
10 Observables and Propagators

In the past lectures we have considered the properties of a number of field the-
ories that describe physical systems isolated from the outside world. However,
the only way to investigate the properties of a physical system is to interact with
it. Thus, we must consider physical systems which somehow are coupled to their
surroundings. We will have two situations in mind. In one case, we will look at
the problem of the interaction of states of an isolated system, i.e., a scattering
problem. In this case we prepare states (or wave packets) which are sufficiently
far apart so that their mutual interactions can be neglected. The prototype
is the scattering of particles off a target or each other in a particle accelerator
experiment. Here the physical properties are encapsulated in a suitable set of
cross sections. In the second case we will imagine that we want to understand
that properties of a large system “from outside”, and we will consider the role of
small external perturbations. Here we will develop a general approach, known
as Linear Response Theory. We will couch our results in terms of a suitable set
of susceptibilities. This is the typical situation of interest in an experiment in a
condensed matter system.

In both cases, all quantities of physical interest will be derived from a suitably
defined Green function or propagator. Our task will be twofold. First we will
determine the general expected properties of the propagators, in particular their
analytic properties. Second we will see that their analytic properties largely
determine the behavior of cross sections and susceptibilities.

10.1 The Propagator in Electrodynamics

In a Classical Field Theory, such as Classical Electrodynamics, we can inves-
tigate the properties of the electromagnetic field by considering the effect of a
set of well localized external sources. These can be electric charges or, more
generally, some well defined distribution of electric currents. The result is fa-
miliar to us: the external currents set up a radiation field which propagates in
space, a propagating electromagnetic field. In Maxwell’s electrodynamics these
effects are described by Maxwell’s equations, i.e., the equations of motion of
the electromagnetic field in the presence of a current distribution jµ(x)

∂2 Aµ(x) = jµ(x) (1)

where we have assumed the Lorentz gauge condition (∂µA
µ = 0), i.e., the wave

equation.
In Classical Electrodynamics the solutions to this equation is found by using

of the Green Function G(x, x′),

∂2
xG(x, x′) = δ4(x− x′) (2)

which satisfies the boundary condition that

G(x, x′) = 0 if x0 < x′
0 (3)
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This is the retarded Green Function, and it vanishes for events in the past (i.e.,
for x0 < x′0).

The wave equations in the presence of a set of currents jµ(x) is an inhomo-
geneous partial differential equation (p. d. e. ). For times in the remote past
(i.e., before any currents were present) there should be no electromagnetic field
present. The choice of retarded boundary conditions guarantees that the system
be causal. The solution to the inhomogeneous p.d.e. is, as usual, the sum of
an arbitrary solution of the homogenous equation, Aµ

in, which represents a pre-
existing electromagnetic field, and a particular solution of the inhomogeneous
field equation. We write the general solution in the form

Aµ(x) = Aµ
in(x) +

∫
d4x′GR(x− x′)jµ(x′) (4)

where Aµ
in(x) is a solution of the wave equation in free space (in the absence of

sources),
∂2Aµ

in(x) = 0 (5)

Thus, all we need to know is the Green Function. Notice that the choice of
retarded boundary conditions insures that, for x0 < x′0, A

µ(x) = Aµ
in(x), since

GR(x − x′) = 0 for x0 < x′0.
Let us solve for the Green Function G(x, x′). This is most easily done by

considering the Fourier transform of G(x, x′)

G(x, x′) =

∫
d4p

(2π)4
eip · (x − x′)G̃(p) (6)

where p ≡ pµ and p · x ≡ p0x0 − ~p · ~x. It is easy to check that the Fourier
transform G̃(p) should be given by

G̃(p) = − 1

p2
(7)

But we have two problems now. First, G̃(p) has a singularity at p2 ≡ p2
0−~p2 = 0,

i.e., at the eigenfrequencies of the normal modes of the free electromagnetic field
p0 = ±|~p |. Thus the integral is ill-defined and some definition must be given
about what to do with the singularity. Second, this G(x, x′) does not satisfy
(at least not in any obvious way) the boundary conditions. We will solve both
problems simultaneously. Let us define the Retarded Green Function by

GR(x, x′) ≡ Θ(x0 − x′0)G(x, x′) (8)

where

Θ(x) =

{
1 x ≥ 0
0 x < 0

(9)

Therefore, GR(x, x′) vanishes for x0 < x′0 and is equal to G(x− x′) for x0 > x′0.
The step (Heaviside) function Θ(x) has the formal integral representation (a
Fourier transform)

Θ(x) = lim
ǫ→0+

1

2πi

∫ +∞

−∞

dω
eiωx

ω − iǫ
(10)

2



where the integral is interpreted as a contour integral over the contours of Fig.
1. Thus, when closing the contour as in the case x < 0, the contour does not

Im ω

Re ω

iǫ

x > 0

x < 0

Figure 1: Contour in the complex plane that defines the function Θ(x).

contain the pole and the integral vanishes. Conversely, for x > 0, we close the
contour on a large arc in the upper half plane and pick up a contribution from
the enclosed pole equal to the residue, e−ǫx which converges to 1 as ǫ → 0+.
Notice that the integral on the large arc in the upper half plane converges to
zero (for arcs with radius R → ∞) only if x > 0.

We define the retarded Green functionGR(x−x′) by the following expression,

GR(x− x′) = −i lim
ǫ→0+

∫
d4p

(2π)4
e−ip · (x− x′)

(p0 + iǫ)2 − ~p 2
(11)

which satisfies all of the requirements. We can also define the advanced Green

function GA(x− x′) which vanishes in the future, but not in the past,

GA(x− x′) = 0 x0 − x′0 > 0 (12)

by changing the sign of ǫ, i.e.,

GA(x− x′) = −i lim
ǫ→0+

∫
d4p

(2π)4
e−ip · (x− x′)

(p0 − iǫ)2 − ~p 2
(13)
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+|~p|−|~p|

Im p0

Re p0

x′0 > x0

x′0 < x0

Figure 2: Contour in the complex plane that defines retarded Green function.

Now the poles are on the upper half-plane and we get zero for x′0 − x0 > 0 but
we pick up the poles for x′0 − x0 < 0 when we close on the lower half plane.

There are still two other possible choices of contours, such as the one shown
in figure 3. In this case, when we close on the contour γ+ in the upper-half
plane, we pick up the pole at −|~p | and the resulting frequency integral is

∮

γ+

dp0

2πi

e−ip · (x− x′)

p2
0 − ~p 2

=
ei~p · (~x− ~x ′) + i|~p |(x0 − x′0)

2(−|~p |) x0 < x′0 (14)

while in the opposite case we get

∮

γ−

dp0

2πi

e−ip · (x− x′)

p2
0 − ~p 2

= −e
i~p · (~x− ~x ′) − i|~p |(x0 − x′0)

2|~p | x0 > x′0 (15)

Thus, this choice the contour yields the Green function

GF (x− x′) = −
∫

d3p

(2π)32|~p |
{

Θ(x′0 − x0) e
−i|~p |(x′0 − x0) + i~p · (~x− ~x ′)

+Θ(x0 − x′0)e
+i|~p |(x′0 − x0) − i~p · (~x − ~x ′)

}

(16)
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Im p0

Re p0

γ+

γ−

+|~p|

−|~p|

x′0 > x0

x′0 < x0

Figure 3: Contour in the complex plane that defines Feynman propagator,or
time ordered Green function.

which is known as the Feynman Green function and it bears a close formal
resemblance to the mode expansions of free field theory. We will see below that
there is indeed a reason for that. Notice that, in Maxwell’s theory the zero
component for the 4-momentum p0 is equal to |~p |, and that the integration
measure is Lorentz invariant. Also notice that this Feynman propagator or
Green function propagates the positive frequency modes forward in time and the
negative frequency modes backward in time. The alternative choice of contour
simply yields the negative of GF (x− x′).

10.2 The Propagator in Non-relativistic Quantum Me-

chanics

In non-relativistic quantum mechanics, the motion of quantum states is governed
by the Schrödinger Equation

(i~∂t −H)ψ = 0 (17)

where H = H0 + V . Let V be some position and time-dependent potential
which vanishes (very slowly) both in the remote past (t → −∞) and in the
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remote future (t → +∞). In this case, the eigenstates of the system are, in
both limits, eigenstates of H0. If V (x, t) varies slowly with time, the states of H
evolve smoothly, or adiabatically. Thus, we are describing scattering processes

between free particle states Let F (x′t′|xt) denote the amplitude

time

space

incoming wave

outgoing wave

scattering

region

Figure 4: A scattering process.

F (x′t′|xt) ≡ 〈x′t′|xt〉 (18)

We have already introduced this amplitude when we discussed the path integral
picture of Quantum Mechanics.

Let us suppose that at some time t the system has is in the state |ψ(t)〉 = |xt〉.
At some time t′ > t, the state of the system is |ψ, t′〉 which is obtained by solving
the Schrödinger equation

i~∂t|ψ〉 = H |ψ〉 (19)

where H is, in general, time-dependent. The formal solution of this equation is

|ψ(t′)〉 = T e
− i

~

∫ t′

t

dt′′H(t′′)
|ψ(t)〉 (20)
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where T is the time ordering symbol, i.e.,

T e

−i
~

∫ t′

t

dt′′H(t′′)
≡

∞∑

n=0

1

n!

(−i
~

)n ∫ t′

t

dt1 . . .

∫ tn−1

t

dtnH(t1) . . .H(tn)

(21)
Thus, the amplitude F (x′t′|xt) is

F (x′t′|xt) = 〈x′t′|xt〉 ≡ 〈x′|ψ(t′)〉 (22)

Hence, if the initial state |ψ(t)〉 is |ψ(t)〉 = |x〉 we get

F (x′t′|xt) = 〈x′|T e
− i

~

∫ t′

t

dt′′H(t′′)
|x〉 (23)

For the case of an arbitrary initial state |ψ(t)〉 we get

〈x′|ψ(t′)〉 = 〈x′| e
− i

~

∫ t′

t

dt′′H(t′′)
|ψ(t)〉 (24)

Since the states {|x >} are complete, we have the completeness relation

1 =

∫
dx|x〉〈x| (25)

which allows us to write

〈x′|ψ(t′)〉 =

∫ +∞

−∞

dx′〈x′| e
− i

~

∫ t′

t

dt′′H(t′′)
|x〉〈x|ψ(t)〉 (26)

so, we get

ψ(x′, t′) =

∫ +∞

−∞

dx′〈x′t′|xt〉ψ(x, t) (27)

In other words, the amplitude F (x′t′, xt) is the kernel of the time evolution for
arbitrary states. The amplitude F (x′t′|xt) is known as the Schwinger function.

The initial state |ψ(t)〉 and the final state |ψ(t′)〉 are connected by the evo-

lution operator U(t′, t)

U(t′, t) ≡ T e
− i

~

∫ t′

t

dt′′H(t′′)
(28)

which is unitary since, as a result of the Hermiticity of the Hamiltonian, we have

U †(t′, t) = T e

i

~

∫ t′

t

dt′′H(t′′)

= T e
− i

~

∫ t

t′
dt′′H(t′′)

= U(t, t′)

(29)
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Be definition U(t, t′) is the inverse of U(t′, t) since it involves the states back-

wards in time. In addition, the operator U(t′, t) obeys the initial condition

lim
t′→t

U(t′, t) = I (30)

where I is the identity operator. If the Hamiltonian is time-independent, the
evolution operator is

U(t′, t) = T e
− i

~

∫ t′

t

dt′′H(t′′)
= e

− i

~
H(t′ − t)

(31)

These ideas will also allow us to introduce the Scattering Matrix (or S-Matrix).
If ψi(x, t) is some initial state and ψf (x′, t′) is some final state, the matrix
elements of the S-matrix between states ψi and ψf , Sfi are obtained by evolving
the state ψi up to time t′ and projecting it onto the state ψf . Namely

Sfi = lim
t′→+∞

lim
t→−∞

∫
dx

∫
dx′ψ∗

f (x′t′)〈x′t′|xt〉ψi(x, t) (32)

Let us define the Green function or propagator G(x′t′|xt)

G(x′t′|xt) ≡ − i

~
Θ(t′ − t)〈x′t′|xt〉 =

−i
~

Θ(t′ − t)F (xt′|xt) (33)

It satisfies the equation

(i~∂t′ −H(x′))G(x′t′|xt) = δ(x− x′)δ(t− t′) (34)

with the boundary condition

G(x′t′|xt) = 0 if t′ < t (35)

Hence G(x′t′|xt) is the retarded propagator.
In terms of G, the S-matrix is given by (recall that t′ > t)

Sfi = i lim
t′→+∞

lim
t→−∞

∫
dx

∫
dx′ψ∗

f (x′, t′)G(x′t′|xt)ψi(x, t) (36)

Let us consider now the case of a free particle with Hamiltonian H0 which is
coupled to an external perturbation represented by a potential V (x, t). The free
Green function, G0, satisfies the equation

(i~∂t′ −H0(x
′))G0 = δ(x′ − x)δ(t′ − t) (37)

G0 can be regarded as the matrix elements of the following operator

G0(x
′t′|xt) = 〈x′t′|(i~∂t −H)−1|xt > (38)

Clearly, G satisfies the same equation but with the full H , i.e.,

(i~∂t′ −H(x′))G = 1 (39)
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Hence, we can write
[(i~∂t′ −H0) − V ]G = 1 (40)

By using the definition of G0, we get the operator equation

(G−1
0 − V )G = 1 (41)

Thus, G satisfies the integral equation

G(x′t′, xt) = G0(x
′t′|xt) +

∫
dx′′

∫
dt′′G0(x

′t′|x′t′′)V (x′t′′)G(x′t′′|xt) (42)

which is known as the Dyson Equation. It has the formal operator solution

G−1 = G−1
0 − V (43)

The integral equation can also be solved by iteration, which amounts to a per-
turbative expansion expansion in powers of V . The result is the Born series.
Using an obvious matrix notation we get

G = G0 +G0V G0 +G0V G0V G0 + . . . (44)

We will represent this series by a set of diagrams. Let us consider the first term
to which we assign the diagram of figure 5. The oriented arrow ranging from

time

space

(x, t)

(x′, t′)

Figure 5: The zeroth order term.

(xt) to (x′t′) represents the unperturbed propagator G0(x
′t′|xt). Because of
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the causal boundary conditions obeyed by G0 it can only propagate forward in
time. The second term, of the series, the Born approximation, δG(1)

δG(1)(x′t′|xt) =

∫
dx′

∫
dt′′G0(x

′t′|x′′t′′)V (x′′t′′)G0(x
′′t′′|xt) (45)

is represented by the diagram where the “blob” represents the action of the

(x, t)

(x′, t′)

(x′′, t′′)

V

Figure 6: The first order term: the Born Approximation.

potential V . In general we get a diagram of the form which represents a multiple
scattering process. Notice that all the contributions propagate strictly forward
in time.

Let us compute the propagator G0(x
′t′|xt) for a free spinless particle in

three-dimensional space. The Hamiltonian H is just, H = − ~
2

2m▽2. Thus, G0

obeys the equation

(i~∂t′ +
~

2

2m
▽2

x)G0(x
′t′|xt) = δ3(x′ − x)δ(t′ − t) (46)

we causal boundary conditions, G(x′t′|xt) = 0 (if t′ < t). Given the symmetries
of this very simple system we can Fourier expand G0.

G0(x
′t′|xt) =

∫
d3p

(2π)3

∫
dω

2π
G̃0(~p, ω)e

i
~

~p·(~x′−~x)−iω(t′−t) (47)

By direct substitution we find that G̃0(~p, ω) must be given by

G̃0(~p, ω) =
1

~ω − ~p 2

2m

(48)
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(x, t)

(x′, t′)

(x1, t1)

(x2, t2)

(x3, t3)

time

space

Figure 7: Multiple scattering processes.

Notice that, once again, G̃0(~p, ω) has a pole at ~ω =
~p 2

2m
which is the dispersion

law (i.e., , the “mass shell”). Apart from being singular, this “solution” does not
obey the causal boundary condition. We will enforce the boundary condition
by deforming the integration contour in the complex frequency plane. Following
our previous discussion on the Green function for classical electrodynamics we
simply move the pole by an infinitesimal positive amount ǫ into the upper half-
complex frequency plane. We write the retarded propagator as

Gret
0 (~p, ω) =

1

~ω − ~p 2

2m
+ iǫ

(49)

and we will take the limit ǫ → 0+ at the end of our calculations. Thus the
frequency integral is equal to

∫ +∞

−∞

dω

2π

e−iω(t′−t)

~ω − ~p 2

2m
+ iǫ

= − i

~
Θ(t′ − t)e

− i

~

~p 2

2m
(t′ − t)

(50)

Hence the full Green function G0(x
′t′|xt) is

G0(x
′t′|xt) = − i

~
Θ(t′ − t)

∫
d3p

(2π)3
e
− i

~

~p 2

2m
(t′ − t) +

i

~
~p · (~x′ − ~x)

(51)
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Let ψ~p(xt) denote the wave functions for the stationary states |~p〉, i.e.,

ψ~p(x, t) =
1

(2π)3/2
e
− i

~
~p · ~x+

i

~
E(~p )t

(52)

where E(~p ) =
~p 2

2m
. We see that G0(x

′t′|xt) can be written in the form

G0(x
′t′|xt) = − i

~
Θ(t′ − t)

∫
d3p ψ~p(x

′t′)ψ∗
~p(xt) (53)

In general, if the Hamiltonian has a complete set of stationary states {|n〉} with
wave functions ψn(x) and eigenvalues En, the Green function is

Gret
0 (x′t′|xt) = − i

~
Θ(t′ − t)

∑

n

ψn(x′t′)ψ∗
n(xt) (54)

where

ψn(xt) = ψn(x)e
− i

~
Ent

(55)

If the system is isolated, the Hamiltonian is time-independent and the Green
function is a function of t − t′. In this case it is convenient to consider the
Fourier transform

Gret
0 (x′;x|t′ − t) =

∫ ∞

−∞

dω

2π
Gret

0 (x′, x;ω) eiω(t− t′)/~ (56)

where we have to pick the correct integration contour so that Gret
0 is retarded.

Quite explicitly we find

Gret
0 (x′;x|ω) =

1

~
lim

ǫ→0+

∑

n

ψn(x′)ψ∗
n(x)

ω − En

~
+ iǫ

(57)

The denominators in this equation have zeros on the real frequency axis as
ǫ → 0+. Thus, the Green function is a series of distributions. In the limit
ǫ→ 0+ we can write

lim
ǫ→0+

1

x+ iǫ
= P 1

x
− iπδ(x) (58)

where where P denotes the principal value and δ(x) is the Dirac delta function.
Hence we can write the following expressions for the real and imaginary parts
of the Green function

Re Gret
0 (x′;x|ω) =

∑

n

P ψn(x′)ψ∗
n(x)

~ω − En

Im Gret
0 (x′;x|ω) = −π

∑

n

ψn(x′)ψ∗
n(x)δ(~ω − En)

(59)
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We can use these results to find an expression for the density of states ρ(ω)

ρ(ω) =
∑

n

δ(~ω − En) (60)

in terms of the retarded Green function of the form

ρ(ω) = − 1

π
Im

∫
dx Gret

0 (x;x|ω) (61)

In other words, the spectral density is determined by the imaginary part of the
Green function. Below we will find similar relationships for other quantities of
physical interest.

Let us close by noting that there is a close connection between the Green
function in Quantum Mechanics and the kernel of the diffusion equation. In
d-dimensional space the Green function is

G0(~x
′, t′|~x, t) = − i

~
Θ(t′ − t)

∫
ddp

(2π)d
e
− i

~

~p 2

2m
(t′ − t) +

i

~
~p · (~x ′ − ~x)

(62)

By completing squares inside the exponent

~p 2

2m
(t′ − t) − ~p′ · (~x ′ − ~x) =

(t′ − t)

2m

[
~p− 2m~p · ~x

′ − ~x

(t′ − t)

]

=

(
t′ − t

2m

) [
~p−

(
~x ′ − ~x

t′ − t

)
m

]2

− m|~x ′ − ~x|2
2|t′ − t|

(63)

we can write

G0(~x
′, t′|~x, t) =

− i

~
Θ (t′ − t)

∫
ddp

(2π)d
e
− i

~

(
t′ − t

2m

) (
~p−

(
~x ′ − ~x

t′ − t

)
m

)2

+
i

2~
m
|~x ′ − ~x|2
|t′ − t|

(64)

After a straightforward integration, we find that G0 is equal to

G0(~x
′, t′|~x, t) = − i

~
Θ(t′ − t)

(
m~

2π(t′ − t)

)d/2

e

im

2~

|~x ′ − ~x|2
(t′ − t) (65)

This formula is strongly reminiscent of the Kernel for the Heat Equation (or
Diffusion Equation)

∂τψ = D▽2 ψ (66)

where D is the diffusion constant and τ is the diffusion time. Indeed, after
an analytic continuation to imaginary time, t → iτ , the Schrödinger equation
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becomes a diffusion equation with a diffusion constant D = ~

2m . The Green
function (or Heat Kernel) for the Heat equation is

K(~x′τ ′|~xτ) = Θ(τ ′ − τ)
1

(4πDτ)d/2
e
− |~x′ − ~x|2

4D(τ ′ − τ) (67)

which, of course, agrees with G0. This connection between quantum mechan-
ics and diffusion processes is central to the path-integral picture of quantum
mechanics.

10.2.1 Analytic Properties of the Propagator of the Relativistic Real

Scalar Field and of the Dirac Field

The propagator for a free real relativistic field G0(x, x
′) = −i〈0|Tφ(x)φ(x′)|0〉

is the solution of the partial differential equation

(∂2 +m2
0) G0(x, x

′) = δ4(x − x′) (68)

which we have discussed and solved before. G0(x, x
′) can be calculated by the

usual Fourier expansion methods,i.e.,

G0(x, x
′) =

∫
d4p

(2π)4
G̃0(p) e

+ip·(x−x′) (69)

where G̃0(p) is given by

G̃0(p) =
−1

p2 −m2
(70)

where p2 = pµp
µ. Once again, we will have to give a prescription for going

around the poles of G̃0(p) which yields the correct boundary conditions. The

poles of G̃0(p) are located at p0 = ±
√
~p 2 +m2∓ iǫ. We will use the integration

paths shown in figure 8. On the integration path γ+ we find the result

−
∮

γ+

dp0

2π

e+ip0(x0 − x′0)

p2
0 − (~p 2 +m2) + iǫ

−−−−→
ǫ→0+

i
e−i

√
~p 2 +m2 (x0 − x′0)

2
√
~p 2 +m2

(71)

provided x0 > x′0. Similarly, on γ− we get

−
∮

γ−

dp0

2π

eip0(x0 − x′0)

p2
0 − (~p 2 +m2) + iǫ

−−−−→
ǫ→0+

i
ei

√
~p 2 +m2(x0 − x′0)

2
√
~p 2 +m2

0

(72)

provided x0 < x′0. By collecting terms we get

G0(x, x
′) = iΘ (x0 − x′0)

∫
d3p

(2π)32ω(~p)
e+i~p · (~x− ~x ′) − iω(~p) (x0 − x′0)

+ iΘ(x′0 − x0)

∫
d3p

(2π)32ω(~p)
e−i~p · (~x− ~x ′) + iω(~p)(x0 − x′0)

(73)
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Im p0

Re p0

+ω(~p)−ω(~p)

Figure 8: Wick Rotation.

This formula shows that G0(x, x
′) does satisfy the required boundary condition.

It also shows that the positive frequency components of the field propagate
forwards in time while the negative frequency components propagate backwards
in time.

The simplest way to compute G0(x, x
′) is by means of an analytic continua-

tion (or Wick rotation) to imaginary time, x0 → ix4. This amounts to a rotation
of the integration contour from the real p0 axis to the imaginary p0 axis, namely
p0 → ip4. The Wick-rotated or Euclidean Green function GE

0 (x, x′), i.e., the
Euclidean propagator that we calculated before, is given by

G0(x, x
′) = i

∫
d4p

(2π)4
e−ip(x0−x′

0)

p2 +m2
≡ iGE

0 (x, x′) (74)

where p2 = −∑4
i=1 pipi and p · x = −∑4

i=1 pixi.
The time-ordered, or Feynman, propagator does not obey causality since it

does not vanish for space-like separated events (s2 < 0). We can define a causal,
or retarded, propagator which obeys the causal boundary condition G(x, x′) = 0
except inside the forward light-cone. Similarly, it is also possible to define an
advanced, or anti-causal, propagator which vanishes outside the backward light-
cone. We will discuss only the retarded propagator Gret(x − x′).

The retarded propagator is defined by computing the frequency integral on
the path shown in the figure 9, Gret(x− x′) is given by
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Im p0

Re p0

γ−

x0 > x′0

x0 < x′0

+ω(~p)−ω(~p)

−iǫ

Figure 9: Integration path for the retarded Green function.

Gret(x− x′) = −
∫

d3p

(2π)3
e−i~p · (~x− ~x′)

∫ +∞

−∞

dp0

2π

eip0(x0 − x′0)

p2
0 − ω2(~p)

≡ −i
∫

d3p

(2π)32ω(~p)
e−i~p · (~x− ~x′)

∫ +∞

−∞

dp0

2πi
eip0(x0 − x′0)

×
[

1

p0 − ω(~p) − iǫ
− 1

p0 + ω(~p) − iǫ

]

(75)

Hence, we get

Gret(x− x′) = −iΘ(x0 − x′0)∫
d3p

(2π)32ω(~p)

[
eiω(p)(x0 − x′0) − i~p · (~x− ~x′) − e−iω(~p)(x0 − x′0) + i~p · (~x − ~x′)

]

(76)

The integral over the momentum variables is just the quantity i∆(x− x′), that
we have encountered before,

i∆(x− x′) = [φ(x), φ(x′)] ≡ 〈0| [φ(x), φ(x′)] |0〉 (77)

which allows us to write

Gret(x− x′) = Θ(x0 − x′0)∆(x− x′) = −iΘ(x0 − x′0)〈0| [φ(x), φ(x′)] |0〉 (78)

The same line of argument we have used here for the scalar field can be used
for the Dirac field. The vacuum state of the Dirac theory is defined by filling
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up all negative energy states. We now imagine that an external potential is
adiabatically switched on and that, before that happened, there was an electron
e− propagating in the system. If the potential is not too strong, we can still
describe its effects by means of a Born series of multiple scattering processes
(Fig.10).

time

space

e−

e−

e−

e−

e+

1

2

3

4

Figure 10: Scattering processes of a Dirac field.

The electron scatters off the potential at 1 and as a result it propagates up
to 3. If the potential has the correct matrix elements, at 3 the positive energy
solution may turn into a negative energy state. In general this won’t be allowed
since all negative energy states are filled up, unless a negative energy state got
emptied (by the action of the potential) before the electron became scattered

into that state. Indeed, the potential can create a pair out of the vacuum, e.g.,

Fig.11:

time

space

e+ e−

Figure 11: Pair creation.

Thus, it can remove an electron from an occupied negative energy state and
to promote it into a previously empty positive energy state. Hence, if the time t

17



lies between t2 and t3, there are three different states propagating in the system
(Fig.12):

time

space

e+

e−

e−

2

3

Figure 12: An intermediate state with an electron-positron pair.

1. a positive energy state which disappears at 3

2. a negative energy state which propagates backwards in time from 3 to 2

3. a positive energy state which appeared at 2.

An alternative interpretation is that an electron-positron pair was created at 2

and that the positron annihilated with the original electron at 3. This process
clearly shows that the Dirac theory is a quantum field theory, and cannot be
described within the framework of quantum mechanics with a fixed number of
particles, as in the non-relativistic case. Thus, the Fock space description is
essential to the relativistic case.

These arguments suggest that we may want to seek a propagator which
propagates positive energy states forward in time while negative energy states
propagate backwards in time. This is the Feynman, or time-ordered, propagator
Sαα′

F (x, x′). It is straightforward to see that these requirements are met by

Sαα′

F (x, x′) = −i〈0|Tψα(x)ψ̄α′ (x′)|0〉 (79)

which satisfies the equation of motion

(i/∂ −m)SF (x, x′) = δ4(x− x′) (80)

The same methods that we used for the scalar field yield the answer (dropping
the spinor indices)

SF (x, x′) = SF (x − x′) =

∫
d4p

(2π)4
/p+m

p2 −m2 + iǫ
e−ip · (x− x′) (81)
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where an iǫ has been introduced in order to get the correct boundary conditions.
We have also shown that SF (x − x′) satisfies

SF (x− x′) = −(i/∂ +m)

∫
d4p

(2π)4
e−ip · (x− x′)

p2 −m2 + iǫ
= (i/∂ +m)GF (x− x′) (82)

where GF (x− x′) is the Feynman or time-ordered propagator for a scalar field.
The iǫ prescription insures that positive energy states propagate forward in time
while negative energy states propagate backward in time.

10.2.2 The Propagator for the Non-Relativistic Electron Gas

Let us now discuss the propagator, or one-particle Green function, for a non-
relativistic free electron gas at finite density and zero temperature. It is defined
in the usual way

Gαα′

0 (x, x′) = −i〈gnd|Tψα(x)ψ†
α′ (x

′)|gnd〉 (83)

where αα′ are spin indices. This propagator can be used to compute a number of
quantities of physical interest. For example, the average electron density 〈n̂(x)〉
is

〈n(~x)〉 = 〈ψ†(~x)ψ(~x)〉 = −i lim
~x′→~x

lim
x′

o→x0

tr G(x, x′) (84)

Likewise the current 〈~j(~x)〉 is

〈~j(~x)〉 =
~

2mi
tr 〈ψ†(x)

(
~▽xψ(x)

)
−

(
~▽xψ

†(x)
)
ψ(x)〉

= − 1

m
lim

~x′→~x
lim

x′

o→x0

(
~▽~x − ~▽~x′

)
tr G(x, x′)

(85)

and the magnetization ~M(x) = 〈ψ†
α(x)~σαβψβ(x)〉,

~M(x) = −i lim
~x′→~x

lim
x′

o→x0

tr [G(x, x)~σ] (86)

Let us compute G(x, x′) by the standard method of Fourier transforms.

G(x, x′) =

∫
d3p

(2π)3

∫
dω

2π
G̃(~p, ω) ei [~p · (~x− ~x′) − ω(t− t′)]

≡
∫

d4p

(2π)4
G̃(p) eip·(x−x′)

(87)

where p0 = ω and t = x0. The field ψ(x) can also be expanded (~ = 1)

ψ(x) =

∫
d3p

(2π)3
ψ(~p) ei (~p · ~x− E(~p)t) (88)
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since ψ(x) satisfies the equations of motion. Here E(p) are the single particle

energies, E(p) = p2

2m − µ. Thus, we get

G(x, t) = −i
∫

d3p

(2π)3

∫
d3q

(2π)3
Θ(t)〈gnd|ψ(p)ψ†(q)|gnd〉ei (~p · ~x− E(~p) t)

+ i

∫
d3p

(2π)3

∫
d3q

(2π)3
Θ(−t)〈gnd|ψ†(q)ψ(p)|gnd〉ei (~p · ~x− E(~p)t)

(89)

Recall that |gnd〉 is the state in which all negative energy states (E(~p) < 0 or
ǫ(p) < µ) are filled. Thus

G(x, t) = −i
∫

d3p

(2π)3
[Θ(t) (1 − n(~p)) − Θ(−t)n(~p)] ei (~p · ~x− E(~p)t) (90)

where n(p) is the (zero-temperature) Fermi function

n(~p) =

{
1 |~p| ≤ pF

0 otherwise
(91)

Hence, we can write the Fourier transform G(p, ω) in the form

G(p, ω) = −i
{

Θ(|~p| − pF )

∫ ∞

0

ei(ω−E(p))tdt− Θ(pF − |~p|)
∫ ∞

0

dte−i(ω−E(p))t

}

(92)
The integrals in this expression define distributions of the form

∫ ∞

0

dt eist = lim
ǫ→0+

∫ ∞

0

dt eist− ǫ t

= i lim
ǫ→0+

1

s+ i∆
= i

(
P 1

s
− iπǫ(s)

)

(93)

where P 1
s is the principal value

P 1

s
= lim

ǫ→0

s

s2 + ǫ2
(94)

and δ(s) is the Dirac δ-function.

We can use these results to write an expression for G̃0(~p, ω)

G̃0(~p, ω) =
Θ(|~p| − pF )

ω − E(~p) + iǫ
+

Θ(pF − |~p|)
ω − E(~p) − iǫ

(95)

where E(~p) = ǫ(~p) − µ. An equivalent (and more compact) expression is

G̃0(~p, ω) =
1

ω − E(~p) + iǫ sign(|~p| − pF )
(96)
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Notice that

ImG̃0(~p, ω) = −πΘ(|~p| − pF )δ(ω − ǫ(~p) + µ) + πΘ(pF − |~p|)δ(ω − ǫ(~p) + µ)

= −πδ(ω − ǫ(~p) + µ) [Θ (|~p| − pF ) − Θ(pF − |~p|)]
(97)

The last identity shows that

sign ImG̃0(p̃, ω) = −sign ω (98)

Hence, we may also write G̃0(p, ω) as

G̃0(~p, ω) =
1

ω − E(~p) + iǫ sign ω
(99)

With this expression, we see that G̃0(~p, ω) has poles at ω = E(~p) and that all
the poles with ω > 0 are infinitesimally shifted downwards to the lower half-
plane, while the others are raised upwards to the upper half-plane by the same
amount. Since E(p) = ǫ(p) − µ, all poles with ǫ(p) > µ are shifted downwards,
while all poles with ǫ(p) < µ are shifted upwards.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Im ω

Re ω

µ

Figure 13: Analytic structure of the Green function at finite chemical potential
µ.
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10.3 The Scattering Matrix

The problems of real physical interest very rarely involve free fields. In general
we have to deal with interacting fields. For the sake of definiteness we will con-
sider a scalar field but the ideas that we will discuss have general applicability.

10.3.1 Interactions and the Interaction Representation

The field φ(~x, t) in the Heisenberg representation is related to the Schrödinger
operator φ(~x) through the time evolution generated by the equations of motion,
i.e.,

φ(~x, t) ≡ φ(x) = eiHt φ(~x, 0) e−iHt (100)

(for ~ = 1). Recall that in the Schrödinger representation the fields are fixed

but the states evolve according to the Schrödinger equation

H |Φ〉 = i∂t|Φ〉 (101)

Conversely, in the Heisenberg representation, the states are fixed but the fields

evolve by following the equations of motion, i.e.,

i∂tφ(x) = [φ(x), H ] (102)

In an interacting system, the problem is precisely how to determine the evolution
operator eiHt. Thus, the Heisenberg representation cannot be constructed a

priori.
Let us assume that the Hamiltonian can be split into a sum of two terms

H = H0 +Hint (103)

whereH0 represents a system whose states are fully known to us (i.e., a problem
that we know how to solve) and Hint represents the interactions. For technical
reasons we will have to assume that Hint(t), as a function of time, vanishes (very
smoothly) both in the remote past and in the remote future. We now define
the Interaction Representation. In the Interaction Representation, the fields φin

evolve as free Heisenberg fields, i.e.,

i∂tφin(x) = [φin, H0] (104)

These operators create and destroy free incoming states (incoming since as t→
−∞ there are no interactions). In the absence of interactions, the states would
not evolve but, if interactions are present, they will. There is a unitary operator
U(t) which governs the time evolution of the states and the S-matrix.

We want to find an operator U(t) such that

φ(x, t) = U−1φin(x, t)U(t) (105)

where φ(x, t) is the Heisenberg operator. The operator U(t) must be unitary

and satisfy the initial condition

lim
t→−∞

U(t) = I (106)
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Since U(t) is unitary and invertible, it must satisfy the condition U−1(t) =
U †(t). Thus

d

dt
U(t)U−1(t) + U(t)

d

dt
U−1(t) = 0 (107)

Since the operator φin obeys its equation of motion, we get

∂tφin = ∂tU φ U−1 + U ∂tφ U
−1 + U φ ∂tU

−1

= ∂tU φ U−1 + iU [H,φ] U−1 + U φ U−1 U ∂tU
−1

(108)

In other terms,

∂tφin = iU(t)[H(φ), φ]U−1(t) + ∂tUU
−1φin + φinU∂tU

−1 (109)

Similarly, the Hamiltonian must obey the identity

H(φin) = U(t)H(φ)U−1(t) (110)

which implies that φin should obey

∂tφin = i[H(φin), φin] + [(∂tU) U−1, φin] (111)

Since φin obeys the free equation of motion, we find that the evolution operator
U(t) must satisfy the condition

i[Hint(φin), φin] + [∂tU U−1, φin] = 0 (112)

Hence
[iHint(φin) + (∂tU) U−1, φin] = 0 (113)

for all operators φin. Therefore this operator must be a c-number (i.e., propor-
tional to the identity). Since limt→−∞Hint(φin) = 0 and limt→−∞ U(t) = I,
this c-number must be equal to zero. We thus arrive to an operator equation
for U(t)

i∂tU = Hint(φin) U(t) (114)

The operator U governs the time evolution of the states in the Interaction
Representation, since the state |Φ〉in becomes

U(t)|Φ〉in = |Φ(t)〉 (115)

In particular, the outgoing states |Φ〉out (i.e., the states at t → +∞) are also
free states which are related to the in-states by the operator U(t) in the limit
t→ +∞

|Φ〉out = lim
t→+∞

U(t)|Φ〉in ≡ Ŝ|Φ〉in (116)

where Ŝ = limt→+∞ U(t) is the S-matrix.
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The equation of motion for U(t) can formally be solved using methods that
we have discussed before. The solution is

U(t) = Te
−i

∫ t

−∞

dt′Hint (φin(t′))
(117)

where T is the time-ordering operator. In terms of the interaction part Lint of
the Lagrangian we get

Ŝ = lim
t→+∞

U(t) = Te
−i

∫ +∞

−∞

dt′Hint (φin(t′))
= T e

i

∫
d4x Lint(φin)

(118)

10.3.2 Physical Information Contained in the S-Matrix

Let us compute transition matrix elements between arbitrary in and out states.
Let |i, in〉 be the initial incoming state and |f, out〉 the final outgoing state. The
transition probability Wi→f is then given by

Wi→f = |〈f, out|i, in〉|2 ≡ |〈f, in|Ŝ|i, in〉|2 (119)

since
〈f, out|Ŝ = 〈f, in| (120)

We can split Ŝ into non-interacting and interacting parts

Ŝ = Î + iT̂ (121)

where Î (the non-interacting part) is the identity operator, and T̂ , the T -matrix
represents the interactions (not to be confused with the time-ordering symbol!).
In terms of the T -matrix, the transition probability is

Wi→f = |〈f |i〉 + i〈f |T |i〉|2 (122)

Although from now on we will discuss the case of a scalar field, the arguments
can be generalized to all other problems of interest with only minor modifica-
tions.

Let us consider the situation in which the initial state |i, in〉 consists of two
wave packets which only contain positive frequency components

|i, in〉 =

∫
d3p

2p0
1(2π)3

∫
d3p2

2p0
2(2π)3

f1(p1)f2(p2)|p1, p2; in〉 (123)

The incoming flux is equal to
∫

d3p
2p0(2π)3 |f(p)|2. Each component |p1, p2; in〉 will

have a matrix element with the final state |f ; out〉. Since we have translation
invariance, the total 4-momentum should be conserved. If we denote by Pf the
momentum of the state |f, out〉, we can write

〈f |T |p1p2〉 = (2π)4δ4(Pf − p1 − p2)〈f |T |p1p2〉 (124)
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where T is called the reduced operator. T acts only on the energy shell, p2 =
m2. If we neglect the forward scattering contribution, the transition probability
Wi→f becomes

Wi→f =

∫
d3p1

2p0
1(2π)3

∫
d3p2

2p0
2(2π)3

∫
d3q1

2q01(2π)3

∫
d3q2

2q02(2π)3

(2π)4δ4(p1 + p2 − q1 − q2) (2π)4δ4(Pf − p1 − p2)

f∗
1 (p1)f

∗
2 (p2)f1(q1)f2(q2)〈f |T |p1p2〉∗〈f |T |q1q2〉

(125)

The incoming states are assumed to be sharply peaked around some momenta
p̄1, p̄2, with a spread ∆p, such that we can approximate

〈f |T |p1p2〉 ≈ 〈f |T |q1q2〉 ≈ 〈f |T |p̄1p̄2〉 (126)

Under these assumptions, the form for the transition probability is

Wi→f =

∫
d4x|f̃1(x)|2|f̃2(x)|2(2π)4δ4(Pf − p̄1 − p̄2)|〈f |T |p̄1p̄2〉|2 (127)

where f̃(x) is the Fourier transform of f(p). The integrand of Eq.(127) is the
transition probability per unit time and volume

dWi→f

dtdV
= |f̃1(x)|2|f̃(x)|2(2π)4δ4(Pf − p̄1 − p̄2)|〈f |T |p̄1p̄2〉|2 (128)

In position space, the flux is i
∫
d3xf̃∗(x)∂0

↔

f̃(x). If f̃(x) is sufficiently smooth,
we can approximate

if̃∗(x)∂0

↔

f̃(x) ≈ 2p̄0|f̃(x)|2 (129)

Let us assume that particle 1 is incident in the laboratory and that particle 2
is at rest in the lab. The density of particles in the target is

dn2

dV
= 2p̄0

2|f̃2(x)|2 (130)

where p̄0
2 = m2 since particle 2 is at rest. The incident flux is the velocity times

the density of particles in the beam. Hence the incident flux Φin is

Φin =
|p̄1|
|p̄1

0|
2p̄0

1|f̃1(x)|2 = 2|p̄1||f̃1(x)|2 (131)

The differential cross section dσ is related to the transition probability by the
relation

dWi→f

dtdV
=
dn2

dV
· Φin · dσ (132)

Hence

2m2|f̃2(x)|22|p̄1||f̃1(x)|2dσ =

|f̃1(x)|2|f̃2(x)|2(2π)4δ4(Pf − p̄1 − p̄2)|〈f |T |p̄1p̄2〉|2

(133)
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Therefore, the differential cross section dσ is

dσ = (2π)4δ4(Pf − p̄1 − p̄2)
1

4m2|p̄1|
|〈f |T |p̄1p̄2〉|2 (134)

The quantity in the denominator m2|p̄1| can be written in the relativistic in-
variant way

m2|p̄| = m2

√
p̄02
1 −m2

1 =
[
(p̄2 · p̄1)

2 −m2
1m

2
2

]1/2
(135)

Thus far we have not made any assumptions about the nature of the final state.
If the process that we consider involve two particles going into n particles. the

...
...

...
...

...
..

2 incoming n outgoing
particlesparticles

scattering

Figure 14: A 2 → n scattering process.

total differential cross-section becomes

dσ =
1

4 [(p̄2 · p̄1)2 −m2
1m

2
2]

1/2

∫

∆

d3p3

(2π)32p0
3

. . .

∫

∆

d3pn+2

(2π)32p0
n+2

× |〈p3, . . . , pn+2|T |p1p2〉|2(2π)4δ(p1 + p2 −
n+2∑

i=3

p0)

(136)

where ∆ is an energy-momentum resolution. This expression shows that the
central issue is to compute matrix elements of T .

26



10.4 Asymptotic States and the Analytic Properties of the Propa-

gator

We will show now that the S-matrix elements can be calculated if we know the
v.e.v. of time-ordered products of field operators φ(x) in the Heisenberg repre-
sentation. This is the LSZ (Lehmann, Symanzik and Zimmermann) approach.

In order to make this connection, it is necessary to relate the interacting
fields φ(x) with a set of fields which create (or destroy) the actual states in the
spectrum of the system, when these particles are far from each other. In any
scattering experiment, the initial states are sharply peaked wave packets which
can be constructed to be arbitrarily close to the eigenstates of the system. Of
course, the true eigenstates are plane waves and any two such states will have a
non-zero overlap in space. But wave packets which are essentially made of just
one state will not overlap if the wave packets (the “particles”) are far apart from
each other at the initial time. Since they do not overlap, they do not interact.
In this sense the spectrum of incoming states can be generated by a set of free
fields. We will make the further assumption that the in and out states, the so-
called asymptotic states, are created by a set of free fields. We will denote them
by φin(x), and have the same form as the fields that appear in the Lagrangian.
If the operators create the actual eigenstates, φin(x) must be a free field.

These assumptions amount to say that the states of the fully interacting

theory are in one-to-one correspondence with the states of the non-interacting
theory. In some loose sense, this hypothesis implies that the information that
we can obtain from perturbation theory is qualitatively correct.

However, these assumptions can fail in several possible ways. A mild failure
would be the appearance of bound states which, of course, are not present in
the unperturbed theory. This situation is actually rather common and it can be
remedied without too much difficulty. An example of this case is the Landau
theory of the Fermi liquid and its collective modes. There are however at least
two ways in which this picture can fail in a rather serious way. One case is
the situation in which the fields of the Lagrangian do not describe any of the
asymptotic states of the theory. An example of this case is Quantum Chro-
modynamics (QCD) whose Lagrangian describes the dynamics of quarks and
gluons which are not present in the asymptotic states: quarks are confined and
gluons are screened. The asymptotic states of QCD are mesons, baryons, and
glue-balls which are bound states of quarks and gluons.

Another possible failure of this hypothesis is the case in which the states
created by the fields of the Lagrangian are not the true elementary excitations
but rather they behave like some effective composite object of some more el-
ementary states. In such case the true one-particle states may be orthogonal

to the states created by the fields of the Lagrangian. This is a rather common
situation in theories in 1 + 1 dimensions whose spectrum is generated by a set
of soliton-like states, which are extended objects in terms of the bare fields of
the Lagrangian. Something very similar happens in the theory of the fractional
quantum Hall states.

In what follows, we will not consider these very interesting situations and
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assume instead that these hypotheses (or scenarios) actually hold. For the sake
of concreteness, we will deal with scalar fields, and we will require φin to satisfy
the free Klein-Gordon equation

(
∂2 +m2

)
φin = 0 (137)

where m is the physical mass. In general, the physical mass is different from the
mass parameter m0 which enters in the Lagrangian of the interacting theory.
As time goes by, this initial state evolves and the particles approach each other
and begin to overlap. Interactions take place and, after some time, the system
evolves to some final state which consists of a set of well defined particles, the
out state. The unitary operator that connects in and out states is precisely
the S-matrix of the interaction representation. The only difference here, resides
in the fact that the in and out states are not eigenstates of some unperturbed
system, but the actual eigenstates of the full theory.

This picture assumes that there is a stable vacuum state |0〉 such that the
observed particles are the elementary excitations of this vacuum. The free fields
φin(x) are just a device to generate the spectrum and have no real connection
with actual dynamics. On the other hand, the interacting field φ(x) creates
not only one-particle states but also many particle states. This is so because its
equations of motion are non-linear. Hence the matrix element of φ(x) and φin(x)
between the vacuum |0〉 and in-one-particle states |1〉, are generally different
since φin creates only one-particle states. This must be true even as t → −∞.
We state this difference by writing

〈1|φ(x)|0〉 = Z1/2〈1|φin|0〉 (138)

The proportionality constant Z is known as the wave-function renormalization.
If Z 6= 1, the operator φ(x) must have a non-zero multi-particle projection.
Notice that this is an identity of these matrix elements only. It is not an identity
between the fields themselves.

In the interaction representation it is possible to derive a similar looking iden-
tity which originates from the fact that the unperturbed and perturbed states
do not have the same normalization. It is important to stress that this approach
makes the essential assumption that the states that are reached through pertur-
bation theory in the interaction representation can approximate with arbitrary
precision all of the exact states of the theory. This assumption is the hypothesis
that the asymptotic states are generated by free fields.

The physical asymptotic states satisfy canonical commutation relations and
the commutator of a pair of much fields is

〈0|[φin(x), φin(x′)]|0〉 = i∆(x− x′;m) (139)

where m is the physical mass. On the other hand, the interacting fields satisfy

〈0|[φ(x), φ(x′)]|0〉 =
∑

n

[〈0|φ(x)|n〉〈n|φ(x′)|0〉 − (x↔ x′)] (140)
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where {|n〉} is a complete set of physical (in) states. The operators φ(x) are
related to the operator φ(0) (i.e., at the origin at some time x0 = 0) by

φ(x) = eiP ·xφ(0)e−iP ·x (141)

where Pµ is the total 4-momentum operator. If we let Pµ
n be the 4-momentum

of the state |n〉, we can write

〈0|[φ(x), φ(x′)]|0〉 =
∑

n

[
〈0|φ(0)|n〉e−iPn·(x−x′)〈n|φ(0)|0〉 − (x↔ x′)

]
(142)

We now insert the identity

1 =

∫
d4Q δ4(Q− Pn) (143)

to get

〈0|[φ(x), φ(x′)]|0〉 =

∫
d4Q

∑

n

δ4(Q−Pn)|〈0|φ(0)|n〉|2
(
e−iQ·(x−x′) − eiQ·(x−x′)

)

(144)
We can summarize this result in terms of a spectral density ρ(Q)

〈0|[φ(x), φ(x′)]|0〉 =

∫
d4Q

(2π)3
ρ(Q)

(
e−iQ·(x−x′) − eiQ·(x−x′)

)
(145)

where ρ(Q) given by

ρ(Q) = (2π)3
∑

n

δ4(Q− Pn)|〈0|φ(0)|n〉|2 (146)

Let us recall that ∆(x− x′;m) is given by

i∆(x− x′;m) =

∫
d3Q

(2π)32Q0

(
e−iQ·(x−x′) − eiQ·(x−x′)

)

=

∫
d4Q

(2π)3
ǫ(Q0)δ4(Q2 −m2)e−iQ·(x−x′)

(147)

where ǫ(Q0) = sign(Q0). Thus we can write

〈0|[φ(x), φ(x′)]|0〉 =

∫
d4Q

(2π)3
ρ(Q)ǫ(Q0)e−iQ·(x−x′) (148)

Since ρ(Q) is Lorentz invariant by construction, it can only be a positive function
of Q2

ρ(Q) = σ(Q2) > 0 (149)

Hence

〈0|[φ(x), φ(x′)]|0〉 =

∫
d4Q

(2π)3
σ(Q2)ǫ(Q0)e−iQ·(x−x′) (150)
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We will now rewrite this expression in the form of an integral over the spectrum.
Let us insert the identity

1 =

∫ ∞

0

dµ2δ(Q2 − µ2) (151)

to obtain

〈0|[φ(x), φ(x′)]|0〉 =

∫
d4Q

(2π)3

[∫ ∞

0

dµ2δ(Q2 −m′2)

]
σ(Q2)ǫ(Q0)e

−iQ·(x−x′)

=

∫ ∞

0

dµ2σ(µ2)

[∫
d4Q

(2π)3
ǫ(Q0)δ(Q

2 − µ2)e−iQ·(x−x′)

]

(152)

where σ(µ2) is

σ(µ2) = (2π)3
∑

n

δ(P 2
n − µ2)|〈0|φ(0)|n〉|2 (153)

Thus, we can write the v. e. v. of the commutator as

〈0|[φ(x), φ(x′)]|0〉 = i

∫ ∞

0

dµ2σ(µ2)∆(x− x′;m′2) (154)

If we assume that the theory has a physical particle with mass m (i.e., one-
particle states of mass m) we can write the final expression

−i〈0|[φ(x), φ(x′)|0〉 = Z∆(x− x′;m2) +

∫ ∞

m2
1

dµ2σ(µ2)∆(x − x′;µ2) (155)

where the first term represents the one-particle states and the integral represents
the continuum of multi-particle states with a threshold at m1. In other words,
if there is a stable particle with mass m, the spectral function must have a
δ-function at m′2 = m2 with strength Z, the spectral weight of the one-particle
state.

Since the field φ(x) obeys equal-time canonical commutation relations with
the momentum Π(x) = ∂0φ(x), we get

−i〈0|[Π(~x, x0), φ(~x′, x0)]|0〉 = Z lim
x′

0
→x0

∂0∆(x− x′;m2)

+

∫ ∞

m2
1

dµ2σ(µ2) lim
x′

0
→x0

∂0∆(x − x′;µ2)

(156)

On the other hand, the free field commutator ∆(x − x′;m2) obeys the initial
condition

lim
x′

0
→x0

∂0∆(x− x′;m2) = lim
x′

0
→x0

[Π(x), φ(x′)] = −iδ3(~x− ~x′) (157)
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Hence, we find that the spectral function obeys the following identity (known
as the spectral sum rule)

1 = Z +

∫ ∞

m2
1

dµ2σ(µ2) (158)

From the positivity of σ(m′2) we get, 0 ≤ Z ≤ 1. The lower end of the integra-
tion range, the threshold for multi-particle production m2

1 is equal to 4m2 since,
at least, we must create two elementary excitations. A similar analysis can be

E

two-particle continuum

m1

m

~p

single-particle spectrum

Figure 15: Spectrum of the propagator.

done for the Feynman (time-ordered) propagator

GF (x− x′;m) = −i〈0|Tφ(x)φ(x′)|0〉 (159)

which has the spectral representation

GF (x − x′;m) = ZG0(x− x′;m) +

∫ ∞

m2
1

dµ2σ(µ2)G0(x− x′;µ2) (160)

This decomposition is known as the Lehmann representation. Here G0(x −
x′;m2) is the Feynman propagator for a free field

G0(x− x′) = −
∫

d4p

(2π)4
e−ip · (x− x′)

p2 −m2 + iǫ
(161)
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In the limit ǫ→ 0+, the poles of the integrand can be manipulated to give

lim
ǫ→0+

1

p2 −m2 + iǫ
= P 1

p2 −m2
− iπδ(p2 −m2) (162)

Using this identity we get that, in momentum space, the propagator is given by

GF (p;m) = − Z

p2 −m2 + iǫ
−

∫ ∞

m1

dµ2 σ(µ2)

p2 − µ2 + iǫ
(163)

Its imaginary part is given by

Im GF (p;m) = πZ δ(p2 −m2) + π

∫ ∞

m2
1

σ(µ2)δ(p2 − µ2) (164)

Hence
1

π
Im GF (p;m) = Z δ(p2 −m2) + σ(p2)Θ(p2 −m2

1) (165)

σ(Q2)

two-particle continuum

Q2

cutthreshold

m2 m2
1

pole

Figure 16: The analytic structure of the propagator is encoded in the spectral
density σ(Q2).

Once the imaginary part is known, the real part is found through the Kramers

- Krönig or dispersion relation.

Re GF (p,m2) =
1

π
P

∫ ∞

0

dµ2 Im GF (p, µ2)

µ2 − p2 − iǫ
(166)

We see that, in general, there are two contributions to Im GF (p;m). The
first term is the contribution from the single particle states. In addition, then
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is a smooth contribution (the second term) which results form multi-particle
production. While the single-particle states contribute with an isolated pole (a
δ-function in the imaginary part), the multiple particle states (or continuum)
are represented by a branch cut.

There is a simple and natural physical interpretation of these results. If the
incoming state has Q2 < m2 it cannot propagate since the allowed value is at
least, m2 (the physical mass). If Q2 > m2

1, and if there are no bound states, the
incoming state can decay into at least two single particle states. Hence m2

1 =
4m2. These states should form a continuum since given the initial momentum
Pi there are many multi-particle states with the same total momentum. Thus,
those processes are incoherent. Notice that without interactions, the incoming
state would not have been able to decay into several single particle states.

We should stress that the propagators of all the theories that we have dis-
cussed have the same type of analytic structure that we have discussed here.

10.5 The S-matrix and the Vacuum Expectation Value of Time

Ordered Products of Fields

We are now in position to find the connection between S-matrix elements and v.
e. v. of time-ordered fields. For simplicity we will keep in mind the case of scalar
fields but the results are easily generalizable. The actual derivation is rather
lengthy and unilluminating. We will discuss its meaning and refer to standard
texts for details.

Let’s assume that we want to evaluate the matrix element

〈p1, . . . , pn; out|q1, . . . , qm; in〉 = 〈p1, . . . , pn|Ŝ|q1, . . . , qm〉 (167)

We will assume that all incoming and outgoing momenta are different. This
matrix element is given by the reduction formula

〈p1, . . . , pn|Ŝ|q1, . . . , qm〉 =
i

Z(n+m)/2

∫
d4y1 . . . d

4ynd
4x1 . . . d

4xn

× exp

[
i(

n∑

ℓ=1

pℓ · yℓ −
m∑

k=1

qk · xk)

]
n∏

ℓ=1

(
∂2

yℓ
+m2

) m∏

k=1

(
∂2

xk
+m2

)

×〈0|T (φ(y1) . . . φ(yn)φ(x1) . . . φ(xm)) |0〉
(168)

where m2 is the physical mass and the external momenta p and q are on the
mass shell, p2 = q2 = m2.

Let us consider for example the 2 → 2 process

〈p1, p2; out|q1, q2; in〉 = 〈p1p2, in|Ŝ|q1, q2; in〉
= 〈p1p2, out|a†in(q1)|q2, in〉

(169)
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where a†in(q1) is

a†in(q1) = −i
∫

fixed t

d3x ∂0

↔

φin(x) e−iq1 · x =

∫
d3x (ω(q)φin(x) + iΠin(x)) e

−iq1 · x

(170)

Hence, the matrix element is

〈p1p2out|q1q2in〉 = −i lim
t→−∞

∫

t

d3x ∂0

↔

〈p1p2out|φin(x)|q2in〉 e−iq1 · x

≡ −i lim
t→−∞

1

Z1/2

∫

t

d3x ∂0

↔

〈p1p2out|φ(x)|q2in〉 e−iq1 · x

(171)

where we have made the replacement of φin by 1
Z1/2φ inside the matrix element

(t→ −∞).
But

〈0|φ(x)|1〉 = Z1/2〈0|φin(x)|1〉 = Z1/2〈0|φout(x)|1〉 (172)

and
(

lim
tf→+∞

− lim
ti→−∞

) ∫
d3x F (~x, t) = lim

tf→+∞
lim

ti→−∞

∫ tf

ti

dt
∂

∂t

∫
d3x F (~x, t)

(173)
These formulas allow us to write

lim
tf→+∞

∫
d3x 〈p1p2, out|a†in(q1)|q2, in〉 =

= lim
ti→−∞

∫
d3x 〈p1p2, out|a†in(q1)|q2, in〉 +

∫
d4x ∂0〈p1p2, out|a†in(q1)|q2, in〉

= 〈p1p2, out|a†out(q1)|q2, in〉
(174)

Thus, the matrix element is

〈p1p2, out|q1q2, in〉 = 〈p1p2, out|a†out(q1)|q2in〉

+
i

Z1/2

∫
d4x ∂0

[
e−iq1 · x∂0

↔

〈p1p2out|φ(x)|q2in〉
]

(175)

The first contribution is a disconnected term and it is given by

〈p1p2out|a†out(q1)|q2in〉
= (2π)32p0

1δ
3(p1 − q1)〈p2out|q1in〉 + (2π)32p0

2δ
3(p2 − q1)〈p1out|q1in〉

(176)
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Notice that, if q1 is on the mass shell, q21 = m2, and e−iq1x is a solution of the
Klein-Gordon equation

(∂2 +m2)eiq1 · x = 0 (q21 = m2) (177)

The second contribution to the matrix element can also be evaluated (for arbi-
trary states α and β )

∫
d4x ∂0

[
e−iq1·x∂0

↔

〈β, out|φ(x)|α, in〉
]

=

∫
d4x

[
e−iq1 · x∂2

0〈β, out|φ(x)|α, in〉 + (−∂2
0e
−iq1 · x)〈β, out|φ(x)|α, in〉

]

=

∫
d4x

[
e−iq1·x∂2

0〈β, out|φ(x)|α, in〉 +
[(
−▽2 +m2

)
e−iq1 · x

]
〈β, out|φ(x)|α, in〉

]

=

∫
d4xe−iq1 · x(∂2 +m2)〈β, out|φ(x)|α, in〉

(178)

where we have integrated by parts. Hence, the matrix element is

〈p1p2, out|q1q2, in〉 =
i

Z1/2

∫
d4x1e

−iq1 · x1(∂2 +m2)〈p1p2, out|φ(x1)|q2, in〉

+(2π)32p0
1δ

3(p1 − q1) 〈p2, out|q2, in〉 + (2π)32p0
2δ

3(p2 − q1)〈p1, out|q2, in〉
(179)

The matrix element inside the integrand of the first term is equal to

〈p1p2, out|φ(x1)|q2, in〉 = lim
y0
1
→+∞

i

Z1/2

∫
d3y1e

ip1·y1∂y0
1

↔

〈p2out|φ(y1)|q2in〉

(180)
where (by definition) y0

1 > x0
1. This expression is also equal to

〈p1p2out|φ(x1)|q2in〉 = 〈p2, out|φ(x1)ain(p1)|q2, in〉

+
i

Z1/2

∫
d4y1e

ip1 · y1(∂2
y1

+m2)〈p2out|Tφ(y1)φ(x1)|q2in〉

(181)

By substituting back into the expression from the matrix element we find that
the latter is equal to

〈p1p2, out|q1q2, in〉 =

(2π)32p0
1δ

3(p1 − q1)〈p2out|q2in〉 + (2π)32p0
2δ

3(p2 − q1)〈p1out|q2in〉

+
i

Z1/2

∫
d4x1e

−iq1 · x1(∂2
x1

+m2)〈p2out|φ(x1|0, in〉(2π)32q02δ
3(q2 − p1)

+

(
1

Z1/2

)2 ∫
d4x1d

4y1e
i(p1 · y1 − q1 · x1)(∂2

x1
+m2)(∂2

y1
+m2)

×〈p2out|Tφ(y1)φ(x1)|q2in〉
(182)
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By iterating this process once more we obtain the reduction formula plus dis-
connected terms. The reduction formula provides the connection between the
on-shell S-matrix elements and v. e. v. of time ordered products. Notice that
the reduction formula implies that the Green functions must have poles in the
variables p2

1 (where pi is conjugate to xi) and that the matrix element is the
residue of this pole. We will see later on that this residue is the on-shell one
particle irreducible vertex function.

The reduction formula shows that all scattering data can be understood in
terms of an appropriate v. e. v. of a time ordered product of field operators.
The problem that we are left to solve is the computation of these v. e. v. ’s. We
will use perturbation theory to find them.

10.6 Linear Response Theory

In addition to the problem of evaluating S-matrix elements, it is of interest
to consider the response of a system to weak localized external perturbations.
These responses will tell us much about the nature of both the ground state
and of the low-lying states of the system. This method is of great importance
for the study of systems in condensed matter physics.

Let H be the full Hamiltonian of a system. We will consider the coupling
of the system to weak external sources. Let Â(x, t) be a local observable such
as the charge density, the current density or the local magnetic moment. Let
us represent the coupling to the external source by an extra term Hext(t) in the
Hamiltonian. The total Hamiltonian now is

HT = H +Hext (183)

If the source is adiabatically switched on and off, then the Heisenberg represen-
tation for the isolated system becomes the interaction representation for the full
system. Hence, exactly as in the interaction representation, all the observables
obey the Heisenberg equations of motion of the system in the absence of the
external source while the states will follow the external source in their evolution.
Namely, let |gnd〉 be the exact ground state (or vacuum) of the system in the
absence of any external sources. The external sources perturb this ground state
and cause the v.e.v. of the local observable Â(x, t) to change:

〈gnd|Â(~x, t)|gnd〉 → 〈gnd|U−1(t) Â(~x, t) U(t)|gnd〉 (184)

where the time evolution operator U(t) is now given by

U(t) = T exp{− i

~

∫ t

−∞

dt′Hext(t
′)} (185)

Linear Response Theory consists in evaluating the changes in the expectation
values of the observables to leading order in the external perturbation. Thus, to
leading order in the external sources, the change is

δ〈gnd|Â(~x, t)|gnd〉 =
i

~

∫ t

−∞

dt′ 〈gnd|[Hext(t
′), Â(~x, t)]|gnd〉 + . . . (186)
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Quite generally, we will be interested in the case in which Hext represents the
local coupling of the system to an external source f(~x, t) through the observable
Â(~x, t) . Thus, we will choose the perturbation Hext(t) to have the form

Hext(t) =

∫
d3x f(~x, t) Â(~x, t) (187)

The function f(~x, t) is usually called the force. If the observable is normal or-
dered relative to the ground state of the isolated system, i.e., 〈gnd|Â(~x, t)|gnd〉 =
0, the change of its expectation value will be equal to the final value and it is
given by

δ〈gnd|Â(~x, t)|gnd〉f =
i

~

∫ t

−∞

dt′
∫
d3x′ 〈gnd|Â(~x, t′), Â(~x, t)]|gnd〉 f(~x′, t′)+· · ·

(188)
The main assumption of Linear Response theory is that the response is propor-

tional to the force. The proportionality constant is interpreted as a generalized

susceptibility χ.

δ〈gnd|Â(~x, t)|gnd〉 = χ · f ≡
∫
d3x′

∫ t

−∞

dt′ χ(x, x′) f(x′) + . . . (189)

where χ(x, x′) is the susceptibility.
LetDR(x, x′) represent the retarded Green function of the observable Â(~x, t),

DR(x, x′) = −iΘ(x0 − x′0)〈gnd|[Â(x), Â(x′)]|gnd〉 (190)

We see that 〈A(x)〉 is determined by DR(x, x′) since

δ〈gnd|A(x)|gnd〉 =
1

~

∫
d4x′DR(x, x′)f(x′) + . . . (191)

Therefore, the responses and the susceptibilities are given by retarded Green
functions, not by time-ordered ones. However, since the retarded and time-
ordered Green functions are related by an analytic continuation, the knowledge
of the latter gives the information about the former.

Let us Fourier transform the time-dependence of 〈A(~x, t)〉. The Fourier
transform, 〈A(~x, ω)〉, is given by the expression

δ〈gnd|A(~x, ω)|gnd〉 =
∫
d3x′

{
− i

~

∫ 0

−∞

dτ〈gnd|[A(~x, t), A(~x′, t+ τ)]|gnd〉 eiωτ
}
f(~x ′, ω)

(192)

where f(~x, ω) is the Fourier transform of f(~x, t). Thus, the Fourier transform
of the generalized susceptibility, χ(~x, ~x ′;ω) is given by

χ(~x, ~x ′;ω) = − i

~

∫ 0

−∞

dτ eiωτ 〈gnd|[A(~x, 0)A(~x ′, τ)]|gnd〉 (193)
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which is known as the Kubo Formula. Hence

χ(~x, ~x ′;ω) =
1

~

∫ +∞

−∞

dτ eiωτDR(x, x′) (194)

If we also Fourier transform the space dependence, we get

〈A(~p, ω)〉 =
1

~
DR(~p, ω)f(~p, ω) (195)

and the generalized susceptibility χ(~p, ω) now becomes

χ(~p, ω) =
〈A(~p, ω)〉
f(~p, ω)

=
1

~
DR(~p, ω) (196)

In practice we will compute the time-ordered Green Function D(x, x′). If we
recall our discussion about the propagator, we expect D(~p, ω) to have poles on
the real frequency axis. For D(x, x′) to be time ordered, all the poles with
ω < 0 should be moved (infinitesimally) upwards into the complex frequency
upper half-plane while all poles with ω > 0 should be moved downwards into
lower half-plane. ThusD(p, ω) is not analytic on either half-plane. The retarded
Green function DR(p, ω) is (with our conventions for Fourier transform) analytic
in the lower half-plane. Thus we can relate D(p, ω) to DR(p, ω) by

ReDR(p, ω) = ReD(p, ω) ≡ ~Reχ(p, ω)
ImDR(p, ω) = ImD(p, ω)signω ≡ ~Imχ(p, ω)

(197)

The time-ordered Green function D(p, ω) (the propagator for the observable
Â(x, t)) admits a spectral (or Lehmann) representation similar to that of the
propagator for the relativistic scalar field, Eq.(160). Similarly, we can define the
spectral function A(p, ω) of the observable to be A(p, ω) = ImDret(p, ω).

These relations imply that the susceptibility χ(p, ω) obeys the Kramers-
Krönig (or dispersion) relation

Reχ(p, ω) =
1

π
P

∫ +∞

−∞

dω′ Imχ(p, ω′)

ω′ − ω
(198)

Finally, let us recast the formulas for a general change of an arbitrary operator
into a more compact form. We can apply the formulas that we derived for the
interaction representation just to the part of the Hamiltonian which involves
the coupling to the external sources Hext(t). The interaction representation
S-matrix is

Ŝ = lim
t→+∞

U(t) = T e
− i

~

∫ +∞

−∞

dtHext(t)
(199)

Let 〈gnd, out|gnd, in〉 be the vacuum persistence amplitude

〈gnd, out|gnd, in〉 = 〈gnd|Ŝ|gnd〉 = 〈gnd|T e
− i

~

∫ +∞

−∞

dt Hext(t)
|gnd〉 (200)
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which we denote by Z[f ]

Z[f ] = 〈gnd|T e
− i

~

∫
d4x f(x) A(x)

|gnd〉 (201)

By expanding in powers of f(x) we get

Z[f ] = 1 − i

~

∫
d4xf(x)〈gnd|A(x)|gnd〉

+
1

2!
(− i

~
)2

∫
d4x

∫
d4x′f(x)f(x′)〈gnd|T A(x)A(x′)|gnd〉 + . . .

(202)

The second term vanishes if A(x, t) is normal ordered. Within the same degree
of precision, we can re-exponentiate this expression to give

Z[f ] = e

i

2~

∫
d4x

∫
d4x′f(x)K(x, x′)f(x′) + 0(f3)

(203)

where the kernel K(x, x′) is the time-ordered Green function

K(x, x′) =
i

~
〈gnd|TA(x)A(x′)|gnd〉 (204)

In general the observables of physical interest are, at least, bilinears in the fields.
Thus, the kernels K(x, x′) represent not one-particle propagators but generally
propagators for two or more excitations. We can learn a lot from a physical
system if the spectral functions of the kernels K(x, x′) are known. In general
we expect that the spectral function will have a structure similar to that of
the propagator: one (or more) δ-function contributions and a branch cut. The
δ-functions are two (or more) particle bound states known as collective modes.
The branch cuts originate from the two or multi-particle continuum. Examples
of collective modes are plasmons (sound waves) in electron liquids and spin
waves in magnets.

10.6.1 Application of the Kubo Formula: Electrical Conductivity of

a Metal

We will only consider the response of an electron gas to weak external electro-
magnetic fields Aµ(x). The formalism can be generalized easily to other systems
and responses. In particular, we will consider the electrical conductivity of a
metal.

There are three effects (and couplings) that we need to take into consider-
ation: a) electrostatic, b) diamagnetic (or orbital) and c) paramagnetic. The
electrostatic coupling is simply the coupling to an external potential with Hext

given by

Hext =
∑

σ=↑,↓

∫
d3x eφ(x, t) ψ†

σ(x)ψσ(x) (205)
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where φ ≡ A0 is the scalar potential ( or time component of the vector potential
Aµ). The diamagnetic coupling (or orbital) follows from the minimal coupling

to the external vector potential ~A. The kinetic energy term HK is modified
following the minimal coupling prescription to become

HK(A) =

∫
d3x

∑

σ=↑,↓

~
2

2m

(
~▽ +

ie

~c
~A(x)

)
ψ†

σ(x)·
(
~▽− ie

~c
~A(~x)

)
ψσ(x) (206)

which can be written as a sum of two terms

HK(A) = HK(0) +Hext(A) (207)

where HK(0) is the Hamiltonian in the absence of the field and Hext(A) is the
perturbation, i.e.,

Hext(A) =

∫
d3x

[
~J(~x) · ~A(~x) − e2

2mc2
~A 2(~x)

∑

σ

ψ†
σ(~x)ψσ(~x)

]
(208)

Here ~J(~x) is the gauge-invariant charge current

~J(~x) =
ie~

2mc

∑

σ

[
ψ†

σ(~x)~▽ψσ(~x) − ~▽ψ†(~x)ψ(~x)
]
− e2

mc2
~A(~x)

∑

σ

ψ†
σ(~x)ψσ(~x)

≡ ie~

2mc

∑

σ

[
ψ†

σ(~x) ~Dψσ(~x) −
(
~Dψσ(~x)

)†

ψσ(~x)

]

(209)

Clearly ~J(~x) is the sum of the two terms, one which represents the mass current

and the diamagnetic term, e2

mc2
~A 2

∑
σ ψ

†
σψσ. We can write the total perturba-

tion, including the scalar potential A0, if we write

Hext =

∫
d3x

[
Jµ(x)Aµ(x) − e2

2mc2
~A 2

∑

σ

ψ†
σψσ

]
(210)

Finally, we can also consider a paramagnetic coupling to the spin degrees of
freedom which has the Zeeman form

HZeeman
ext =

∫
d3x g ~B(~x) ·

∑

σ,σ′

ψ†
σ(~x)~Sσσ′ψσ′(~x) (211)

where g is typically of the order of the Bohr magneton µB and ~S = ~

2~σ for spin
one-half systems.

A straightforward application of the Linear Response formulas derived above
yields an expression for the current 〈Jµ〉′ in the presence of the perturbation.

〈Jµ(x)〉′ = 〈Jµ(x)〉gnd−
i

~

∫ t

−∞

dt′
∫
d3x′〈gnd|[Jν(x′), Jµ(x)]|gnd〉Aν(x′) (212)
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This formula suggests that we should define the retarded current correlation

function DR
µν(x, x′)

DRet
µν (x, x′) = −iΘ(x0 − x′0)〈gnd|[Jµ(x), Jν(x′)]|gnd〉 (213)

The induced current 〈Jµ〉ind

〈Jµ〉ind = 〈Jµ〉′ − 〈jµ〉gnd (214)

(where jµ is the mass current) has a very simple form in terms of DR
µν(x, x′),

namely

〈Jµ(x)〉ind =
1

~

∫
d4x′DRet

µν (x, x′)Aν(x′) − e2

mc2
Ak(x)〈n(x)〉δµk +O(A2) (215)

Below we will show that 〈Jµ(x)〉ind is (a) conserved (i.e., ∂x
µ〈Jµ(x)〉ind = 0) and

(b) gauge-invariant.
Since 〈Jµ(x)〉ind is gauge invariant, we can compute its form in any gauge.

In the gauge A0 = 0 the spatial components of 〈Jµ(x)〉ind are

〈Jk(x)〉ind = − e2ρ

mc2
Ak(x) +

∫
d4x′Dret

kℓ (x− x′)Aℓ(x
′) +O(A2) (216)

In this gauge, the external electric field ~Eext and magnetic field ~H are

~Eext = −∂0
~A ~H = ~▽× ~A (217)

Now, in Fourier space, we can write

〈Jk(~p, ω)〉ind = − e2ρ

mc2
Ak(~p, ω) + Dret

kℓ (~p, ω)Aℓ(~p, ω)

≡
(
Dret

kℓ (~p, ω) − e2ρ

mc2
δkℓ

)
Eext

ℓ

iω
(p, ω)

(218)

This expression is almost the conductivity. It is not quite that since the con-
ductivity is a relation between the total current ~J = ~Jind + ~Jext and the total

electric field ~E. In order to take these electromagnetic effects into account, we
must use Maxwell’s equations in a medium, which involve ~E, ~D, ~B and ~H

~▽ · ~D = ρ ~▽× ~E = −∂ ~H
∂t

~▽ · ~B = 0 ~▽× ~H = ∂ ~E
∂t + ~J

(219)

where
~B = ~H + ~M ~E = ~Eext + ~Eind (220)

Here ~M and ~Eind are the magnetic and electric polarization vectors. In partic-
ular

~J ind = ∂t
~Eind (221)
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and
∂t
~D = ∂t

~E + ~J ind (222)

Linear Response theory is the statement that ~D must be proportional to ~E,

Dj = εjkEk (223)

where εjk is the dielectric tensor. Since ~E and ~Eext satisfy similar equations

−~▽× ~▽× ~E = ∂2
t
~E + ∂t

~J

−~▽× ~▽× ~Eext = ∂2
t
~Eext + ∂t

~Jext

(224)

Since ~▽× ~▽× ~E = ~▽(~▽ · ~E)−▽2 ~E, we can write, for the Fourier transforms,
the equations

pipjEj(~p, ω) − ~p2Ei(~p, ω) = −ω2Ej(~p, ω) − iωJi(~p, ω)

pipjE
ext
j (~p, ω) − ~p2Eext

i (~p, ω) = −ω2Eext
i (~p, ω) − iωJext

i (~p, ω)

(225)

Thus, we get

pipjEj(~p, ω) − ~p 2Ei(~p, ω) + ω2Ei(~p, ω) = −iωJ ind
i (~p, ω)

+ pipjE
ext
j (~p, ω) − ~p 2Eext

i (~p, ω) + ω2Eext
i (~p, ω)

(226)

and

−iωJ ind
i (~p, ω) =

(
δij

e2ρ

mc2
−DR

ij(~p, ω)

)
Eext

j (~p, ω) (227)

from where we conclude that

(pipj − ~p 2δij + ω2δij) Ej(~p, ω) =

(δij
e2ρ

mc2
−DR

ij(~p, ω) + pipj − ~p 2δij + ω2δij) E
ext
j (~p, ω)

(228)

In matrix form, these equations have the simpler form

(p⊗ p− ~p2I + ω2I) ~E =

(
e2ρ

mc2
I −DR + p⊗ p− ~p 2I + ω2I

)
~Eext (229)

This equation allows us to write ~Eext in terms of ~E. We find that the induced
current is

iω ~Jind =
(
DR − e2ρ

mc2
I

) [
e2ρ

mc2
I −DR + p⊗ p− ~p 2I + ω2I

]−1 (
p⊗ p− ~p 2I + ω2I

)
~E

(230)
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and we find that the conductivity tensor σ is

iωσ(~p, ω) =

(
DR(~p, ω) − e2ρ

mc2
I

)
+

(
DR(~p, ω) − e2ρ

mc2
I

) [
e2ρ

mc2
I −DR(~p, ω) + p⊗ p− ~p2I + ω2I

]−1 (
DR(~p, ω) − e2ρ

mc2
I

)

(231)

Also, since ~D = ε ~E, the dielectric tensor ε is

ε = I +
i

ω
σ (232)

10.6.2 Correlation Functions and Conservation Laws

In the problem discussed in the previous section, we saw that we had to consider
a correlation function of currents. Since the currents are conserved, i.e.,

∂µJ
µ = 0, (233)

we expect that the correlation function Dµν(x, x′) should obey a similar equa-
tion. Let us compute the divergence of the retarded correlation function,

∂x
µDµν

ret(x, x
′) = ∂x

µ (−iΘ(x0 − x′0)〈gnd|[Jµ(x), Jν(x′)]|gnd〉) (234)

Except for the contribution coming from the step function, we see that we can
operate with the derivative inside the expectation value to get

∂x
µDµν

ret(x, x
′) = −i

(
∂x

µΘ(x0 − x′0)
)
〈gnd|[Jµ(x), Jν(x′)]|gnd〉

−iΘ(x0 − x′0)〈gnd|[∂x
µJ

µ(x), Jν(x′)]|gnd〉
(235)

The second term vanishes since Jµ(x) is a conserved current and the first term
is non zero only if µ = 0. Hence we find

∂x
µDµν

ret(x, x
′) = −iδ(x0 − x′0)〈gnd|

[
J0(x), Jν (x′)

]
|gnd〉 (236)

which is the v.e.v. of an equal-time commutator. These commutators are given
by

〈gnd|
[
J0(~x, x0), J

0(~x, x0)
]
|gnd〉 = 0

〈gnd|
[
J0(~x, x0), J

i(~x′, x0)
]
|gnd〉 =

ie2

mc2
∂x

k [δ(~x− ~x′)〈n(~x)〉]
(237)

Hence, the divergence of Dret
µν is

∂µ
xDret

µk (x, x′) =
e2

mc2
∂x

k

[
δ4(x− x′)〈n(x)〉

]
; ∂µ

x′Dret
0µ (x, x′) = 0 (238)
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and

∂ν
x′Dret

kν (x, x′) = − e2

mc2
∂x

k

[
δ4(x− x′)〈n(x′)〉

]
; ∂µ

x′Dret
0µ (x, x′) = 0 (239)

Notice that the time-ordered functions also satisfy these identities. These iden-
tities can be used to prove that 〈 ~J ind〉 is indeed gauge-invariant and conserved.
Furthermore, in momentum and frequency space, the identities become

−iωDR
00(~p, ω) − ipkDR

k0(~p, ω) = 0

−iωDR
0k(~p, ω) − ipℓDR

ℓk(~p, ω) = − e2n̄

mc2
ipk

−iωDR
00(p, ω) − ipkDR

0k(~p, ω) = 0

−iωDR
k0(~p, ω) − ipℓDR

kℓ(~p, ω) = − e2n̄

mc2
ipk

(240)

We can combine these identities to get

ω2DR
00(~p, ω) − pℓpkDR

ℓk(~p, ω) = − e2n̄

mc2
~p 2 (241)

Hence, the density-density and the current-current correlation functions are not
independent. A number of interesting identities follow from this equation. In
particular if we take the static limit ω → 0 at fixed momentum ~p, we get

lim
ω→0

pℓpkDret
ℓk (~p, ω) =

e2n̄

mc2
~p 2 (242)

provided that limω→0 Dret
00 (~p, ω) is not singular for ~p 6= 0. Also from the equal-

time commutator

〈gnd|[Jk(~x, x0), J0(~x, x0)]|gnd〉 =
ie2

mc2
∂x

k (δ(~x − ~x′)〈n(x)〉) (243)

we get

lim
x′

0
→x0

∂x
kDret

k0 (x, x′) =
e2

mc2
▽2

x (δ(x− x′)〈n(x)〉) (244)

If the system is uniform, 〈n(x)〉 = n̄ = ρ, we can Fourier transform this identity
to get ∫ +∞

−∞

dω

2π
ipkDret

k0 (~p, ω) = − e2n̄

mc2
~p 2 (245)

The conservation laws yield the alternative expression

∫ +∞

−∞

dω

2π
iωDret

00 (~p, ω) =
e2n̄

mc2
~p 2 (246)

which is known as the f -sum rule.
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If the system is isotropic, these relations can be used to yield a simpler form
for the conductivity tensor. Indeed, for an isotropic system Dret

kℓ (~p, ω) can only
have the form of a sum of a longitudinal part Dret

‖ and a transverse part Dret
⊥

Dret
ℓk (~p, ω) = Dret

‖ (~p, ω)
pℓpk

~p 2
+ Dret

⊥ (~p, ω)

(
pℓpk

~p 2
− δℓk

)
(247)

Thus, we get a relation between Dret
00 and Dret

‖

ω2Dret
00 (p, ω) − ~p 2Dret

‖ (~p, ω) = − e2n̄

mc2
~p 2 (248)

Hence

Dret
00 (~p, ω) =

~p 2

ω2

(
Dret

‖ (~p, ω) − e2n̄

mc2

)
(249)

and

lim
ω→0

Dret
‖ (~p, ω) =

e2n̄

mc2
(250)

for all ~p.
The conductivity tensor can also be separated into longitudinal σ‖ and trans-

verse σ⊥ pieces

σij = σ‖
pipj

~p 2
+ σ⊥

(
pipj

~p 2
− δij

)
(251)

we find

σ‖ = iω

[
Dret

‖ − e2n̄
mc2

−Dret
‖ + e2n̄

mc2 + ω2

]
(252)

and

σ⊥ =
1

iω

(
Dret

⊥ − e2n̄

mc2

) [
1 +

Dret
⊥ − e2n̄

mc2

e2n̄
mc2 −Dret

⊥ + ω2 − ~p 2

]
(253)

These relations tell us that the real part of σ‖ is determined by the imaginary
part of Dret

‖ . Thus, the resistive part of σ‖ (which is responsible for dissipation

in the system) is determined by the imaginary part of a response function. This
is generally the case.

A The Dirac Propagator in a Background Elec-

tromagnetic Field and Coulomb Scattering

Let us consider briefly the Dirac propagator in a background electromagnetic
field and use it to compute the S-matrix for Coulomb scattering. By a back-
ground field we mean a classical (fixed but possibly time-dependent) electro-
magnetic field Aµ(x). We will denote by SF (x, x′|A) the Dirac propagator in a
background field Aµ. SF (x, x′|A) obeys the Green function equation

(
i/∂ − e/A−m

)
SF (x, x′|A) = δ4(x − x′) (254)
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whereas the Dirac propagator SF (x, x′) in the absence of a background field
obeys instead (

i/∂ −m
)
SF (x, x′) = δ4(x− x′) (255)

Thus, we can also write Eq.(254) as

(
S−1

F − e/A
)
SF (A) = 1 (256)

Hence

SF (x, x′|A) = SF (x − x′) + e

∫
d4y SF (x− y) /A(y) SF (y, x′|A) (257)

or, in components,

Sαβ
F (x, x′|A) = Sαβ

F (x− x′) + e

∫
d4y Sαλ

F (x − y) [Aµ(y)γµ]
λσ

Sσβ
F (y, x′|A)

(258)
As an explicit application we will consider the case of Coulomb scattering of
Dirac electrons from a fixed nucleus with positive electric charge Ze. We will
now compute the S-matrix for this problem in the Born approximation. As in
non-relativistic Quantum Mechanics, in this approximation we replace the prop-
agator in the integrand of Eqs. (257) and (258) by the free Dirac propagator,
SF (x− x′).

Consider now an incoming state, a spinor the we will denote by Ψi(x), with
a particle with positive energy (an electron) and spin up (say in the z direction),
and momentum ~pi. This incoming (initial) state is (for x0 → −∞)

Ψi(x) =
1√
V
u(α)(pi)

√
m

Ei
e−ipi · x (259)

The outgoing (final) state Ψf (x) is a spinor representing also a particle with pos-
itive energy (an electron) with spin up (also in the z direction) and momentum
~pf , and it is given by

Ψf (y) =
1√
V
u(β)(pf )

√
m

Ef
e−ipf · y (260)

The S-matrix is

Sfi = i lim
x0→−∞

lim
y0→+∞

∫
d3x

∫
d3yΨf (~y, y0) SF (y, x|A) Ψi(~x, x0) (261)

At the level of the Born approximation we can write

Sfi = i lim
x0→−∞

lim
y0→+∞

∫
d3x

∫
d3yΨf (~y, y0) SF (y, x) Ψi(~x, x0) +

i lim
x0→−∞

lim
y0→+∞

∫
d3x

∫
d3y

∫
d4zΨf (~y, y0) SF (y, z) /A(z) SF (z, x) Ψi(~x, x0) + . . .

(262)
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We now recall the expression for the free Dirac propagator

SF (x− x′ = −i〈0|Tψα(x)ψ̄α′ (x′)|0〉

= −i
∫

d3p

(2π)3

(
m

E(p)

) (
θ(x′0 − x0)e

−ip · (x′ − x)Λ+(p) + θ(x0 − x′0)e
−ip · (x− x′Λ−(p)

)

(263)

where Λ±(p) are projection operators onto positive (particle) and negative (anti-
particle) energy states:

Λ±(p) =
1

2m

(
±/p+m

)
(264)

Alternatively, we can express the propagator in terms of the basis spinors uσ(p)
(which span the positive energy states), and vσ(p) (which span the negative
energy states), as

SF (x′ − x) = −iθ(x′0 − x0)

∫
d3p

∑

σ=1,2

u(σ)
p (x′)ū(σ)

p (x)

+iθ(x0 − x′0)

∫
d3p

∑

σ=1,2

v(σ)
p (x′)v̄(σ)

p (x)

(265)

where we have used the notation

u(σ)
p (x) ≡ u(σ)(p) e−ip · x, v(σ)

p (x) = v(σ)(p) e−ip · x (266)

Let us begin by computing first the top line in Eq.(262), the projection of the
free propagator onto the initial and final states. By expanding the propagator
we find,

∫
d3xd3y ψ̄f (y)SF (y − x)ψi(x) =

−iθ(y0 − x0)

∫
d3p

∑

σ=1,2

∫
d3xd3y ψ̄f (y)u(σ)

p (y)ū(σ)
p (x)ψi(x)

+iθ(x0 − y0)

∫
d3p

∑

σ=1,2

∫
d3xd3y ψ̄f (y)v(σ)

p (y)v̄(σ)
p (x)ψi(x)

(267)

We now use the orthogonality relations of the Dirac basis spinors to find

∫
d3y ψ̄

(β)
f (y)u(σ)

p (y) = δβσδ3(~p− ~pf)

∫
d3x ū(σ)

p (x)ψ
(α)
i (x) = δσαδ3(~p− ~pi)

(268)
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Hence, to leading order the matrix element Sfi of the S-matrix is

Sfi = δ3(~pf − ~pi)δ
αβ + Born term (269)

Let us now compute the Born term (the first Born approximation). We will
need to compute first an expression for

∫
d3y ψ̄f (y)SF (y, z) (270)

and for ∫
d3x SF (z, x)ψi(x) (271)

Using once again the expansion of the propagator we find that Eq.(270) is
∫
d3y ψ̄f (y)SF (y, z) =

∫
d3y ψ̄

(β)
f (y)(−i)θ(y0 − z0)

∑

σ=1,2

∫
d3p u(σ)

p (y)ū(σ)
p (z)

+

∫
d3y ψ̄

(β)
f (i)θ(z0 − y0)

∑

σ=1,2

v(σ)
p (y)v̄(σ)

p (z)

= −iθ(y0 − z0)
∑

σ=1,2

∫
d3p

(∫
d3y ψ̄

(β)
f (y)uσ)

p (y)

)
ū(σ)

p (z)

+iθ(z0 − y0)
∑

σ=1,2

∫
d3p

(∫
d3y ψ̄

(β)
f (y)vσ)

p (y)

)
v̄(σ)

p (z)

=

{
−iθ(y0 − z0) ψ̄

(β)
f (z), if the final state is a particle

+iθ(z0 − y0) ψ̄
(β)
f (z), if the final state is an antiparticle

(272)

The other expression, Eq.(271), can be computed similarly. Putting it all to-
gether we find that the Born term is

Born term = −ie
∫
d4z ψ̄

(β)
f (z) /Aψ

(α)
i (z) θ(y0 − z0) θ(z0 − x0) (273)

corresponding to an electron propagating forward in time.
Let us evaluate this expression for the case of a Coulomb potential,

Aµ = (A0, 0), A0 =
−Ze
4πr

(274)

with r = |~z|. The Born term now becomes

Born term = −ie
∫ ∞

−∞

dz0

∫
d3z ψ̄

(β)
f (z)γ0ψ

(α)
i (z) θ(y0 − z0)

(−Ze
4πr

)

=
ie

V

m√
EiEf

Ze

4π

∫ ∞

−∞

dz0

∫
d3z ei(pf − pi) · z 1

r
ū(β)(pf )γ0u

(α)(pi)

(275)
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where V is the volume. Using now that
∫ ∞

−∞

dz0 e
i(Ef − Ei)z0 = 2πδ(Ef − Ei) (276)

we can write the Born term as

Born term =
iZα

V

m√
EiEf 2πδ(Ei − Ef

∫
d3r

e−i~q · r
r

ū(β)(pf )γ0u
(α)(pi)

(277)

where α = e2

4π is the fine structure constant, ~q = ~pf − ~pi is the momentum
transfer, and ∫

d3r
e−i~q · r

r
=

4π

|~q| (278)

The matrix element of the S-matrix, in the Born approximation, is then
equal to

Sfi = δαβδ3(~pf −~pi)+i
Zα

V

M√
EiEf

2πδ(Ei−Ef )
4π

q2
ū(β)(pf )γ0u

(α)(pi) (279)

Since

# states with ~pf within d3pf = V
d3pf

(2π)3
(280)

we can write the transition probability per particle into these final states as

|Sfi|2 V
d3pf

(2π3
= Z2 (4πα)2

EiV
m2 |ū(β)(pf )γ0u

(α)(pi)|2
|~q|4

d3pf

(2π)3Ef
2πδ(Ef − Ei) T

(281)
where T is the time of measurement (this is Fermi’s Golden rule).

Thus, the number of transitions per particle and unit time is

dPfi

dt
=

∫
| iZα
V

m√
EfEi

4π

|~q|2 ū
(β)(pf )γ0u

(α)(pi)|2 2πδ(Ef −Ei)V
d3pf

(2π)3
(282)

Dividing out this expression by the incoming flux, 1
V

|~pi|
Ei

, we obtain an expression
for the differential cross section

dσfi =

(∫
dpfp

2
f

4Z2α2m2

|~pi|Ef |~q|4
|ū(β)(pf )γ0u

(α)(pi)|2δ(Ef − Ei)

)2

dΩf (283)

For elastic scattering, |~pi| = |~pf | = pf and EdE = pfdpf , we obtain that the
differential cross section is

dσfi =
4Z2α2m2

|~q|4 |ū(β)(pf )γ0u
(α)(pi)|2dΩf (284)

For an unpolarized beam we get

dσfi

dΩ

∣∣∣
unpolarized

=
Z2α2

4|~p|2β2 sin4(θ/2)

(
1 − β2 sin2 θ

2

)
(285)

where β = v/c.
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