
2 Classical Field Theory

In what follows we will consider rather general field theories. The only guiding
principles that we will use in constructing these theories are (a) symmetries and
(b) a generalized Least Action Principle.

2.1 Relativistic Invariance

Before we saw three examples of relativistic wave equations. They are Maxwell’s
equations for classical electromagnetism, the Klein-Gordon and Dirac equations.
Maxwell’s equations govern the dynamics of a vector field, the vector potentials
Aµ(x) = (A0, ~A), whereas the Klein-Gordon equation describes excitations of
a scalar field φ(x) and the Dirac equation governs the behavior of the four-
component spinor field ψα(x)(α = 0, 1, 2, 3). Each one of these fields transforms
in a very definite way under the group of Lorentz transformations, the Lorentz
group. The Lorentz group is defined as a group of linear transformations Λ of
Minkowski space-timeM onto itself Λ :M→M such that

x′µ = Λµ
νx

ν (1)

The space-time components of Λ are the Lorentz boosts which relate inertial
reference frames moving at relative velocity ~v. Thus, Lorentz boosts along the
x1-axis have the familiar form

x0′ =
x0 + vx1/c
√

1− v2/c2

x1′ =
x1 + vx0/c
√

1− v2/c2

x2′ = x2

x3′ = x3

(2)

where x0 = ct, x1 = x, x2 = y and x3 = z (note: these are components, not
powers!). If we use the notation γ = (1− v2/c2)−1/2 ≡ coshα, we can write the
Lorentz boost as a matrix:







x0′

x1′

x2′

x3′







=







coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1













x0

x1

x2

x3







(3)

The space components of Λ are conventional three-dimensional rotations R.
Infinitesimal Lorentz transformations are generated by the hermitian oper-

ators
Lµν = i(xµ∂ν − xν∂µ) (4)
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where ∂µ = ∂
∂xµ . They satisfy the algebra

[Lµν , Lρσ] = igνρLµσ − igµρLνσ − igνσLµρ + igµσLνρ (5)

where gµν is the metric tensor for Minkowski space-time (see below). This is
the algebra of the group SO(3, 1). Actually any operator of the form

Mµν = Lµν + Sµν (6)

where Sµν are 4 × 4 matrices satisfying the algebra of Eq. 5 satisfies the same
algebra. Below we will discuss explicit examples.

Lorentz transformations form a group, since (a) the product of two Lorentz
transformations is a Lorentz transformation, (b) there exists an identity trans-
formation, and (c) Lorentz transformations are invertible. Notice, however,
that in general two transformations do not commute with each other. Hence,
the lorentz group is non-Abelian.

The Lorentz group has the defining property that it leaves invariant the
relativistic interval

x2 ≡ x2
0 − ~x 2 = c2t2 − ~x 2 (7)

The group of Euclidean rotations leave invariant the Euclidean distance ~x 2 and
it is a subgroup of the Lorentz group. The rotation group is denoted by SO(3),
and the Lorentz group is denoted by SO(3, 1). This notation makes manifest
the fact that the signature of the metric has one + sign and three − signs.

We will adopt the following conventions and definitions:

1. Metric Tensor: We will use the Bjorken and Drell metric in which the
metric tensor gµν is

gµν = gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(8)

With this notation the infinitesimal relativistic interval is

ds2 = dxµdxµ = gµνdx
µdxν = dx2

0 − d~x 2 = c2dt2 − d~x 2 (9)

2. 4-vectors:

(a) xµ is a contravariant 4-vector, xµ = (ct, ~x)

(b) xµ is a covariant 4-vector xµ = (ct,−~x)
(c) Covariant and contravariant vectors (and tensors) are related through

the metric tensor gµν

Aµ = gµνAν (10)

(d) ~x is a vector in R
3

(e) pµ = (E
c , ~p). Hence, pµp

µ = E2

c2 − ~p 2 is a Lorentz scalar.
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3. Scalar Product:

p · q = pµq
µ = p0q0 − ~p · ~q ≡ pµqνg

µν (11)

4. Gradients: ∂µ ≡ ∂
∂xµ and ∂µ ≡ ∂

∂xµ
. We define the D’Alambertian

≡ ∂µ∂µ ≡ ∂2 ≡ 1

c2
∂2

t −▽2 (12)

From now on we will use units of time [T ] and length [L] such that ~ =
c = 1. Thus, [T ] = [L] and we will use units like centimeters (or any other
unit of length).

5. Interval: The interval in Minkowski space is x2,

x2 = xµx
µ = x2

o − ~x2 (13)

Time-like intervals have x2 > 0 while space-like intervals have x2 < 0.

Since a field is a function (or mapping) of Minkowski space onto some other
(properly chosen) space, it is natural to require that the fields should have simple
transformation properties under Lorentz transformations. For example, the
vector potential Aµ(x) transforms like 4-vector under Lorentz transformations,
i.e., if x′µ = Λµ

νx
ν ⇒ A′µ(x′) = Λµ

νA
ν(x). In other words, Aµ transforms like

xµ. Thus, it is a vector. All vector fields have that property. A scalar field
Φ(x), on the other hand, remains invariant under Lorentz transformations,

Φ′(x′) = Φ(x) (14)

A 4-spinor ψα(x) transforms under Lorentz transformations. Namely, there
exists an induced 4x4 transformation matrix S(Λ) such that

S(Λ−1) = S−1(Λ) (15)

and
Ψ′(Λx) = S(Λ)Ψ(x) (16)

Below we will give an explicit expression for S(Λ).

2.2 The Lagrangian, the Action and and the Least Action
Principle

The evolution of any dynamical system is determined by its Lagrangian. In the
Classical Mechanics of systems of particles described by the generalized coordi-
nate q, the Lagrangian L is a differentiable function of q and its time derivatives.
L must be differentiable since otherwise the equations of motion would not local
in time, i.e. could not be written in terms of differential equations. An argu-
ment á-la Landau-Lifshitz enables us to “derive” the Lagrangian. For example,
for a particle in free space, the homogeneity, uniformity and isotropy of space
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and time require that L be only a function of the absolute value of the velocity
|~v|. Since |~v| is not a differentiable function of ~v, the Lagrangian must be a
function of ~v2. Thus, L = L(~v 2). In principle there is no reason to assume
that L cannot be a function of the acceleration ~a (or rather ~a ) or of its higher
derivatives. Experiment tells us that in Classical Mechanics it is sufficient to
specify the initial position ~x(0) of a particle and its initial velocity ~v(0) in order
to determine the time evolution of the system. Thus we have to choose

L(~v 2) = const +
1

2
m~v 2 (17)

The additive constant is irrelevant in classical physics. Naturally, the coefficient
of ~v 2 is just one-half of the inertial mass. However, in Special Relativity, the
natural invariant quantity to consider is not the Lagrangian but the action S.
For a free particle the relativistic invariant (i.e., Lorentz invariant ) action

must involve the invariant interval or the invariant length ds = c
√

1− ~v 2

c2 dt,

the proper time. Hence one writes

S = mc

∫ sf

si

ds = mc2
∫ tf

ti

√

1− ~v 2

c2
(18)

Thus the relativistic Lagrangian is

L = mc2
√

1− ~v 2

c2
(19)

and, as a power series expansion, it contains all powers of ~v 2/c2.
Once the Lagrangian is found, the classical equations of motion are deter-

mined by the Least Action Principle. Thus, we construct the action S

S =

∫

dt L

(

q,
∂q

∂t

)

(20)

and demand that the physical trajectories q(t) leave the action S stationary,i.e.,
δS = 0. The variation of S is

δS =

∫ tf

ti

dt

(

∂L

∂q
δq +

∂L

∂ dq
dt

δ
dq

dt

)

(21)

Integrating by parts, we get

δS =

∫ tf

ti

dt
d

dt

(

∂L

∂ dq
dt

δq

)

+

∫ tf

ti

dt δq

[

∂L

∂q
− d

dt

(

∂L

∂ dq
dt

)]

⇒ δS =
∂L

∂ dq
dt

δq |tf

ti
+

∫ tf

ti

dt δq

[

∂L

∂q
− d

dt

(

∂L

∂ dq
dt

)]

(22)
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If we assume that the variation δq is an arbitrary function of time that vanishes
at the initial and final times ti and tf (δq(ti) = δq(tf ) = 0), we find that δS = 0
if and only if the integrand vanishes identically. Thus,

∂L

∂q
− d

dt

(

∂L

∂ dq
dt

)

= 0 (23)

These are the equations of motion or Newton’s equations. In general the equa-
tions that determine the trajectories which leave the action stationary are called
the Euler-Lagrange equations.

2.3 Scalar Field Theory

For the case of a field theory, we can proceed very much in the same way. Let
us consider first the case of a scalar field Φ(x). The action S must be invariant
under Lorentz transformations. Since we want to construct local theories it is
natural to assume that S is determined by a Lagrangian density L

S =

∫

d4x L (24)

Since the volume element of Minkowski space d4x is invariant, L can only be a
local, differentiable function of Lorentz invariants that can be constructed out
of the field Φ(x). Simple invariants are Φ(x) itself and all of its powers. The
gradient ∂µΦ ≡ ∂Φ

∂xµ
is not an invariant but the D’alambertian ∂2Φ is. ∂µΦ∂µΦ

is also an invariant under a change of the sign of Φ. So, we can write the
following simple expression for L:

L =
1

2
∂µΦ∂µΦ− V (Φ) (25)

where V (Φ) is some potential (a polynomial function of Φ). Let us consider the
simple choice

V (Φ) =
1

2
m̄2Φ2 (26)

where m̄ = mc/~. Thus,

L =
1

2
∂µΦ∂µΦ− 1

2
m̄2Φ2 (27)

This is the Lagrangian density for a free scalar field. We will discuss later on in
what sense this field is “free”. Notice, in passing, that we could have added a
term like ∂2Φ. However this term, in addition of being odd under Φ → −Φ, is
a total divergence and, as such, it has an effect only on the boundary conditions
but it does not affect the equations of motion. In what follows will will not
consider surface terms.
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The Least Action Principle requires that S be stationary under arbitrary
variations of the field Φ and of its derivatives ∂µΦ. Thus, we get

δS =

∫

d4x

[
δL
δΦ

δΦ +
δL
δ∂µΦ

δ∂µΦ

]

(28)

Notice that since L is a functional of Φ, we have to use functional derivatives,
i.e., partial derivatives at each point of space-time. Upon integrating by parts,
we get

δS =

∫

d4x ∂µ

(
δL
δ∂µΦ

δΦ

)

+

∫

d4x δΦ

[
δL
δΦ
− ∂µ

(
δL
δ∂µΦ

)]

(29)

Instead of considering initial and final conditions, we now have to imagine that
the field Φ is contained inside some very large box of space-time. The term
with the total divergence yields a surface contribution. We will consider field
configurations such that δΦ = 0 on that surface. Thus, the Euler-Lagrange
equations are

δL
δΦ
− ∂µ

(
δL
δ∂µΦ

)

= 0 (30)

More explicitly, we find
δL
δΦ

= −∂V
∂Φ

(31)

and
∂L
δ∂µΦ

= ∂µΦ⇒ ∂µ
δL
δ∂µΦ

= ∂µ∂
µΦ = ∂2Φ (32)

By direct substitution we get the equation of motion (or field equation)

∂2Φ +
∂V

∂Φ
= 0 (33)

For the choice

V (Φ) =
m̄2

2
Φ2 ⇒ ∂V

∂Φ
= m̄2Φ (34)

the field equation is
(

+ m̄2
)
Φ = 0 (35)

where ≡ ∂2 = 1
c2

∂2

∂t2 −▽2. Thus, we find that the equation of motion for the
free massive scalar field Φ is

1

c2
∂2Φ

∂t2
−▽2Φ + m̄2Φ = 0 (36)

This is precisely the Klein-Gordon equation if the constant m̄ is identified with
mc
~

. Indeed, the plane-wave solutions of these equations are

Φ = Φ0e
i(p0x0−~p·~x) (37)
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where p0 and ~p are related through the dispersion law

p2
0 = ~p 2c2 +m2c4 (38)

which means that, for each momentum ~p, there are two solutions, one with
positive frequency and one with negative frequency. We will see below that, in
the quantized theory, the energy of the excitation is indeed equal to |p0|. Notice
that 1

m̄ = ~

mc has units of length and it is equal to the Compton wavelength
for a particle of mass m. From now on (unless it stated the contrary) I will use
units in which ~ = c = 1 in which m = m̄.

The Hamiltonian for a classical field is found by a straightforward gener-
alization of the Hamiltonian of a classical particle. Namely, one defines the
canonical momentum Π(x), conjugate to the field (the “coordinate ”) Φ(x),

Π(x) =
δL

δΦ̇(x)
(39)

where

Φ̇(x) =
∂Φ

∂x0
(x) (40)

In Classical Mechanics the Hamiltonian H and the Lagrangian L are related by

H = pq̇ − L (41)

where q is the coordinate and p the canonical momentum conjugate to q. Thus,
for a scalar field theory the Hamiltonian density H is

H = Π(x)Φ̇(x) − L

=
1

2
Π2(x) +

1

2

(

~▽Φ(x)
)2

+ V (Φ(x))

(42)

For a free massive scalar field the Hamiltonian is

H =
1

2
Π2(x) +

1

2

(

~▽Φ(x)
)2

+
m2

2
Φ2(x) ≥ 0 (43)

which is always a positive definite quantity. Thus, the energy of a plane wave
solution of a massive scalar field theory (i.e., a solution of the Klein-Gordon
equation) is always positive, no matter the sign of the frequency. In fact, the
lowest energy state is simply Φ = constant. A solution made of linear superpo-
sitions of plane waves (i.e., a wave packet) has positive energy. Therefore, in
Field Theory, the energy is always positive. We will see that, in the quantized
theory, the negative frequency solutions are identified with antiparticle states
and their existence do not signal a possible instability of the theory.
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2.4 Classical Field Theory in the Canonical (Hamiltonian)
Formalism

In Classical Mechanics it is often convenient to use the canonical formulation
in terms of a Hamiltonian instead of the Lagrangian approach. For the case
of a system of particles, the canonical formalism proceeds as follows. Given a
Lagrangian L(q, q̇), a canonical momentum p is defined to be

∂L

∂q̇
= p (44)

The classical Hamiltonian H(p, q) is defined by the Legendre transformation

H(p, q) = pq̇ − L(q, q̇) (45)

If the Lagrangian L is quadratic in the velocities q̇ and separable

L =
1

2
mq̇2 − V (q) (46)

then, H(pq̇) is simply given by

H(p, q) = pq̇ − (
mq̇2

2
− V (q)) =

p2

2m
+ V (q) (47)

where

p =
∂L

∂q̇
= mq̇ (48)

H is identified with the total energy of the system.
In this language, the Least Action Principle becomes

δS = δ

∫

L dt = δ

∫

[pq̇ −H(p, q)] dt = 0 (49)

Hence ∫

dt

(

δp q̇ + p δq̇ − δp ∂H
∂p
− δq ∂H

∂q

)

= 0 (50)

Upon an integration by parts we get
∫

dt

[

δp

(

q̇ − ∂H

∂p

)

+ δq̇

(

−∂H
∂q
− ṗ
)]

= 0 (51)

which can only be satisfied if

q̇ =
∂H

∂p
ṗ = −∂H

∂q
(52)

These are Hamilton’s equations.
Let us introduce the Poisson Bracket {A,B}qp of two functions A and B of

q and p by

{A,B}qp ≡
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
(53)
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Let F (q, p, t) be some differentiable function of q, p and t. Then the total time
variation of F is

dF

dt
=
∂F

∂t
+
∂F

∂q

dq

dt
+
∂F

∂p

dp

dt
(54)

Using Hamilton’s Equations we get the result

dF

dt
=
∂F

∂t
+
∂F

∂q

∂H

∂p
− ∂F

∂p

∂H

∂q
(55)

or, in terms of Poisson Brackets,

dF

dt
=
∂F

∂t
+ {F,H, }qp (56)

In particular,
dq

dt
=
∂H

∂p
=
∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q
= {q,H}qp (57)

since
∂q

∂p
= 0 and

∂q

∂q
= 1 (58)

Also the total rate of change of the canonical momentum p is

dp

dt
=
∂p

∂q

∂H

∂p
− ∂p

∂p

∂H

∂q
≡ −∂H

∂q
(59)

since ∂p
∂q = 0 and ∂p

∂p = 1. Thus,

dp

dt
= {p,H}qp (60)

Notice that, for an isolated system, H is time-independent. So,

∂H

∂t
= 0 (61)

and
dH

dt
=
∂H

∂t
+ {H,H}qp = 0 (62)

since
{H,H}qp = 0 (63)

Therefore, H can be regarded as the generator of infinitesimal time translations.
In passing, let us also notice that the above definition of the Poisson Bracket
implies that q and p satisfy

{q, p}qp = 1 (64)

This relation is fundamental for the quantization of these systems.
Much of this formulation can be generalized to the case of fields. Let us first

discuss the canonical formalism for the case of a scalar field Φ with Lagrangian
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density L(Φ, ∂µ,Φ). We will choose Φ(x) to be the (infinite) set of canonical

coordinates. The canonical momentum Π(x) is defined by

Π(x) =
δL

δ∂0Φ(x)
(65)

If the Lagrangian is quadratic in ∂µΦ, the canonical momentum Π(x) is simply
given by

Π(x) = ∂0Φ(x) ≡ Φ̇(x) (66)

The Hamiltonian density H(Φ,Π) is a local function of Φ(x) and Π(x) given by

H(Φ,Π) = Π(x) ∂0Φ(x) − L(Φ, ∂0Φ) (67)

If the Lagrangian density L has the simple form

L =
1

2
(∂µΦ)2 − V (Φ) (68)

then, the Hamiltonian density H(Φ,Π) is

H = ΠΦ̇− L(Φ, Φ̇,▽jΦ) ≡ 1

2
Π2(x) +

1

2
(~▽Φ(x))2 + V (Φ(x)) (69)

The canonical field Φ(x) and the canonical momentum Π(x) satisfy the equal-
time Poisson Bracket (PB) relations

{Φ(~x, x0),Π(~y, x0)}PB = δ(~x− ~y) (70)

where δ(~x) is the Dirac δ-function and {A,B}PB is now

{A,B}PB =

∫

d3x

[
δA

δΦ(~x, x0)

δB

δΠ(~x, x0)
− δA

δΠ(~x, x0)

δB

δΦ(~x, x0)

]

(71)

for any two functionals A and B of Φ(x) and Π(x). This approach can be
extended to theories other than that of a scalar field without too much difficulty.
We will come back to these issues when we consider the problem of quantization.

2.5 Field Theory of the Dirac Equation

We now turn to the problem of a field theory for spinors. Let us rewrite the
Dirac equation

i~
∂Ψ

∂t
=

~c

i
~α · ~▽Ψ + βmc2 Ψ ≡ HDiracΨ (72)

in a manner in which relativistic covariance is apparent. The operator HDirac

defines the Dirac Hamiltonian.
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We first recall that the 4× 4 hermitean matrices ~α and β should satisfy the
algebra

{αi, αj} = 2δij1

{αi, β} = 0

α2
i = β2 = 1

(73)

A simple realization of this algebra is given by the 2× 2 block (Dirac) matrices

αi =

(
0 σi

σi 0

)

β =

(
I 0
0 −I

)

(74)

where the σi’s are the Pauli matrices

σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)

(75)

and I is the 2 × 2 identity matrix. This is the Dirac representation of the
Dirac algebra. It is now convenient to introduce the Dirac γ-matrices which are
defined by the following relations:

γ0 = β γi = βαi (76)

Thus, the matrices γµ are

γ0 = β =

(
I 0
0 −I

)

γi =

(
0 σi

−σi 0

)

(77)

and obey the algebra
{γµ, γν} = 2gµν 1 (78)

In terms of the γ-matrices, the Dirac equation takes the much simpler form

(iγµ∂µ −
mc

~
)Ψ = 0 (79)

where Ψ is a 4-spinor. It is also customary to introduce the notation (Feynman’s
slash)

/a ≡ aµγ
µ (80)

Using Feynman’s slash, we can write the Dirac equation in the form

(i/∂ − mc

~
)Ψ = 0 (81)

From now on I will use units in which ~ = c = 1. Thus energy is measured in
units of (length)−1 and time in units of length.

Notice that, if Ψ satisfies the Dirac equation, then

(i/∂ +m)(i/∂ −m)Ψ = 0 (82)
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Also,

/∂ · /∂ = ∂µ∂νγ
µγν = ∂µ∂ν

(
1

2
{γµ, γν}+

1

2
[γµγν ]

)

= ∂µ∂νg
µν = ∂2

(83)

where I used the fact that the commutator [γµ, γν ] is antisymmetric with indices
µ and ν. Thus, Ψ satisfies the Klein-Gordon equation

(
+m2

)
Ψ = 0 (84)

with = ∂2.

2.5.1 Solutions of the Dirac Equation

Let us briefly discuss the properties of the solutions of the Dirac equation. Let us
first consider solutions representing particles at rest. Thus Ψ must be constant
in space and all its space derivatives must vanish. The Dirac equation becomes

iγ0 ∂Ψ

∂t
= mΨ (85)

where t = x0 (c = 1). Let us introduce the bispinors φ and χ

Ψ =

(
φ
χ

)

(86)

We find that the Dirac equation reduces to a simple system of two 2×2 equations

i
∂φ

∂t
= +mφ

i
∂χ

∂t
= −mχ

(87)

The solutions are

φ1 = e−imt

(
1
0

)

φ2 = e−imt

(
0
1

)

(88)

and

χ1 = eimt

(
1
0

)

χ2 = eimt

(
0
1

)

(89)

Thus, the upper component φ represents the solutions with positive energy
while χ represents the solutions with negative energy. The additional two-fold
degeneracy of the solutions is connected to the spin of the particle.
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More generally, in terms of the bispinors φ and χ the Dirac Equation takes
the form,

i
∂φ

∂t
= mφ+

1

i
~σ · ~▽χ (90)

i
∂χ

∂t
= −mχ+

1

i
~σ · ~▽φ (91)

In the limit c → ∞, it reduces to the Schrödinger-Pauli equation. The slowly
varying amplitudes φ̃ and χ̃, defined by

φ = e−imtφ̃

χ = e−imtχ̃ (92)

with χ̃ small and nearly static, define positive energy solutions with energies
close to +m. In terms of φ̃ and χ̃, the Dirac equation becomes

i
∂φ̃

∂t
=

1

i
~σ · ~▽χ̃ (93)

i
∂χ̃

∂t
= −2mχ+

1

i
~σ · ~▽φ̃ (94)

Indeed, in this limit, the l. h. s. of Eq. 94 is much smaller than its r. h. s. . Thus
we can approximate

2mχ̃ ≈ 1

i
~σ · ~▽φ̃ (95)

We can now eliminate the “small component” χ̃ from Eq. 93 to find that φ̃
satisfies

i
∂φ̃

∂t
= − 1

2m
▽2 φ̃ (96)

which is indeed the Schrödinger-Pauli equation.

Conserved Current: Finally, let us introduce one last bit of notation. We
define Ψ̄ by

Ψ̄ = Ψ† γ0 (97)

in terms of which we can write down the 4-vector jµ

jµ = Ψ̄γµΨ (98)

which is conserved, i.e., ∂µj
µ = 0. Notice that the time component of jµ is the

density
j0 = Ψ̄γ0Ψ ≡ Ψ†Ψ (99)

and that the space components of jµ are

~j = Ψ̄~γΨ = Ψ†γ0~γΨ = Ψ†~αΨ (100)

which we can regard as a (conserved) probability current.
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2.5.2 Relativistic Covariance

Let Λ be a Lorentz transformation, Ψ(x) the spinor field in an inertial frame and
Ψ′(x′) be the Dirac spinor field in the transformed frame. The Dirac equation
is covariant if the Lorentz transformation

x′µ = Λν
µxν (101)

induces a transformation S(Λ) in spinor space

Ψ′
α(x′) = S(Λ)αβΨβ(x) (102)

such that
(

iγµ ∂

∂xµ
−m

)

αβ

Ψβ(x) = 0⇒
(

iγµ ∂

∂x′µ
−m

)

αβ

Ψ′
β(x′) = 0 (103)

Notice two important facts: (1) both the field Ψ and the coordinate x change
under the action of the Lorentz transformation, and (2) the γ-matrices and the
mass m do not change under a Lorentz transformation. Thus, the γ-matrices
are independent of the choice of a reference frame. However, they do depend
on the choice of the set of basis states in spinor space.

What properties should the representation matrices S(Λ) have? Let us first
observe that if x′ = Λx, then

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
≡
(
Λ−1

)ν

µ

∂

∂xν
(104)

for
x′µ = Λµ

νx
ν (105)

Thus, ∂
∂xµ is a covariant vector. By substituting this transformation law back

into the Dirac equation, we find

iγµ ∂

∂x′µ
Ψ′(x′) = iγµ(Λ−1)ν

µ

∂

∂xν
(S(Λ)Ψ(x)) (106)

Thus, the Dirac equation now reads

iγµ
(
Λ−1

)ν

µ
S(Λ)

∂Ψ

∂xν
−mS (Λ)Ψ = 0 (107)

Or, equivalently

S−1 (Λ) iγµ
(
Λ−1

)ν

µ
S (Λ)

∂Ψ

∂xν
−mΨ = 0 (108)

This equation is covariant provided that S (Λ) satisfies

S−1 (Λ) γµS (Λ)
(
Λ−1

)ν

µ
= γν (109)

Since the set of Lorentz transformations form a group, i.e., the product of two
Lorentz transformations Λ1 and Λ2 is the new Lorentz transformation Λ1Λ2 and
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the inverse of the transformation Λ is the inverse matrix Λ−1, the representation
matrices S(Λ) should also form a group and obey the same properties. In
particular, S−1 (Λ) = S

(
Λ−1

)
must hold. Recall that the invariance of the

relativistic interval x2 = xµx
µ implies that Λ must obey

Λν
µΛλ

ν = gλ
µ ≡ δλ

µ (110)

Thus, Λν
µ =

(
Λ−1

)µ

ν
. So we write,

S (Λ) γµS (Λ)
−1

=
(
Λ−1

)µ

ν
γν (111)

Eq. 111 shows that a Lorentz transformation induces a similarity transformation
on the γ-matrices which is equivalent to (the inverse of) a Lorentz transforma-
tion. For the case of Lorentz boosts, Eq. 111 shows that the matrices S(Λ) are
hermitean. However, for the subgroup SO(3) of rotations about a fixed origin,
the matrices S(Λ) are unitary.

We will now find the form of S (Λ) for an infinitesimal Lorentz transforma-
tion. Since the identity transformation is Λµ

ν = gµ
ν , a Lorentz transformation

which is infinitesimally close to the identity should have the form

Λµ
ν = gµ

ν + ωµ
ν

(
Λ−1

)µ

ν
= gµ

ν − ωµ
ν (112)

where ωµν is infinitesimal and antisymmetric in its space-time indices

ωµν = −ωνµ

ωµν = ωµ
ρ g

ρν

(113)

Let us parameterize S (Λ) in terms of a 4× 4 matrix σµν which is also antisym-
metric in its indices, i.e., σµν = −σµν . Then, we can write

S (Λ) = I − i

4
σµνω

µν + . . .

S−1 (Λ) = I +
i

4
σµνω

µν + . . .

(114)

where I stands for the 4× 4 identity matrix. If we substitute back, we get

(I − i

4
σµνω

µν + . . .)γλ(I +
i

4
σαβω

αβ + . . .) = γλ − ωλνγν + . . . (115)

Collecting all the terms linear in ω, we find

i

4

[
γλ, σµν

]
ωµν = ωλ

νγ
ν (116)

Or, what is the same,

[γµ, σνλ] = 2i(gµ
ν γλ − gµ

λγν) (117)
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This matrix equation is solved by

σνλ =
i

2
[γν , γλ] (118)

Under a finite Lorentz transformation x′ = Λx, the 4-spinors transform as

Ψ′(x′) = S (Λ)Ψ (119)

with

S (Λ) = exp[− i
4
σµνω

µν ] (120)

The matrices σµν are the generators of the group of Lorentz transformations
in the spinor representation. While the space components σjk are hermitean

matrices, the space-time components σ0j are antihermitean. This feature is
telling us that the Lorentz group is not a compact unitary group , since in that
case all of its generators would be hermitean matrices, but that it is isomorphic
to the non-compact group SO(3, 1). Thus, the representation matrices S(Λ) are
unitary only under space rotations with fixed origin.

The linear operator S (Λ) gives the field in the transformed frame in terms
of the coordinates of the transformed frame. However, we may also wish to ask
for the transformation U (Λ) which just compensates the effect of the coordinate
transformation. In other words we seek for a matrix U (Λ) such that

Ψ′(x) = U (Λ)Ψ(x) = S (Λ)Ψ(Λ−1x) (121)

For an infinitesimal Lorentz transformation, we seek a matrix U (Λ) of the form

U (Λ) = I − i

2
Jµνω

µν + . . . (122)

We wish to find an expression for Jµν . We find

(

I − i

2
Jµνω

µν + . . .

)

Ψ = (I − i

4
σµνω

µν + . . .)Ψ (xρ − ωρ
νx

ν + . . .)

∼=
(

I − i

4
σµνω

µν + . . .

)

(Ψ− ∂ρΨ ωρ
νx

ν + . . .)

(123)

Hence

Ψ′(x) ∼=
(

I − i

2
σµνω

µν + xµω
µν∂ν + . . .

)

Ψ(x) (124)

From this expression we see that Jµν is given by the operator

Jµν =
1

2
σµν + i(xµ∂ν − xν∂µ) (125)

We easily recognize the second term as the orbital angular momentum operator
(we will come back to this issue shortly). The first term is then interpreted as
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the spin. In fact, let us consider purely spacial rotations, whose infinitesimal
generator are the space components of Jµν , i.e.,

Jjk = i(xj∂k − xk∂j) +
1

2
σjk (126)

We can also define a three component vector Jℓ as the 3-dimensional dual of Jjk

Jjk = ǫjklJℓ (127)

Thus, we get (after restoring the factors of ~)

Jℓ =
i~

2
ǫℓjk(xj∂k − xk∂j) +

~

4
ǫℓjkσjk

= i ~ ǫℓjk xj∂k +
~

2
(
1

2
ǫℓjkσjk)

Jℓ ≡
(

~x ∧ ~̂p
)

ℓ
+

~

2
σℓ

(128)

The first term is clearly the orbital angular momentum and the second term can
be regarded as the spin. With this definition, it is straightforward to check that

the spinors

(
φ
χ

)

which are solutions of the Dirac equation, carry spin one-half.

2.6 Transformation Properties of Field Bilinears in the
Dirac Theory

We will now consider the transformation properties of a number of physical
observables of the Dirac theory under Lorentz transformations. Let

x′µ = Λµ
ν x

ν (129)

be a general Lorentz transformation, and S(Λ) be the induced transformation
for the Dirac spinors ψa(x) (with a = 1, . . . , 4):

ψ′
a(x′) = S(Λ)ab ψb(x) (130)

Using the properties of the induced Lorentz transformation S(Λ) and of the
Dirac γ-matrices, is straightforward to verify that the following Dirac bilinears
obey the following transformation laws:

1.
ψ̄′(x′ ) ψ′(x′ ) = ψ̄(x) ψ(x) (131)

which transforms as a scalar.

2.
ψ̄′(x′ ) γ5 ψ

′(x′ ) = detΛψ̄(x) γ5 ψ(x) (132)

which transforms as a pseudo-scalar.
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3.
ψ̄′(x′ ) γµ ψ′(x′ ) = Λµ

ν ψ̄(x) γν ψ(x) (133)

which transforms as a vector.

4.
ψ̄′(x′ ) γ5γ

µ ψ′(x′ ) = detΛ Λµ
ν ψ̄(x) γ5γ

ν ψ(x) (134)

which transforms as a pseudo-vector.

5.
ψ̄′(x′ ) σµν ψ′(x′ ) = Λµ

α Λν
β ψ̄(x) σαβ ψ(x) (135)

which transforms as a tensor

Above we have denoted by Λµ
ν a Lorentz transformation and detΛ is its deter-

minant. We have also used that

S−1(Λ)γ5S(Λ) = detΛγ5 (136)

Thus, the Dirac algebra provides for a natural basis of the space of 4×4 matrices,
which we will denote by

ΓS ≡ I, ΓV
µ ≡ γµ, ΓT

µν ≡ γµν , ΓA
µ ≡ γ5γµ, ΓP = γ5 (137)

where S, V, T, A and P stand for scalar, vector, tensor, axial vector (or pseudo-
vector) and parity respectively. For future reference we will note here the fol-
lowing useful trace identities obeyed by products of Dirac γ-matrices

1.
trI = 4, trγµ = trγ5 = 0, trγµγν = 4gµν (138)

2. If we denote by aµ and bµ two arbitrary 4-vectors, then

/a /b = aµb
µ − iσµν a

µbν , and tr /a /b = 4a · b (139)

2.7 Lagrangian for the Dirac Equation

We now seek a Lagrangian density L for the Dirac theory. It should be a
local differentiable functional of the spinor field Ψ. Since the Dirac equation is
first order in derivatives and it is Lorentz covariant, the Lagrangian should be
Lorentz invariant and first order in derivatives. A simple choice is

L = Ψ̄(i/∂ −m)Ψ ≡ 1

2
Ψ̄i/∂

↔

Ψ−mΨ̄Ψ (140)

where Ψ̄/∂Ψ ≡ Ψ̄(/∂Ψ) − (∂µΨ̄)γµΨ. This choice satisfies all the requirements.
The equations of motion are derived in the usual manner, i.e., by demanding
that the action S =

∫
d4x L be stationary

δS = 0 =

∫

d4x [
δL
δΨα

δΨα +
δL

δ∂µΨα
δ∂µΨα + (Ψ↔ Ψ̄)] (141)
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The equations of motion are

δL
δΨα

− ∂µ
δL

δ∂µΨα
= 0

δL
δΨ̄α

− ∂µ
δL

δ∂µΨ̄α
= 0

(142)

By direct substitution we find

(i/∂ −m)Ψ = 0 (143)

and
Ψ̄(i
←−
/∂ +m) = 0 (144)

which is the adjoint of the Dirac equation. Here,
←−
/∂ indicates that the derivatives

are acting on the left.
Finally, we can also write down the Hamiltonian density that follows from the

Lagrangian of Eq. 140. As usual we need to determine the canonical momentum
conjugate to the field Ψ, i.e.,

Π(x) =
δL

δ∂0Ψ(x)
= iΨ̄(x)γ0 ≡ iΨ†(x) (145)

Thus the Hamiltonian density is

H = Π(x)Ψ(x) − L = iΨ̄γ0∂0Ψ− L
= Ψ̄i~γ · ~▽Ψ +mΨ̄Ψ

= Ψ†
(

i~α · ~▽+mβ
)

︸ ︷︷ ︸

HDirac

Ψ

(146)

Thus we discover that the “one-particle” Dirac Hamiltonian HDirac of Eq. 72
appears naturally in the field theory as well. Since this Hamiltonian is first order
in derivatives (i.e., in the “momentum), unlike its Klein-Gordon relative, it is
not manifestly positive. Thus there is a question of the stability of this theory.
We will see below that the proper quantization of this theory as a quantum
field theory of fermions solves this problem. In other words, it will be necessary
to impose the Pauli Principle for this theory to describe a stable system with
an energy spectrum that is bounded from below. In this way we will see that
there is natural connection between the spin of the field and the statistics. This
connection is known as the Spin-Statistics Theorem.

2.8 Classical Electromagnetism as a field theory

We now turn to the problem of the electromagnetic field generated by a set of
sources. Let ρ(x) and ~j(x) represent the charge density and current at a point
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x of space-time. Charge conservation requires that a continuity equation has to
be obeyed.

∂ρ

∂t
+ ~▽ ·~j = 0 (147)

Given an initial condition, i.e., the values of the electric field ~E(x) and the

magnetic field ~B(x) at some to in the past, the time evolution is governed by
Maxwell’s equations

~▽ · ~E = ρ ~▽ · ~B = 0

~▽× ~B − 1
c

∂ ~E
∂t = ~j ~▽× ~E + 1

c
∂ ~B
∂t = 0

(148)

It is possible to recast these statements in a manner in which (a) the relativistic
covariance is apparent and (b) the equations follow from a Least Action Princi-
ple. A convenient way to see the above is to consider the electromagnetic field
tensor Fµν which is the (contravariant) antisymmetric real tensor

Fµν = −F νµ =







0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0







(149)

In other words

F 0i = −F i0 = −Ei

F ij = −F ji = ǫijkBk

(150)

where ǫijk is the Levi-Civita tensor:

ǫijk =







1 if (ijk) is an even permutation of (123)
−1 if (ijk) is an odd permutation of (123)

0 otherwise
(151)

The dual tensor F̃ is defined by

F̃µν = −F̃ νµ =
1

2
ǫµνρσFρσ (152)

where ǫµνρσ is the fourth rank Levi-Civita tensor. In particular

F̃µν =





B1 0 E3 −E2

B2 −E3 0 E2

B3 E2 −E2 0



 (153)

With these notations, we can rewrite Maxwell’s equations in the manifestly
covariant form

∂µF
µν = jν (Equation of Motion)

∂µF̃
µν = 0 (Bianchi Identity)

∂µj
µ = 0 (Continuity Equation)

(154)
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At this point it is convenient to introduce the vector potential Aµ whose con-
travariant components are

Aµ(x) = (
A0

c
, ~A) ≡ (

Φ

c
, ~A) (155)

where Φ is the scalar potential, and the current 4-vector jµ(x)

jµ(x) = (ρc,~j) ≡ (j0,~j) (156)

The electric field strength ~E and the magnetic field ~B we defined to be

~E = −1

c
~▽A0 − 1

c

∂ ~A

∂t
~B = ~▽× ~A

(157)

In a more compact notation we write

Fµν = ∂µAν − ∂νAµ (158)

In terms of the vector potential Aµ, Maxwell’s equations have the following
additional symmetry

Aµ(x)→ Aµ(x) + ∂µΛ(x) (159)

(where Λ(x) is an arbitrary smooth function of space-time). It is easy to check
that, under the transformation of equation (42), the field strength remains un-
changed i.e.,

Fµν → Fµν (160)

This property is called Gauge Invariance and it plays a fundamental role in
modern physics. By directly substituting the definitions of ~B and ~E in terms of
Aµ into Maxwell’s equations, we get the wave equation. Indeed

∂µF
µν = jν ⇒ ∂µ(∂µAν − ∂νAµ) = jν (161)

which yields
Aν − ∂ν(∂µA

µ) = jν (162)

This is the wave equation. We can further use the gauge-invariance to further
restrict Aµ (without these restrictions Aµ is not completely determined). These
restrictions are known as the procedure of fixing a gauge. The choice

∂µA
µ = 0 (163)

known as the Lorentz gauge, yields the simpler wave equation

Aµ = jµ (164)
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Another “popular” choice is the radiation (or Coulomb) gauge

~▽ · ~A = 0 (165)

which yields (in units with c = 1)

Aν − ∂ν(∂0A
0) = jν (166)

In the absence of external sources (jν = 0) we can further make the choice
A0 = 0. This choice reduces the set of three equations (one for each spacial

component of ~A) which satisfy

~A = 0

~▽ · ~A = 0

(167)

The solutions are plane waves of the form

~A(x) = ~Aei(p0x0−~p·~x) (168)

which are only consistent if p2
0− ~p2 = 0 and ~p · ~A = 0. This choice is also known

as the transverse gauge.
We can also regard the electromagnetic field as a dynamical system and

construct a Lagrangian picture for it. Since Maxwell’s equations are local and
gauge invariant, we should demand that the Lagrangian density should have the
same properties. A simple choice is

L = −1

4
FµνF

µν − jµAµ + gauge fixing terms (169)

This Lagrangian density is manifestly Lorentz invariant. Gauge invariance is
satisfied if and only if jµ is a conserved current (∂µj

µ = 0) since under a gauge
transformation Aµ → Aµ + ∂µΛ(x) the field strength does not change but the
source term does.

∫

d4x jµA
µ →

∫

d4x [jµA
µ + jµ∂

µΛ]

=

∫

d4x jµA
µ +

∫

d4x ∂µ(jµΛ)−
∫

d4x ∂µjµ Λ

(170)

If the sources vanish at infinity, (lim|x|→∞ jµ = 0), the surface term can be
dropped. Thus the action S =

∫
d4xL is invariant if and only if

∂µj
µ = 0 (171)

We can now derive the equations of motion by demanding that the action S be
stationary, i.e.,

δS =

∫

d4x [
δL
δAµ

δAµ +
δL

δ∂µAµ
δ∂µAµ] = 0 (172)
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Once again, we can integrate by parts to get

δS =

∫

d4x ∂ν

[
∂L

δ∂µAµ
δAµ

]

+

∫

d4x δAµ

[
δL
δAµ

− ∂ν

(
δL

δ∂νAµ

)]

(173)

If we demand δAµ |surface= 0, we get

δL
δAµ

= ∂ν

(
δL

δ∂νAµ

)

(174)

Explicitly, we get
δL
δAµ

= −jµ (175)

and
δL

δ∂νAµ
= Fµν (176)

Thus, we find
jµ = −∂νF

µν (177)

or, equivalently
jν = ∂µF

µν (178)

Therefore, the Least Action Principle implies Maxwell’s equations.

2.9 The Landau Theory of Phase Transitions as a Field
Theory

We now turn back to the problem of the statistical mechanics of a magnet which
was introduced in the first lecture. In order to be a little more specific, we will
consider the simplest model of a ferromagnet: the classical Ising model. In
this model, one considers an array of atoms on some lattice (say cubic). Each

atom is assumed to have a net spin magnetic moment ~S. From elementary
quantum mechanics we know that the simplest interaction among the spins is
the Heisenberg exchange Hamiltonian

H = −
∑

<ij>

Jij
~S(i) · ~S(j) (179)

where < ij > are nearest neighboring sites on the lattice. In many situations in
which there is magnetic anisotropy, only the z-component of the spin operators
play a role. The Hamiltonian now reduces to the Ising case HI

HI = −J
∑

<ij>

σ(i)σ(j) ≡ E(σ) (180)

where σ(i) is the z-projection of the spin at site i.
The equilibrium properties of the system are determined by the partition

function Z

Z =
∑

{σ}

exp

(

−E(σ)

T

)

(181)
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i j

S(j)
S(i)

where T is the temperature and {σ} is the set of all spin configurations.
In the 1950’s, Landau developed a method (or rather a picture) to study

these type of problems which in general, are very difficult. Landau first pro-
posed to work not with the microscopic spins but with a set of coarse-grained

configurations. One way to do this ( this approach is actually due to Kadanoff
and Wilson) is to subdivide a large system of size L into regions or blocks of
linear size ℓ such that a0 << ℓ << L. Each one of these regions will be cen-
tered around a site, say ~x. We will denote such a region by A(~x). The idea is
now to perform the sum, i.e., the partition function Z, while keeping the total
magnetization of each region M(~x) fixed

M(~x) =
1

N [A]

∑

y∈A(~x)

σ(~y) (182)

where N [A] is the number of sites in A(~x). The restricted partition function is
now a functional of M(~x).

Z[M ] =
∑

{σ}

exp{−E(σ)

T
}
∏

~x

δ



M(~x)− 1

N(A)

∑

~y∈A(x)

σ(~y)



 (183)

The variables M(~x) have the property that, for N(A) very large, they take
values on the real numbers. Also, the configurations {M(~x)} are much more
smooth than the configurations {σ}.
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At very high temperatures the average magnetization < M > is zero since
the system is paramagnetic. On the other hand, if the temperature is low, the
average magnetization may be non-zero since the system may now be ferro-
magnetic. Thus, at high temperatures the partition function Z is dominated
by configurations which have < M >= 0 while at very low temperatures, the
most frequent configurations have < M > 6= 0. Landau proceeded to write down
an approximate form for the partition function in terms of sums over smooth,
continuous, configurations M(~x) which can be represented in the form

Z ≈
∫

DM(~x) exp[−E (M(~x), T )

T
] (184)

where DM(~x) is a measure which means “sum over configurations.” If the rel-
evant configurations are smooth and small, the energy functional E(M) can be
written as an expansion in powers of M(~x) and of its space derivatives. This is
the Landau-Ginzburg (LG) form of the energy and it is given by

F (M) ≡ ELG(M)

T

=

∫

ddx

[
1

2
K(T )|~▽M(~x)|2 +

a(T )

2
M2(~x) +

b(T )

4!
M4(~x) + . . .

]

(185)

Thermodynamic stability requires that the stiffness K(T ) and the non-linearity
coefficient b(T ) be positive. The second term has a coefficient a(T ) with can
have either sign. A simple choice of parameters is

K(T ) ≈ K0

b(T ) ≈ b0

a(T ) ≈ ā(T − Tc)

(186)

where Tc is an approximation to the critical temperature.
The free energy F (M) defines a Classical (or Euclidean) Field Theory. In

fact, by rescaling the field M(x) in the form

Φ(x) =
√
KM(x) (187)

we can write the free energy as

F (Φ) =

∫

ddx

{
1

2
(~▽Φ)2 + U(Φ)

}

(188)

where the potential U(Φ) is

U(Φ) =
m̄2

2
Φ2 +

λ

4!
Φ4 + . . . (189)
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where m̄2 = a(T )
K and λ = b

K2 . Except for the absence of the term involving the
canonical momentum Π2(x), F (Φ) has a striking resemblance to the Hamiltonian

of a scalar field in Minkowski space! We will see below that this is not an
accident.

U( )

0

T>T

T<T

0

0

Φ

Φ

Φ

Let us now ask the following question: is there a configuration Φc(~x) which
gives the dominant contribution to the partition function Z? If so, we should
be able to approximate

Z =

∫

DΦ exp{−F (Φ)} ≈ exp{−F (Φc)}{1 + · · · } (190)

This statement is usually called the Mean Field Approximation. Since the inte-
grand is an exponential, the dominant configuration Φc must be such that F has
a (local) minimum at Φc. Thus, configurations Φc which leave F (Φ) stationary

are good candidates (we actually need local minima!). The problem of finding
extrema is simply the condition δF = 0. This is the same problem we solved
for classical Field Theory in Minkowski space. Notice that in the derivation of
F we have invoked essentially the same type of arguments: (a) invariance and
(b) differentiability. The Euler-Lagrange equations can be derived by using the
same arguments that we employed in the context of a scalar field theory. In the
case at hand they are

− δF

δΦ(~x)
+▽j

δF

δ▽j Φ(~x)
= 0 (191)
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For the case of the Landau theory we get

0 = −▽2 Φc(~x) + m̄2Φc(~x) +
λ

3!
Φ3

c(~x) (192)

The solutions Φc(x) that minimize the energy are uniform in space and thus
have ▽jΦc = 0. Hence, Φc is the solution of the very simple equation

m̄2Φc +
λ

3!
Φ3

c = 0 (193)

Since λ is positive and m̄2 may have either sign, depending on whether T > Tc

or T < Tc, we have to explore both cases.
For T > Tc, m̄

2 is also positive and the only real solution is Φc = 0. This is
the paramagnetic state. But, for T < Tc, m̄

2 is negative and two new solutions
are available, namely

Φc = ±
√

6 | m̄2 |
λ

(194)

These are the solutions with lowest energy and they are degenerate. They both
represent the magnetized state.

We now must ask if this procedure is correct, or rather when can we expect
this approximation to work. It is correct T = 0 and it will also turn out to be
correct at very high temperatures. The answer to this question is the central
problem of the theory of Critical Phenomena which describes the behavior of
statistical systems in the vicinity of a continuous (or second order) phase tran-
sitions. It turns out that this problem is also connected with a central problem
of Quantum Field theory, namely when and how is it possible to remove the
singular behavior of perturbation theory , and in the process remove all depen-
dence on the short distance (or high energy) cutoff from physical observables.
In QFT this procedure amounts to a definition of the continuum limit. The
answer to these questions motivated the development of the Renormalization
Group which solved both problems simultaneously. It will be a central theme
in Physics 583.

2.10 Analytic Continuation: Classical Field Theory and
Classical Statistical Mechanics.

We are now going to discuss a mathematical “trick” which will allow us to
connect field theory with classical statistical mechanics. Let us go back to the
action for a real scalar field Φ(x) in D = d+ 1 space-time dimensions

S =

∫

dDx L(Φ, ∂µΨ) (195)

where dDx is
dDx ≡ dx0d

dx (196)
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Let us formally carry out the analytic continuation of the time component x0

of xµ from real to imaginary time xD

x0 → −ixD (197)

under which
Φ(x0, ~x)→ Φ(~x, xD) ≡ Φ(x) (198)

where x = (~x, xD). Under this transformation, the action (or rather i times the
action) becomes

iS ≡ i
∫

dx0 d
dx L(Φ, ∂0Ψ,▽jΦ)→

∫

dDx L(Φ,−i∂DΦ,▽jΦ) (199)

If L has the form

L =
1

2
(∂µΦ)2 − V (Φ) ≡ 1

2
(∂0Φ)2 − 1

2
(~▽Φ)2 − V (Φ) (200)

then the analytic continuation yields

L(Φ,−i∂DΨ,▽Φ) = −1

2
(∂DΦ)2 − 1

2
(~▽Φ)2 − V (Φ) (201)

Then we can write

iS(Φ, ∂µΦ) −−−−−−−−→
x0 → −ixD

−
∫

dDx

[
1

2
(∂DΦ)2 +

1

2
(~▽Φ)2 + V (Φ)

]

(202)

This expression has the same form as (minus) the potential energy E(Φ) for a
classical field Φ in D = d+ 1 space dimensions. However it is also the same as
the energy for a classical statistical mechanics problem in the same number of
dimensions i.e., the Landau-Ginzburg free energy of the last section.

In Classical Statistical Mechanics, the equilibrium properties of a system
are determined by the partition function. For the case of the Landau theory of
phase transitions the partition function is

Z =

∫

DΦ e−E(Φ)/T (203)

where the symbol “
∫
DΦ” means sum over all configurations (we will discuss

the definition of the “measure” DΦ later on). If we choose for energy functional
E(Φ) the expression

E(Φ) =

∫

dDx

[
1

2
(∂Φ)2 + V (Φ)

]

(204)

where
(∂Φ)2 ≡ (∂DΦ)2 + (~▽Φ)2 (205)
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we see that the partition function Z is formally the analytic continuation of

Z =

∫

DΦ eiS(Φ, ∂µΦ)/~ (206)

where we have used ~ which has units of action (instead of the temperature).
What is the physical meaning of Z? This expression suggests that Z should

have the interpretation of a sum of all possible functions Φ(~x, t) (i.e., the
histories of the configurations of the field Φ) weighed by the phase factor
exp{ i

~
S(Φ, ∂µΦ)}. We will discover later on that if T is identified with the

Planck constant ~ ( which is dimensionally consistent), then Z represents the
path-integral quantization of the field theory! Notice that the semiclassical limit
~ → 0 is formally equivalent to the low temperature limit of the statistical me-
chanical system.

The analytic continuation procedure that we just discussed is known un-
der the name of a Wick rotation. It amounts to a passage from D = d + 1-
dimensional Minkowski space to a D-dimensional Euclidean space. We will find
that this analytic continuation is a very powerful tool. As we will see below, a
number of difficulties will arise when the theory is defined directly in Minkowski
space. Primarily, the problem is the presence of ill-defined integrals which are
given precise meaning by a deformation of the integration contours from the real
time ( or frequency) axis to the imaginary time (or frequency) axis. The defor-
mation of the contour amounts to a definition of the theory in Euclidean rather
than in Minkowski space. It is an underlying assumption that the analytic con-
tinuation can be carried out without difficulty. Namely, the assumption is that
the result of this procedure is unique and that, whatever singularities may be
present in the complex plane, they do not affect the result. It is important to
stress that the success of this procedure is not guaranteed. However, in almost
all the theories that we know of, this assumption seems to hold. The only case
in which problems are known to exist is the theory of Quantum Gravity (which
we will not discuss here).
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