonical momentum Π(~x, x0), defined as

Π(~x, x0) =
δL

δ∂0φ(~x, x0)
= ∂0φ(~x, x0) (94)
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becomes an operator that acts on the same Hilbert space as the field itself φ
does. The field φ and the canonical momentum π satisfy equal time canonical

commutation relations (CCR)
[

φ̂(~x, x0), Π̂(~y, x0)
]

= i~δ3(~x− ~y) (95)

Here we will use the Lagrangian density for a real scalar field

L =
1

2
(∂µφ)

2 − V (φ) (96)

It is a simple matter to generalize what follows below to more general cases,
such as complex fields and/or several components. Let us also recall that the
Hamiltonian for a scalar field is given by

Ĥ =

∫

d3x

[

Π̂2

2
+

1

2

(

~▽φ̂
)2

+ V (φ̂)

]

(97)

For reasons that will become clear soon, it is convenient to add an extra term
to the Lagrangian density of the scalar field, Eq. 96, of the form

Lsource = J(x) φ(x) (98)

The field J(x) is called an external source and represents the effects of external
sources on the scalar field. The field J(x) is the analog of external forces acting
on a system of classical particles. Here we will always assume that the sources
J(x) vanish both at spacial infinity (at all times) and everywhere in both the
remote past and in the remote future,

lim
|~x|→∞

J(~x, x0) = 0 lim
x0→±∞

J(~x, x0) = 0 (99)

The total Lagrangian density is

L(φ, J) = L + Lsource (100)

Notice that since the source J(x) is generally a function of space and time, the
Hamiltonian that follows from this Lagrangian is formally time-dependent.

We will derive the path integral for this quantum field theory by following
the same procedure we used for the case of a finite quantum mechanical system.
Hence we begin by considering the amplitude

J 〈{φ(~x, x0)}|{φ′(~y, y0)}〉J (101)

In other words, we want the amplitude in the background of the sources J(x).
We will be interested in situations in which x0 is in the remote future and y0 is
in the remote past. It turns out that this amplitude is intimately related to the
computation of ground state (or vacuum) expectation values of time ordered

products of field operators in the Heisenberg representation

G(N)(x1, . . . , xN ) ≡ 〈0|T [φ̂(x1) . . . φ̂(xN )]|0〉 (102)
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which are the N -point Green Functions. In particular the 2-point function

G(2)(x1, . . . , xN ) ≡ 〈0|T [φ̂(x1)φ̂(x2)]|0〉 (103)

is known as the Feynman Propagator for this theory. We will see later on that
all quantities of physical interest can be obtained from a suitable Green function
of the type of Eq. 102.

In Eq. 102 we have use the notation T [φ̂(x1) . . . φ̂(xN )] for the time-ordered

product of Heisenberg field operators. For any pair Heisenberg of operators
Â(~x, x0) and B̂(~y, y0), (which commute for space-like separations) the time or-
dered product is defined to be

T [Â(~x, x0)B̂(~y, y0)] = θ(x0 − y0)Â(~x, x0)B̂(~y, y0) + θ(y0 − x0)B̂(~y, y0)Â(~x, x0)
(104)

where θ(x) is the step (or Heaviside) function

θ(x) =

{

1 if x ≥ 0,

0 otherwise
(105)

This definition is generalized by induction to any number of operators. Notice
that inside a time-ordered product the Heisenberg operators behave as numbers.

Let us now recall the structure of the derivation that we gave of the path
integral in Quantum Mechanics. We will paraphrase that derivation for this
field theory. We considered an amplitude equivalent to Eq. 101, and realized
that this amplitude is actually a matrix element of the evolution operator,

J 〈{φ(~x, x0)}|{φ′(~y, y0)}〉J = 〈{φ(~x)}|T e
−i
∫ x0

y0

dx′0 Ĥ(x′0)/~
|{φ′(~y)}〉 (106)

where T stands for the time ordering symbol (not temperature!), and H(x′0) is
the time-dependent Hamiltonian:

H(x0) =

∫

d3x

[

1

2
Π2(~x, x0) +

1

2

(

~∇φ(~x, x0)
)2

+ V (φ(~x, x0)) − J(~x, x0)

]

(107)
We then partitioned the time interval in a large number of steps of width ∆t

and inserted a complete set of eigenstates of the field operator φ̂, since it plays
the role of the coordinate. As it turned out, we also had to insert complete
sets of eigenstates of the canonical momentum operator, which here means the
operator Π̂(~x). The result is the phase-space path integral

J〈{φ(~x, x0)}|{φ′(~y, y0)}〉J =

∫

b. c.

DφDΠ e

i

~

∫ x0

y0

dx′0

[

φ̇Π −H(φ,Π) + Jφ
]

(108)
where b. c. indicates the boundary conditions required by the requirement that
the initial and final states be |{φ(~x, x0)}〉 and |{φ′(~y, y0)}〉 respectively.
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Exactly as in the case of the path integral for a particle, this theory has a
Hamiltonian quadratic in the momenta Π(x). Hence, we can further integrate
out the field Π(x), and obtain the Feynman path integral for the scalar field
theory in the form of a sum over histories of field configurations:

J 〈{φ(~x, x0)}|{φ′(~y, y0)}〉J = N
∫

b. c.

Dφ e
i

~
S(φ, ∂µφ, J)

(109)

where N is an (unimportant) normalization constant, and S(φ, ∂µφ, J) is the
action for a real scalar field φ(x) coupled to a source J(x),

S(φ, ∂µφ, J) =

∫

d4x

[

1

2
(∂µφ)

2 − V (φ) + Jφ

]

(110)

5.4 Path Integrals and Green Functions

In Quantum Field Theory we will be interested in calculating vacuum (i. e.

ground state) expectation values of field operators at various space-time lo-
cations. Thus, instead of the amplitude J 〈{φ(~x, x0)}|{φ′(~y, y0)}〉J we may be
interested in a transition between an initial state, at y0 → −∞ which is the
vacuum state |0〉, i.e., the ground state of the scalar field in the absence of the
source J(x), and a final state at x0 → ∞ which is also the vacuum state of the
theory in the absence of sources. We will denote this matrix element by

Z[J ] = J〈0|0〉J (111)

This matrix element is called the Vacuum Persistence Amplitude.
Let us see now how the vacuum persistence amplitude is related to the

Feynman path integral for a scalar field of Eq. 109. In order to do that we will
assume that the source J(x) is “on” between times t < t′ and that we watch
the system on a much longer time interval T < t < t′ < T ′. For this interval,
the amplitude is

J 〈{Φ′(~x, T ′)}|{Φ(~x, T )}〉J =

∫

Dφ(~x, t) Dφ′(~x, t′)

〈{Φ′(~x, T ′)}|{φ′(~x, t′)}〉J 〈{φ′(~x, t′)}| 〉{φ(~x, t)}J 〈{φ(~x, t)}|{Φ(~x, T )}〉
(112)

The matrix elements 〈{Φ′(~x, T ′)}|{φ′(~x, t′)}〉 and 〈{φ(~x, t)}|{Φ(~x, T )}〉 are given
by

〈{φ(~x, t)}|{Φ(~x, T )}〉 =
∑

m

Ψm[{φ(~x)}]Ψ∗
n[{Φ(~x)}] e−iEn(t− T )/~

〈{Φ′(~x, T ′)}|{φ′(~x, t′)}〉
∑

n

Ψn[{Φ′(~x)}]Ψ∗
n[{φ′(~x)}] e−iEm(T ′ − t′)/~

(113)
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where we have introduced complete sets of eigenstates |{Ψn}〉 of the Hamilto-
nian of the scalar field (without sources) and the corresponding wave functions,
{Ψn(Φ((~x))}.

We now analytically continue T along the positive imaginary time axis, and
T ′ along the negative imaginary time axis, as shown in figure 3. After carrying

Re t

Im t

t

T

t′

T ′

Figure 3: Analytic continuation

out the analytic continuation, we find that the following identities (essentially,
the Gell-Mann-Low Theorem) hold,

lim
T→+i∞

e−iE0T/~〈{φ(~x, t)}|{Φ(~x, T )}〉 = Ψ0[{φ}] Ψ∗
0[{Φ}] e−iE0t/~

lim
T ′→−i∞

eiE0T
′/~〈{Φ′(~x, T ′)}|{φ(~x, t′)}〉 = Ψ0[{Φ′}] Ψ∗

0[{φ′}] eiE0t
′/~

(114)

and all other terms drop out in this limit provided the vacuum state |0〉 is
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non-degenerate. Hence, in the same limit, we also find the following relation:

lim
T→+i∞

lim
T ′→−i∞

〈{Φ′(~x, T ′)}|Φ(~x, T )}〉
exp [−iE0(T ′ − T )/~] Ψ∗

0[{Φ}] Ψ0[{Φ′}]

=

∫

DΦDΦ′ Ψ∗
0[{φ′(~x, t′)}] Ψ0[{φ(~x, t)}] J〈{φ′(~x, t′)}|{φ(~x, t)}〉J ≡ J〈0|0〉J

(115)

Eq. 115 gives us a relation between the Feynman Path Integral and the vacuum
persistence amplitude of the form

Z[J ] = J 〈0|0〉J = N lim
T→+i∞

lim
T ′→−i∞

∫

Dφ e
i

~

∫ T ′

T

d4x [L(φ, ∂µφ) + Jφ]

(116)
In other words, in this asymptotically long time limit, the amplitude of Eq. 101
becomes identical to the vacuum persistence amplitude J〈0|0〉J , independently
of the choice of the initial and final states.

Hence we find a direct relation between the vacuum persistence function
Z[J ] and the Feynman Path Integral, given by Eq. 116. Notice that in this
limit we can ignore the “hard” boundary condition and work instead with free
boundary conditions. Or equivalently, physical properties become independent
of the initial and final conditions placed. For these reasons, from now on we
will write the simpler expression

Z[J ] = J 〈0|0〉J = N
∫

Dφ e
i

~

∫

d4x [L(φ, ∂µφ) + Jφ]
(117)

This is a very useful relation. We will see now that Z[J ] is the generating
function(al) of all the vacuum expectation values of time ordered products of
fields, i.e. the Green functions. In particular, let us compute the expression

1

Z[0]

δ2Z[J ]

δJ(x)δJ(x′)

∣

∣

∣

∣

J=0

=
1

〈0|0〉
δ2J 〈0|0〉J
δJ(x)δJ(x′)

∣

∣

∣

∣

J=0

=

(

i

~

)2

〈0|T [φ(x)φ(x′)]|0〉
(118)

Thus, the 2-point function, the Feynman propagator or Green function of the
scalar field φ(x), 〈0|T [φ(x)φ(x′)]|0〉 becomes,

〈0|T [φ(x)φ(x′)]|0〉 =
1

〈0|0〉

∫

Dφ φ(x) φ(x′) exp

(

i

~
S[φ, ∂µφ]

)

(119)

Similarly, the N -point function 〈0|T [φ(x1) . . . φ(xN )]|0〉 becomes

〈0|T [φ(x1) . . . φ(xN )]|0〉 = (−i~)N 1

〈0|0〉
δN

J〈0|0〉J
δJ(x1) . . . δJ(xN )

∣

∣

∣

∣

J=0

=
1

〈0|0〉

∫

Dφ φ(x1) . . . φ(xN ) exp

(

i

~
S[φ, ∂µφ]

)

(120)
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where

Z[0] = 〈0|0〉 =

∫

Dφ exp

(

i

~
S[φ, ∂µφ]

)

(121)

Therefore, we find that the Path Integral always yields vacuum expectation
values of time-ordered products of operators. The quantity Z[J ] can thus be
viewed as the generating functional of the Green functions of this theory. These
are actually general results that hold for the path integrals of all theories.

5.5 Path Integrals in Euclidean Space and Statistical Physics

In the last section we saw how to relate the computation of transition amplitudes
to path integrals in Minkowski space-time with specific boundary conditions
dictated by the nature of the initial and final states. In particular we derived
explicit expressions for the case of fixed boundary conditions. However we could
have chosen other boundary conditions. For instance, for the amplitude to begin
in any state at the initial time and to go back to the same state at the final
time, but summing over all states. This is the same as to ask for the trace

Z ′[J ] =

∫

DΦJ 〈{Φ(~x, t′)}|{Φ(~x, t)}〉J ≡ Tr T e
− i

~

∫

d4x (H− Jφ)

≡
∫

PBC

Dφ e

i

~

∫

d4x (L + Jφ)

(122)

where PBC stands for periodic boundary conditions on some generally finite

time interval t′ − t, and T is the time-ordering symbol.
Let us now carry the analytic continuation to imaginary time t → −iτ , i.e.

a Wick Rotation. Upon a Wick rotation the theory has Euclidean invariance,
i.e., rotations and translations in D = d+1-dimensional space. Imaginary time
plays the same role as the other d spacial dimensions. Hereafter we will denote
imaginary time by xD, and all vectors will have indices µ that run from 1 to D.

We will consider two cases: infinite imaginary time interval, and finite imag-
inary time interval.

5.5.1 Infinite Imaginary Time Interval

In this case the path integral becomes

Z ′[J ] =

∫

Dφ e
−
∫

dDx (LE − Jφ)
(123)

where D is the total number of space-time dimensions. Here we are discussing
the case D = 4, but it is obviously valid more generally. Here LE is the Eu-
clidean Lagrangian

LE =
1

2
(∂0φ)2 +

1

2
(~▽φ)2 + V (φ) (124)
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0 β

Figure 4: Periodic boundary conditions wraps space-time into a cylinder.

The path integral of Eq. 123 has two interpretations. One is simply the infinite
time limit (in imaginary time) and therefore it must be identical to the vac-
uum persistence amplitude J〈0|0〉J . The only difference is that from here we
get all the N -point functions in Euclidean space-time (i.e., imaginary time).
Therefore, the relativistic interval is

t2 − ~x2 → −τ2 − ~x2 < 0 (125)

which is always space-like. Hence, with this procedure we will get the Green
functions for space-like separations of its arguments. To get to time-like sepa-
rations we will need to do an analytic continuation. This we will do later on.
The second interpretation is that the path integral of Eq. 123 is the partition

function of a system in Classical Statistical Mechanics in D dimensions with
energy density (divided by T ) equal to LE −Jφ. This will turn out to be a very
useful connection (both ways!).

5.5.2 Finite Imaginary Time Interval

In this case we have
0 ≤ x0 = τ ≤ β = 1/T (126)

where T will be interpreted as the temperature. Indeed, in this case the path
integral is

Z ′[0] = Tr e−βH (127)

and we are effectively looking at a problem of the same Quantum Field Theory
but at finite temperature T = 1/β. The path integral is once again the partition
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function but of a system in Quantum Statistical Physics! The partition function
thus is (I set ~ = 1)

Z ′[J ] =

∫

Dφ e
−

∫ β

0

dτ (LE − Jφ)
(128)

where the field φ(~x, τ) obeys periodic boundary conditions in imaginary time,

φ(~x, τ) = φ(~x, τ + β) (129)

This boundary condition will hold for all bosonic theories. Theories with fermions
obey instead, as we will see later on, anti-periodic boundary conditions.

Hence, Quantum Field Theory at finite temperature T is just Quantum
Field Theory on an Euclidean space-time which is periodic (and finite) in one
direction, imaginary time. In other words, we have wrapped (“compactified”)
Euclidean space-time into a cylinder with perimeter (circumference) β = 1/T
(in units of ~ = kB = 1).

Clearly, the Green functions in imaginary time (which we will call the Eu-
clidean Correlation functions) are given by

1

Z ′[J ]

δNZ ′[J ]

δJ(x1) . . . J(xN )

∣

∣

∣

∣

J=0

= 〈φ(x1) . . . φ(xN )〉 (130)

which are just the correlation functions in the equivalent problem in Statistical
Mechanics. Upon analytic continuation the Euclidean Correlation Functions
〈φ(x1) . . . φ(xN )〉 and the N -point functions of the QFT are related by

〈φ(x1) . . . φ(xN )〉 ↔ (i~)N 〈0|Tφ(x1) . . . φ(xN )|0〉 (131)

For the case of a QFT at finite temperature T , the path integral yields the
correlation functions of the Heisenberg field operators in imaginary time. These
correlation functions are often called the thermal Green functions. They are
functions of the spatial positions of the fields, ~x1, . . . , ~xN and of their imaginary

time coordinates, xD1, . . . , xDN (here xD ≡ τ). To obtain the correlation func-
tions as a function of the real time coordinates x01, . . . , x0N at finite temperature

T it is necessary to do an analytic continuation. We will discuss how this is done
later on.

5.6 Path Integrals for the Free Scalar Field

We will consider now the case of a Free Scalar Field. We will carry our discussion
in Euclidean Space-Time (i.e., in imaginary time), and we will do the relevant
analytic continuation back to real time at the end of the calculation.

The Euclidean Lagrangian LE for a free field φ coupled to a source J is

LE =
1

2
(▽µφ)

2
+

1

2
m2φ2 − Jφ (132)
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where we are using the notation

(▽µφ)
2

= ▽µφ▽µ φ (133)

Here the index is µ = 1, . . . , D for an Euclidean space-time of D = d + 1
dimensions. For the most part we will be interested in the case of d = 3 and
Euclidean space has four dimensions. Notice the way the Euclidean space-time
indices are placed in Eq. 133. This is not a misprint!

We will compute the Euclidean Path Integral (or Partition Function) ZE [J ]
exactly. The Euclidean Path Integral for a free field has the form

ZE [J ] = N
∫

Dφ e
−

∫

dDx

[

1

2
(▽µφ)

2
+

1

2
m2φ2 − Jφ

]

(134)

In Classical Statistical Mechanics this theory is known as the Gaussian Model.
In what follows I will assume that the boundary conditions of the field φ

(and the source J) at infinity are either vanishing or periodic, and that the
source J also either vanishes at spatial infinity or is periodic. With these as-
sumptions all terms which are total derivatives drop out identically. Therefore,
upon an integration by parts and after dropping boundary terms, the Euclidean
Lagrangian becomes

LE =
1

2
φ
[

−▽2 +m2
]

φ− Jφ (135)

This path integral can be calculated exactly because the action is a quadratic
form of the field φ. It has terms which are quadratic (or, rather bilinear) in φ
and a term linear in φ, the source term. By means of the following shift of the
field φ

φ(x) = φ̄(x) + ξ(x) (136)

the Lagrangian becomes

LE =
1

2
φ
[

−▽2 +m2
]

φ− Jφ

=
1

2
φ̄
[

−▽2 +m2
]

φ̄− Jφ̄+
1

2
ξ
[

−▽2 +m2
]

ξ + ξ
[

−▽2 +m2
]

φ̄− Jξ

(137)

Hence, we can decouple the source J(x) by requiring that the shift φ̄ be such
that the terms linear in ξ cancel each other exactly. This requirement leads to
the condition that φ̄ be the solution of the following partial differential equation

[

−▽2 +m2
]

φ̄ = J(x) (138)

Equivalently we can write φ̄ is terms of J(x) through the action of the inverse
of the operator −▽2 +m2,

φ̄ =
1

−▽2 +m2
J (139)

25



The solution of Eq. 138 is

φ̄(x) =

∫

dDx′ GE
0 (x − x′) J(x′) (140)

where

GE
0 (x− x′) = 〈x| 1

−▽2 +m2
|x′〉 (141)

is the Green function of the linear partial differential operator −▽2 +m2, i.e.,

GE
0 (x− x′) is the solution of

[

−▽2
x +m2

]

GE
0 (x− x′) = δD(x− x′) (142)

In terms of GE
0 (x− x′), the terms of the shifted action become,

∫

dDx

(

1

2
φ̄(x)

[

−▽2 +m2
]

φ̄(x) − Jφ̄(x)

)

=

∫

dDx

(

−1

2
φ̄(x)J(x)

)

= −1

2

∫

dDx dDx′ J(x) GE
0 (x− x′) J(x′)

(143)

Therefore the path integral ZE [J ], defined in Eq. 134, is given by

ZE [J ] = ZE [0] e

1

2

∫

dDx dDx′ J(x) GE
0 (x− x′) J(x′)

(144)

where ZE [0] is

ZE[0] =

∫

Dξ e
−1

2

∫

dDx ξ(x)
[

−▽2 +m2
]

ξ(x)
(145)

Eq. 144 shows that, after the decoupling, ZE[J ] is a product of two factors:
(a) a factor that is function of a bilinear form in the source J , and (b) a path
integral, ZE [0], that is independent of the sources.

5.6.1 Calculation of ZE [0]

The path integral ZE[0] is analogous to the fluctuation factor that we found in
the path integral for a harmonic oscillator in elementary quantum mechanics.
There we saw that the analogous factor could be written as a determinant of a
differential operator, the kernel of the bilinear form that entered in the action.
The same result holds here as well. The only difference is that the kernel is now
the partial differential operator Â = −▽2 +m2 whereas in Quantum Mechanics
is an ordinary differential operator. Still, the operator Â has a set of eigenstates
{Ψn(x)} which, once the boundary conditions in space-time are specified, are
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both complete and orthonormal, and the associated spectrum of eigenvalues An

is
[

−▽2 +m2
]

Ψn(x) = AnΨn(x)
∫

dDx Ψn(x) Ψm(x) = δn,m

∑

n

Ψn(x) Ψn(x′) = δ(x − x′)

(146)

Hence, once again we can expand the field φ(x) in the complete set {Ψn(x)} ,

φ(x) =
∑

n

cn Ψn(x) (147)

The set of field configurations is thus parametrized by the coefficients {cn}.
The action now becomes,

S =

∫

dDx LE(φ, ∂φ) =
1

2

∑

n

Anc
2
n (148)

Thus, up to a normalization factor, we find that ZE[0] is given by

ZE [0] =
∏

n

A−1/2
n ≡

(

Det
[

−▽2 +m2
])−1/2

(149)

Once again, we have reduced the calculation of ZE[0] to the computation of the
determinant of a differential operator, Det

[

−▽2 +m2
]

.
In chapter 8 we will discuss efficient methods to compute such determinants.

For the moment it will be sufficient to notice that there is a simple, but formal,
way to compute this determinant. First, we notice that if we are interested in
the behavior of of an infinite system at T = 0, the eigenstates of the operator
−▽2 +m2 are simply suitably normalized plane waves. Let L be the linear size
of the system (L→ ∞). Then the eigenfunctions are labeled by aD-dimensional
momentum pµ (with µ = 0, 1, . . . , d)

Ψp(x) =
1

(2πL)D/2
ei pµ xµ (150)

with eigenvalues,
Ap = p2 +m2 (151)

Hence the logarithm of determinant is

ln Det
[

−▽2 +m2
]

= Tr ln
[

−▽2 +m2
]

=
∑

p

ln(p2 +m2)

= V

∫

dDp

(2π)D
ln(p2 +m2)

(152)
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where V = LD is the volume of Euclidean space-time. Hence, (the logarithm
of) ZE [0] is

lnZE [0] = −V
2

∫

dDp

(2π)D
ln(p2 +m2) (153)

This expression is has two singularities:

1. It diverges as V → ∞. This infrared (IR) singularity actually is not a
problem since lnZE [0] should be extensive. In other words, this is how it
should behave.

2. The integral diverges at large momenta unless there is an upper bound (or
cutoff) for the allowed momenta. This is an ultraviolet (UV) singularity.
It has the same origin of the UV divergence of the ground state energy.

In fact ZE [0] is closely related to the ground state (vacuum) energy since

ZE [0] = lim
β→∞

∑

n

e−βEn ∼ e−βE0 + . . . (154)

Thus,

E0 = − lim
β→∞

1

β
lnZE [0] =

1

2
Ld

∫

dDp

(2π)D
ln(p2 +m2) (155)

where Ld is the volume of space, i. e. V = Ldβ. Notice that Eq. 155 is UV
divergent. Below in this chapter we will discuss how to compute expressions of
the form of Eq. 155.

5.6.2 Green Functions

A number of interesting results are found immediately by direct inspection of Eq.
144. We can easily see that, once we set J = 0, the Green function GE

0 (x− x′)

GE
0 (x− x′) = 〈x| 1

−▽2 +m2
|x′〉 (156)

is equal to the 2-point correlation function for this theory (at J = 0) ,

〈φ(x)φ(x′)〉 =
1

ZE[0]

δ2ZE[J ]

δJ(x)δJ(x′)

∣

∣

∣

∣

J=0

= G0
E(x − x′) (157)

Likewise we find that, for a free field theory, theN -point function 〈φ(x1) . . . φ(xN )〉
is equal to

〈φ(x1) . . . φ(xN )〉 =
1

ZE[0]

δNZE [J ]

δJ(x1) . . . δJ(xN )

∣

∣

∣

∣

J=0

=

= 〈φ(x1)φ(x2)〉 . . . 〈φ(xN−1)φ(xN )〉 + permutations

(158)
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Therefore for a free field, up to permutations of the coordinates x1, . . . , xN ,
the N -point functions factorize into products of 2-point functions. Hence, N
must be an positive even integer. This result, Eq. 158, which we derived in the
context of a theory for a free scalar field, is actually much more general. It is
known as Wick’s Theorem. It applies to all free theories i.e., theories whose
Lagrangians are bilinear in the fields, it is independent of the statistics and on
whether there is relativistic invariance or not. The only caveat is that, as we
will see later on, for the case of fermionic theories there is a sign associated with
each term of this sum. It is easy to see that, for N = 2k, the total number of
terms in the sum is

(2k − 1)(2k − 3) . . . ... =
(2k)!

2kk!
(159)

Each factor of a 2-point function 〈φ(x1)φ(x2)〉, i.e. a free propagator, and it is
also called a contraction. It also common to use the notation

〈φ(x1)φ(x2)〉 = φ(x1)φ(x2) (160)

to denote a contraction or propagator.

5.6.3 Calculation of the Propagator

We will now calculate the 2-point function, or propagator,GE
0 (x−x′) for infinite

Euclidean space. This is the case of interest in QFT at T = 0. Later on we will
do the calculation of the propagator at finite temperature.

Eq. 142 tells us that GE
0 (x− x′) is the Green function of the operator −▽2

+m2. We will use Fourier transform methods and write GE
0 (x−x′) in the form

GE
0 (x− x′) =

∫

dDp

(2π)D
GE

0 (p) ei pµ(xµ − x′µ) (161)

which is a solution of Eq. 142 if

GE
0 (p) =

1

p2 +m2
(162)

Therefore the Green function in real (Euclidean!) space is the integral

GE
0 (x− x′) =

∫

dDp

(2π)D

ei pµ(xµ − x′µ)

p2 +m2
(163)

We will often encounter integrals of this type and for that reason we will do this
one in some detail. We begin by using the identity

1

A
=

1

2

∫ ∞

0

dα e
−
A

2
α

(164)

where A > 0 is a positive real number. The variable α is called a Feynman-
Schwinger parameter.
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We now choose A = p2 +m2, and substitute this expression back in Eq. 163,
which takes the form

GE
0 (x− x′) =

1

2

∫ ∞

0

dα

∫

dDp

(2π)D
e
−α

2
(p2 +m2) + ipµ(xµ − x′µ)

(165)

The momentum integrand is now a Gaussian, and the integral can be calculated
by a shift of the integration variables pµ, i.e., by completing squares

α

2
(p2 +m2)− ipµ(xµ −x′µ) =

1

2

(√
αpµ − i

xµ − x′µ√
α

)2

− 1

2

(

xµ − x′µ√
α

)2

(166)

and by using the Gaussian integral

∫

dDp

(2π)D
e
−1

2

(√
αpµ − i

xµ − x′µ√
α

)2

= (2πα)−D/2 (167)

After all of this is done, we find the formula

GE
0 (x− x′) =

1

2(2π)D/2

∫ ∞

0

dα α−D/2 e
−|x− x′|2

2α
− 1

2
m2α

(168)

Let us now define a rescaling of the variable α,

α = λt (169)

by which
|x− x′|2

2α
+

1

2
m2α =

|x− x′|2
2λt

+
1

2
m2λt (170)

We choose

λ =
|x− x′|
m

(171)

With this choice, the exponent becomes

|x− x′|2
2α

+
1

2
m2α =

m|x− x′|
2

(

t+
1

t

)

(172)

After this final change of variables, we find that the Green function is

GE
0 (x− x′) =

1

(2π)D/2

(

m

|x− x′|

)

D

2
− 1

KD
2 −1(m|x− x′|) (173)

where Kν(z) is the Bessel function (of imaginary argument, see e.g. Gradshteyn
and Ryzhik) which has the integral representation

Kν(z) =
1

2

∫ ∞

0

dt tν − 1 e
−
z

2

(

t+
1

t

)

(174)
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Figure 5: Behaviors of the Euclidean Green Function.

with ν = D
2 − 1, and z = m|x− x′|.

There are two interesting regimes: (a) long distances, m|x − x′| ≫ 1 , and
(b) short distances, m|x− x′| ≪ 1.

1. Long Distance Behavior:
In this regime, z = m|x − x′| ≫ 1, a saddle-point calculation shows that
the Bessel Function Kν(z) has the asymptotic behavior,

Kν(z) ≈
√

π

2z
e−z [1 +O(1/z)] (175)

Thus, in this regime the Euclidean Green function behaves like

GE
0 (x− x′) ≈

√

π/2 mD − 2 e−m|x− x′|

(2π)D/2 (m|x− x′|)
D − 1

2

[

1 +O(
1

m|x − x′| )
]

(176)

Therefore, at long distances, the Euclidean (or imaginary time) Green
function has an exponential decay with distance (and imaginary time).
The length scale for this decay is 1/m, which is natural since it is the only
quantity with units of length in the theory. In real time, and in conven-
tional units, this length scale is just the Compton wavelength, ~/mc. In
Statistical Physics this length scale is known as the correlation length ξ.

2. Short Distance Behavior:
In this regime we must use the behavior of the Bessel function for small
values of the argument,

Kν(z) ≈ Γ(ν)

2
(

z
2

)ν + O(1/zν−2) (177)

The Green function now behaves instead like,

GE
0 (x− x′) ≈ Γ(D

2 − 1)

4πD/2|x− x′|D−2
+ . . . (178)

where . . . are terms that vanish as m|x−x′| → 0. Notice that the leading
term is independent of the mass m. This is the behavior of the massless

theory.
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5.6.4 Behavior of the Green function in Minkowski space

We must now address the issue of the behavior of the Green function in real

time. This means that now we must do the analytic continuation back to real
time x0. In what follows we will set D = 4.

Let us recall that in going from Minkowski to Euclidean space we contin-
ued x0 → −ix4. There is also factor of i difference in the definition of the
Green function. Thus, the Green function in Minkowski space G0(x− x′) is the
expression that results from

G0(x− x′) = i GE
0 (x− x′)

∣

∣

x4→ix0
(179)

The relativistic interval s is given by

s2 = (t− t′)2 − (~x − ~x
′

)2 (180)

The Euclidean interval (length) |x−x′|, and the relativistic interval s are related
by

|x− x′| =
√

(x − x′)2 →
√

−s2 (181)

Therefore, in D = 4 space-time dimensions, the Minkowski space propagator is

G0(x− x′) =
i

4π2

m√
−s2

K1(m
√

−s2) (182)

we will need the asymptotic behavior of the Bessel function K1(z),

K1(z) =

√

π

2z
e−z

[

1 +
3

8z
+ . . .

]

, for z ≫ 1

K1(z) =
1

z
+
z

2

(

ln z + C − 1

2

)

+ . . . , for z ≪ 1

(183)

where C = 0.577215 . . . is the Euler constant. Let us examine the behavior
of Eq. 182 in the regimes: (a) space-like, s2 < 0, and (b) time-like, s2 > 0,
intervals.

1. (x− x′)2 = s2 < 0
This is the space-like domain. By inspecting Eq. 182 we see that for space-
like separations, the factor

√
−s2 is a positive real number. Consequently

the argument of the Bessel function is real (and positive), and the Green
function is pure imaginary. In particular we see that, for s2 < 0 the
Minkowski Green function is essentially the Euclidean Green function,

G0(x− x′) = iGE
0 (x− x′) , for s2 < 0 (184)

32



  
space-like separations

time-like separations

Decay Decay

Decay

Oscillatory Behavior

Oscillatory Behavior

Power Law

Exponential Exponential

light cone

Figure 6: Behaviors of the Green Function in Minkowski space-time.

Hence, for s2 < 0 we have the behaviors,

G0(x− x′) ≈ i

√

π/2

4π2

m2

(

m
√
−s2

)3/2
e−m

√

−s2 , for m
√

−s2 ≫ 1

G0(x− x′) ≈ i

4π2(−s2) , for m
√

−s2 ≪ 1

(185)

2. (x− x′)2 = s2 > 0
This is the time-like domain. The analytic continuation yields

G0(x− x′) =
m

4π2
√
s2
K1(im

√
s2) (186)

For pure imaginary arguments, the Bessel function K1(iz) is the analytic

continuation of the Hankel function, K1(iz) = −π
2H

(1)
1 (−z) . This func-

tion is oscillatory for large values of its argument. Indeed, we now get the
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behaviors

G0(x − x′) ≈
√

π/2

4π2

m2

(

m
√
s2
)3/2

eim
√
s2 , for m

√
s2 ≫ 1

G0(x − x′) ≈ 1

4π2s2
, for m

√
s2 ≪ 1

(187)

Notice that, up to a factor of i, the short distance behavior is the same
for both time-like and space like separations. The main difference is that
at large time-like separations we get an oscillatory behavior instead of an
exponential decay. The length scale of the oscillations is, once again, set
by the only scale in the theory, the Compton wavelength.

5.6.5 Exponential decays and mass gaps

The exponential decay at long space-like separations (and the oscillatory behav-
ior at long time-like separations) is not a peculiarity of the free field theory. It
is a general consequence of the existence of a mass gap in the spectrum. We can
see that by considering the 2-point function of a generic theory, for simplicity
in imaginary time. The 2-point function is

G(2)(~x− ~x ′, τ − τ ′) = 〈0|T φ̂(~x, τ)φ̂(~x ′, τ ′)|0〉 (188)

where T is the imaginary time-ordering operator.
The Heisenberg representation of the operator φ̂ in imaginary time is (~ = 1)

φ̂(~x, τ) = eHτ φ̂(~x, 0) e−Hτ (189)

Hence, we can write the 2-point function as

G(2)(~x− ~x ′, τ − τ ′) =

= θ(τ − τ ′)〈0|eHτ φ̂(~x, 0) e−H(τ − τ ′) φ̂(~x ′, 0) e−Hτ
′
|0〉

+ θ(τ ′ − τ)〈0|eHτ
′
φ̂(~x ′, 0) e−H(τ ′ − τ) φ̂(~x, 0) e−Hτ |0〉

= θ(τ − τ ′) eE0(τ − τ ′) 〈0|φ̂(~x, 0) e−H(τ − τ ′) φ̂(~x ′, 0)|0〉
+ θ(τ ′ − τ) eE0(τ

′ − τ) 〈0|φ̂(~x ′, 0) e−H(τ ′ − τ) φ̂(~x, 0)|0〉
(190)

We now insert a complete set of eigenstates {|n〉} of the Hamiltonian Ĥ ,
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with eigenvalues {En}. The 2-point function now reads,

G(2)(~x− ~x ′, τ − τ ′) =

= θ(τ − τ ′)
∑

n

〈0|φ̂(~x, 0)|n〉 〈n|φ̂(~x ′, 0)|0〉 e−(En − E0)(τ − τ ′)

+ θ(τ ′ − τ)
∑

n

〈0|φ̂(~x ′, 0)|n〉 〈n|φ̂(~x, 0)|0〉 e−(En − E0)(τ
′ − τ)

(191)

Since

φ̂(~x, 0) = ei
~̂P · ~xφ̂(0, 0)e−i ~̂P · ~x (192)

and that
~̂P |0〉 = 0, ~̂P |n〉 = ~Pn, (193)

where ~Pn is the linear momentum of state |n〉, we can write

〈0|φ̂(~x, 0)|n〉 〈n|φ̂(~x ′, 0)|0〉 = |〈0|φ̂(0, 0)|n〉|2 e−i ~Pn · (~x− ~x ′) (194)

using the above expressions we can write the expressions in Eq. 191 in the form

G(2)(~x− ~x ′, τ − τ ′) =
∑

n

|〈0|φ̂(0, 0)|n〉|2

×
[

θ(τ − τ ′)e−i ~Pn · (~x− ~x ′)e−(En − E0)(τ − τ ′)

+θ(τ ′ − τ)e−i ~Pn · (~x ′ − ~x)e−(En − E0)(τ
′ − τ)

]

(195)

Thus, at equal positions, ~x = ~x ′, we obtain the simpler expression in the imag-
inary time interval τ − τ ′

G(2)(0, τ − τ ′) =
∑

n

|〈0|φ̂(~x, 0)|n〉|2 × e−(En − E0)|τ − τ ′|

(196)

In the limit of large imaginary time separation, |τ − τ ′| → ∞, there is always
a largest non-vanishing term in the sums. This is the term for the state |n0〉
that mixes with the vacuum state |0〉 through the field operator φ̂, and with the
lowest excitation energy or mass gap En0 − E0. Hence, for |τ − τ ′| → ∞, the
2-point function decays exponentially like,

G(2)(0, τ − τ ′) ≃ |〈0|φ̂(~x, 0)|n0〉|2 × e−(En0 − E0)|τ − τ ′|
(197)
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Therefore, if the spectrum has a gap, the correlation functions (or Green func-
tions) decay exponentially in imaginary time. In real time we get an oscillatory
behavior. This is a very general result. Finally, notice that Lorentz invariance
in Minkowski space-time (real time) implies rotational (Euclidean) invariance
in imaginary time. Hence, exponential decay in imaginary times, at equal posi-
tions, must imply (in general) exponential decay in real space at equal imaginary
times (an laos in real time since the time difference in this case vanishes). Thus,
in a Lorentz invariant system the propagator at space-like separations is always
equal to the propagator in imaginary time.
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