
1 Introduction to Field Theory

The purpose of this course, Physics 582, is two fold. Here I will to introduce
Field Theory as a framework for the study of systems with a very large number
of degrees of freedom, N → ∞. On the other hand, I will also introduce
and develop the tools that will allow us to treat such systems. Systems that
involve a large (in fact infinite) number of coupled degrees of freedom arise
in many areas of Physics, notably in High Energy and in Condensed Matter
Physics, among others. Although the physical meaning of these systems, and
their symmetries, is quite different they actually have much more in common
that it may seem beforehand. Thus, we will discuss, on the same footing, the
properties of relativistic quantum field theories, classical statistical mechanical
systems and condensed matter systems at finite temperature. This is a very
broad field of study and we will not be able to cover it in great depth each area.
Nevertheless we will learn that it is often that case that what is clear in one
context can be brought to expand our knowledge in a different physical setting.
We will focus on a few unifying themes, such as the construction of the ground
state (the “vacuum”), the role of quantum fluctuations, collective behavior and
the response of these systems to weak external perturbations.

1.1 Examples of Fields in Physics

A few examples of fields are:

1. Consider a very large box of linear size L → ∞, and the electromagnetic
field enclosed in it. At each point in space ~x we can define a vector (which

is a function of time as well) ~A(~x, t) and a scalar A0(~x, t). These are the

vector and scalar potentials. The physically observable electric field ~E
and magnetic field ~B are defined in the usual way

~B = ~▽× ~A ~E = −
1

c

∂ ~A

∂t
− ~▽A0 (1)

The time evolution of this dynamical system is determined by a local

Lagrangian density (which we will consider later on). The equations of
motion are just Maxwell’s equations. Let us define the 4-vector

Aµ(x) =
(

A0(x), ~A(x)
)

A0 ≡ A0 (2)

where µ = 0, 1, 2, 3, 4. Here x stands for the 4-vector

xµ = (ct, ~x) (3)

Clearly, to every point xµ of Minkowski space-time M we associate a value
of the vector potential Aµ. The vector potentials are ordered sets of four
real numbers and hence are elements of R

4. Thus a field configuration can
be viewed as a mapping of M onto R4,

A : M → R
4 (4)
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Since space-time is continuous we need an infinite number of 4-vectors to
specify a configuration of the electromagnetic field, even if the box was
finite (which is not). Thus we have a infinite number of degrees of freedom
for two reasons: space-time is both continuous and infinite.

2. Consider a three-dimensional crystal. A configuration of the system can be
described by the set of positions of its atoms (relative to their equilibrium

state), i.e., the set of deformation vectors ~d at every time t. Lattices are
labelled by ordered sets of three integers and are equivalent to the set

Z
3 = Z × Z × Z (5)

whereas deformations are given by sets of three real numbers, and are
elements of R

3. Hence a crystal configuration is a mapping

d : Z
3 × R → R

3 (6)

At length scales ℓ, which are large compared with the lattice spacing a but
small compared with the linear size L of the system, we can replace the
lattice Z3 by a continuum description in which the crystal is replaced by
a continuum three-dimensional Euclidean space R3. Thus the dynamics
of the crystal requires a four-dimensional space-time R3 ×R = R4. Hence
the configuration space becomes the set of continuous mappings

d : R
4 → R

3 (7)

In this continuum description, the dynamics of the crystal is specified in
terms of the displacement vector field ~d(~x, t) and its time derivatives, the

velocities ∂ ~d(~x,t)
∂t

, which define the mechanical state of the system. This
is the starting point of the Theory of Elasticity (see for instance L. D.
Landau and E. M. Lifshitz, “The Theory of Elasticity”, and P. Chaikin
and T. C. Lubensky, “Principles of Condensed Matter Physics”). The

displacement field ~d is the elastic field of the crystal.

3. Let us consider now a ferromagnet. This is a physical system, usually a
solid, in which there is a local average magnetization field ~M(~x) in the
vicinity of a point ~x. The local magnetization is simply the sum of the
local magnetic moments of each atom in the neighborhood of ~x. At scales
long compared to microscopic distances (the interatomic spacing a), ~M(~x)
is a continuous real vector field. In a number of situations of interest, the
magnitude of the local moment does not fluctuate but its local orientation
does. Hence, the local state of the system is specified locally by a three-
component unit vector ~n. Since the set of unit vector is in one-to-one
correspondence with the points on a sphere S2, the configuration space
is equivalent (isomorphic) to the sets of mappings of Euclidean three-
dimensional space onto S2,

n : R
3 → S2 (8)
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In an ordered state the individual magnetic moments become sponta-
neously oriented along some direction. For this reason, the field ~n is
usually said to be an order parameter field. In the the Theory of Phase
Transitions, the order parameter field represents the important degrees of
freedom of the physical system, i.e., the degrees of freedom that drive
the phase transition.

4. Charged fluids can be described in terms of a hydrodynamic picture. In
hydrodynamics one specifies the charge density ρ(~x, t) and the current
density ~j(~x, t) near a space-time point x. The charge and current densities
can be represented in terms of the 4-vector jµ

jµ(x) =
(

c ρ(~x, t),~j(~x, t)
)

(9)

where c is a suitably chosen speed (generally not the speed of light!).
Clearly, the configuration space is the set of maps

j : R
4 → R

4 (10)

In general we will be interested both in the dynamical evolution of such
systems and in their thermodynamic properties. Thus, we will need to determine
how does a system which, at some time t0 is in some initial state, manage
to evolve to some other state after some time T . In Classical Mechanics, the
dynamics of any physical system can be described in terms of a Lagrangian. The
Lagrangian is a local functional of the field and of its space and time derivatives.
Locality here means that the equations of motion are expressible in terms of
partial differential equations. (In other terms, we do not allow for “action-at-
a-distance”, but only local evolution.) Similarly, the thermodynamic properties
of these systems is governed by a local energy functional, the Hamiltonian.
That the dynamics is determined by a Lagrangian means that the field itself
is regarded as a mechanical system to which the standard laws of Classical
Mechanics apply. Hence, classically the wave equations are the equations of
motion of the field. This point of view will also tell us how to quantize a field
theory.

1.2 Why Quantum Field Theory

From a historical point of view field theory (and in particular quantum field
theory (QFT)) arose an outgrowth of research in the fields of nuclear and particle
physics. In particular, Dirac’s theory of electrons and positrons was, perhaps,
the first Quantum Field Theory (QFT). Nowadays, QFT is used, both as a
picture and as a tool, in a wide range of areas of physics. In this course, I will
not follow the historical path in the way QFT was developed. By and large, it
was a process of trial and error in which the results had to be reinterpreted a

posteriori. The introduction of QFT as the general framework of particle physics
implied that the concept of particle has to be understood as an excitation of a
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field. Thus photons become the quantized excitations of the electromagnetic field
with particle-like properties (momentum, etc. ). Dirac’s theory of the electron
implied that even such “conventional” particles have to be understood as the
excitation of a field.

The main motivation of these developments was the need to reconcile (or
unify) Quantum Mechanics with Special Relativity. In addition, the experi-
mental discoveries of the spin of the electron and of electron-positron creation
by photons, showed that not only the Schrödinger equation was inadequate to
describe such physical phenomena, but the very notion of a particle itself had
to be revised. Indeed, the Schrödinger equation

HΨ = i~
∂Ψ

∂t
(11)

where H is the Hamiltonian

H =
~̂p 2

2m
+ V (~x) (12)

and

~̂p =
~

i
~▽ (13)

is invariant under Galilean transformations (if the potential V = const) but not
under general Lorentz transformations. Hence, quantum mechanics as described
by the Schrödinger Equation, is not compatible by the requirement that physical
phenomena must be identical to all inertial observers. In addition it cannot
describe pair-creation processes as the number of particles is strictly conserved.

Back in the late 1920’s, two apparently opposite approaches were proposed
to solve these problems. We will see later on that these approaches actually do
not exclude each other. The first approach was to stick to the basic structure of
“particle” Quantum Mechanics and to write down a relativistic invariant version
of the Schrödinger equation. Since in Special Relativity the natural Lorentz
scalar involving the energy E of a particle of mass m is E2 − (~p 2c2 +m2c4), it
was proposed that the wave functions should be solutions of the equation (the
“square” of the energy)

[

(i~
∂

∂t
)2 −

(

(
~c

i
~▽)2 +m2c4

)]

Ψ = 0 (14)

This is the Klein-Gordon equation. This equation is invariant under the Lorentz
transformations,

xµ = Λµ
νx

′ν xµ = (x0, ~x) (15)

provided that the “wave function” Ψ(x) is also a scalar (i.e., invariant) under
Lorentz transformations

Ψ(x) = Ψ′(x′) (16)

However, it soon became clear that the Klein-Gordon equation was not com-
patible with a particle interpretation. In addition, it cannot describe particles
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with spin. In particular the solutions of the Klein-Gordon equation have the
(expected) dispersion law

E2 = ~p 2c2 +m2c4 (17)

which implies that there are positive and negative energy solutions

E = ±
√

~p 2c2 +m2c4 (18)

From a “particle” point of view, negative energy states are unacceptable since
they would imply that there is no ground state. We will see below that in QFT
there is a natural and simple interpretation of these solutions, and that in no
way make the system unstable. However, the meaning of the negative energy
solutions was unclear in the early thirties.

Since the “negative energy solutions” came from working with the “square”
of H , Dirac proposed to look for an equation which was linear in derivatives. In
order to be compatible with Special Relativity, the equation must be covariant

under Lorentz transformations, i.e., it should have the same form in all reference
frames. Dirac proposed a matrix equation which is linear in derivatives and the
“wave function” Ψ(x) thus became a four-component vector, a 4-spinor Ψ

i~
∂Ψ

∂t
(x) +

~c

i

3
∑

j=1

αab
j ∂jΨb(x) +mc2 βabΨb(x) = 0 (19)

where αj and β are four 4x4 matrices. For this equation to be covariant it is
necessary that Ψ transforms like a a spinor under Lorentz transformations

Ψ′

a(Λx) = Sab(Λ)Ψb(x) (20)

where S(Λ) is a suitable unitary matrix. The matrices αj and β have to be
pure numbers independent of the reference frame. By further requiring that the
iterated form of this equation (i.e., the “square”) satisfies the Klein-Gordon
equation for each component separately, Dirac found that the matrices have to
obey the (Clifford) algebra

{αj, αk} = 2δjk1

{αj , β} = 0

α2
j = β2 = 1

(21)

where 1 is the 4 × 4 identity matrix. The solutions are easily found to have
the energy eigenvalues E = ±

√

~p 2c2 +m2c4. (We will come back to this later
on.) It is also possible to show that the solutions are spin 1/2 particles and
antiparticles (we will also discuss this later on).

However, the particle interpretation of both the Klein-Gordon and the Dirac
equations was problematic. Although spin 1/2 appeared now in a natural way,
the meaning of the negative energy states remained unclear. The resolution of
all of these difficulties was the fundamental idea that these equations should
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not be regarded as the generalization of Schrödinger’s equation for relativistic
particles but instead as the equations of motion of a field whose excitations
are the particles, much in the same way as the photons are the excitations of
the electromagnetic field. In this picture particle number is not conserved but
charge is. Thus, photons interacting with matter can create electron-positron
pairs. Such processes do not violate charge conservation but the notion of a
particle as an object that is fundamental and has a separate physical identity is
lost. Instead, the field becomes the fundamental object and the particles become
the excitations of the field. thus, the relativistic generalization of Quantum
Mechanics is Quantum Field Theory. This concept is the starting point of
QFT. The basic strategy now becomes one in which one seeks for a field theory

with specific symmetry properties and whose equations of motion are Maxwell,
Klein-Gordon and Dirac’s equations respectively. Notice that if the particles
are to be regarded as the excitations of a field, there can be as many particles
as we wish. Thus, the Hilbert space of a QFT has an arbitrary (and indefinite)
number of particles. Such Hilbert space is called a Fock space.

Therefore, in QFT the field is not the wave function of anything. Instead
the field represents an infinite number of degrees of freedom. The wave function
in a QFT is a functional of the field configurations which themselves specify
the state of the system. We will see below that the states in Fock space are
given either by specifying the number of particles and their quantum numbers
or, alternatively, in terms of the amplitudes (or configurations) of some properly
chosen fields.

Different fields transform differently under Lorentz transformations. Conse-
quently, their excitations are particles with different quantum number. Thus,

1. The Klein-Gordon field φ(x) represents charge neutral scalar spin-0 par-
ticles. Its configuration space is the set of mappings of Minkowski space
onto the real numbers

φ : M → R (22)

or complex for charged spin-0 particles

φ : M → C (23)

2. the Dirac field represents charged spin-1/2 particles. It is a complex 4-
spinor ψα(x) (α = 1, . . . , 4) and its configuration space is the set of maps

ψα : M → C
4 (24)

while it is real for neutral spin-1/2 particles (such as neutrinos).

3. the gauge field Aµ(x) for the electromagnetic field, and its non-Abelian
generalizations for gluons (and so forth).

The description of relativistic quantum mechanics in terms of relativistic
quantum fields solved essentially all of the problems which originated its initial
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development. Moreover, QFT gives exceedingly accurate predictions of the be-
havior of quantized electromagnetic fields and charged particles, as described
by Quantum Electrodynamics (QED). QFT has also given a detailed descrip-
tion of both the strong and weak interactions in terms of field theories known
as Quantum Chromodynamics (based on Yang-Mills gauge field theories) and
Unified (and Grand Unified) theories.

However, with its successes QFT also brought with it a completely new set
of physical problems and questions. Essentially, any QFT of physical interest is
necessarily a non-linear theory as it has to describe interactions. This implies
that even although the quantum numbers of the excitations (i.e., the “particle”
spectrum) may be quite straightforward in the absence of interactions, the in-
trinsic non-linearities of the theory may actually unravel much of this structure.
For some time it was assumed that perturbation theory could be used in all
cases to determine the actual spectrum. It was soon found out that while there
are several cases of great physical interest in which some sort of perturbation
theory yields an accurate description of the physics, there are many more situa-
tions in which this is not the case. Early on it was found that, at every order in
perturbation theory, there are singular contributions to many physical quanti-
ties. These singularities reflected the existence of an infinite number of degrees
of freedom, both at short distances (space-time is a continuum) (the ultravi-

olet domain (UV)) and at long distances (space-time is infinite) (the infrared

domain, (IR)). Qualitatively, there are divergent contributions in perturbation
theory because degrees of freedom from a wide range of length scales (or wave-
lengths) and energy scales (or frequencies) give contributions to the expectation
values of physical observables.

Historically, the way these problems were dealt with was through the process
of regularization (i.e., making the divergent contributions finite), and renor-
malization (i.e., defining a set of effective parameters which are functions of
the energy and/or momentum scale at which the system is probed). Regular-
ization required that the integrals to be cutoff at some high energy scale (in
the UV). Renormalization was then thought of as the process by which these
(arbitrarily introduced) cutoffs were removed from the expressions for physical
quantities. This was a physically obscure procedure, but it worked brilliantly
in QED and, to a lesser extent, in QCD. Theories for which such a procedure
can be implemented upon the definition of only a finite number of renormalized
parameters (the actual input parameters to be taken from experiment) are said
to be renormalizable QFT’s. QED and QCD are the most important examples
of renormalizable QFT’s (although there are many others).

Renormalization implies that the connection between the physical observ-
ables and the parameters in the Lagrangian of a QFT is highly non-trivial, and
that the spectrum of the theory may have little to do with the predictions of
perturbation theory. This is the case in QCD whose “fundamental fields” in-
volve quarks and gluons but the actual physical spectrum consists only of bound
states whose quantum numbers are not those of either quarks or gluons. Renor-
malization also implies that the behavior of the physical observables depends
of the scale at which the theory is probed. Moreover, a closer examination of
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these theories also revealed that they may exist in different phases in which the
observables have different behavior, with a specific particle spectrum in each
phase. In this way, to understand what a given QFT predicted became very
similar to the study of phases in problems in Statistical Physics. We will explore
these connections in detail in Physics 485 when we develop the machinery of
the Renormalization Group.

While the requirement of renormalizability works for the Standard Model of
particle physics it fails for Gravity. The problem of unifying Gravity with the
rest of the forces of Nature remains a main problem in contemporary physics.
A major attempt at solving this problem is String Theory. String Theory is
the only known viable candidate to quantize Gravity in a consistent manner.
However, in String Theory, QFT is seen as an effective low energy (hydrody-
namic) description of Nature, and the QFT singularities are “regulated” by
String Theory in a natural way (but at a high price).
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