Problem Set No. 5
Propagators and Correlation Functions
Due Date: Sunday November 13, 2011

1 Propagators and Correlation Functions for the
One-Dimensional Quantum Heisenberg Antiferromagnet.

In problem I of set 3 you studied the one dimensional quantum Heisenberg
antiferromagnet in the spin wave (or semiclassical) approximation. In that
problem you constructed the ground state and the single particle excitations,
the spin waves. In this problem you will study the response of that system to
an external space and time dependent magnetic field. This external field will
be represented by an additional term to the Hamiltonian of the form

$$H_{\text{ext}} = \sum_{n=-N/2+1}^{N/2} B_k(n,t) \cdot \hat{S}_k(n,t)$$

which we will regard as a perturbation.

1. Consider for the moment that the external field has been switched off.
 Derive an expression for the following propagators

(a) $$D_{33}(nt, n't') = -i \langle \text{gnd} | T \hat{S}_3(n,t) \hat{S}_3(n',t') | \text{gnd} \rangle$$

(b) $$D_{+-}(nt, n't') = -i \langle \text{gnd} | T \hat{S}^+(n,t) \hat{S}^-(n',t') | \text{gnd} \rangle$$

in momentum and frequency space. Be very careful and very explicit in
the way you treat the poles of these propagators. Show that your choice
of frequency integration contour yields a propagator which satisfies the
correct boundary conditions.

2. Use Linear Response Theory to derive an expression for the magnetic
susceptibilities $$\chi_{33}$$ and $$\chi_{+-}$$ (in position space) of this system in terms
of correlation (or retarded) functions of this system.
3. Use Wick’s theorem to find an expression for the corresponding time-ordered functions in the spin-wave approximation in momentum and frequency space.

4. Use the results of the previous sections to show that $\chi_{+\to} (p, \omega)$ has, in the limit $\omega \to 0$, a pole at $p = \pi$. Calculate the residue of this pole. The residue is the square of the order parameter of the system in this approximation.

2 Spectral Function for the Dirac Propagator

1. Derive a formal expression for the spectral function $\rho_{\alpha\alpha'}(p)$ of the Feynman propagator for the Dirac theory

$$S^\alpha_\alpha'\ F(p) = \int_0^\infty dm'^2 \frac{\rho_{\alpha\alpha'}(p)}{p^2 - m'^2 + i\epsilon}$$

in terms of matrix elements of the field operators. Recall that the Dirac propagator is

$$S^\alpha_{\alpha'}(x, x') = -i\langle 0| T \psi_\alpha(x) \bar{\psi}_{\alpha'}(x')|0 \rangle$$

2. Show that, if the vacuum is invariant under parity P,

$$P\psi(x)P^{-1} \equiv \gamma_0 \psi$$

$\rho_{\alpha\alpha'}$ has the simpler form

$$\rho_{\alpha\alpha'} = \rho_1(p^2) \delta_{\alpha\alpha'} + \rho_2(p^2) \delta_{\alpha\alpha'}$$

Compute explicitly $\rho_1(p^2)$ and $\rho_2(p^2)$ for the free Dirac theory.

3 Wick’s Theorem

This is an exercise on the of Wick’s theorem on a specific theory, the 3-component free scalar field $\phi_a(x)$, with $a = 1, 2, 3$, with the global $O(3)$ invariance $\phi_a(x) \to O_{ab}\phi_b(x)$, where O_{ab} is an arbitrary 3×3 rotation matrix.

1. Use symmetry arguments to determine which of the following v.e.v. are non zero (sums over repeated indices is implied)

 (a) $\langle 0| T\phi_\alpha(x)\phi_\alpha(x')|0 \rangle$
 (b) $\langle 0| T\phi_\alpha(x)\phi_\beta(x')\phi_\beta(x'')|0 \rangle$
 (c) $\langle 0| T\phi_\alpha(x)\phi_\alpha(x')\phi_\beta(x'')\phi_\beta(x''')|0 \rangle$

2. Use Wick’s theorem to find expressions for the v.e.v. of (b) and (c) in (1) in terms of the v.e.v. of (a).
4 Reduction Formulas

In this problem you will consider a theory of a complex scalar field \(\phi(x) \) ("pions" \(\pi^\pm \)) coupled to the quantized electromagnetic field \(A_\mu(x) \). Consider the process \(\gamma \to \pi^+ + \pi^- \) (pair creation) with a photon of 4-momentum \(p_i \) and polarization \(\alpha \) in the initial state and pions of momenta \(p_+ \) and \(p_- \) in the final state. The S-matrix element is

\[
\langle p_+ p_- | \hat{S} | p_i, \alpha \rangle \tag{8}
\]

Find a reduction formula which relates this matrix element to v.e.v. of a set of time-ordered fields for this particular process.