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1 Path Integral for a particle in a double well
potential

1. The real time path-integral is:

〈qf , tf |qi, ti〉 =

∫
DpDqe

i
h̄

∫ tf
ti

dt[pq̇−H(p,q)]
=

∫
Dqe

i
h̄

∫ tf
ti

dtL(q,q̇)
(1)

Taking the imaginary time t→ −iτ , we have:

S =
i

h̄

∫ tf

ti

dtL(q, q̇)→ S =
i

h̄

∫
d(−iτ)

(
−1

2
mq̇2

τ − V (q)

)
(2)

The Lagrangian in Euclidean space time is defined as:

LE =
1

2
mq̇2

τ + λ(q2 − q2
0)2 (3)

Now the path-integral is

〈qf , T/2|qi,−T/2〉 =

∫
Dqe

− 1
h̄

∫ T/2
−T/2

dτ( 1
2mq̇

2
τ+λ(q2−q2

0)2)
(4)

The relation between Euclidean Lagrangian and Minkowski Lagrangian is:

LM =
1

2
m

(
∂q

∂t

)2

− λ(q2 − q2
0)2

LE =
1

2
m

(
∂q

∂τ

)2

+ λ(q2 − q2
0)2 (5)

Where the potential term has the opposite sign.
2. The equations of motion corresponds to the imaginary time is,

∂L
∂q

=
d

dτ

(
∂L
∂q̇τ

)
(6)
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Plug in Eq.(3), the explicit form of Euclidean Lagrangian, we obtain the equa-
tions of motion as,

4λ(q2 − q2
0)q = mq̈τ ⇒ ~F = −m~a (7)

Looking back to the case of real-time equations of motion,

∂L
∂q

=
d

dt

(
∂L
∂q̇

)
⇒ −4λ(q2 − q2

0)q = mq̈

⇒ ~F = m~a (8)

Comparing the results between imaginary and real time solutions, the minus
sign appears in Eq.(7) looks like a funny. Use the energy in imaginary time,

E =
1

2
m

(
∂q

∂τ

)2

− λ(q2 − q2
0)2 ⇒ ∂q

∂τ
= ±

{
2

m

[
λ
(
q2 − q2

0

)2
+ E

]} 1
2

(9)

Which gives,

±
√
m

2

∫ qf

qi

dq√
λ (q2 − q2

0)
2

+ E
= τ − τ0 (10)

The solution is not unique since all the solutions that take the system from
−q0 → +q0 has T → ∞. There is still an arbitrary parameter, the origin of
imaginary time τ0 in this solution (and hence there is a family of such solutions).
This has to be the case for all solutions since the lagrangian does not depend
explicitly on time and hence the origin of the time coordinate is arbitrary. This
is the multiplicity of solutions that matters.

The ± sign in the above equation results the right-moving and left-moving
particle which is time-reversal to each other. However, The time-reversed solu-
tion is always there because the system is invariant under time reversal.

The boundary conditions are of course incorporated into the limits of inte-
gration. Note that working in the limit T → ∞, the right hand side blows up.
In addition, the particle at T → ∞ is at −q0. The only way for the left hand
side to blow up as well is for E = 0. One can also think of this as the situation
where the particle begins at rest in one of the wells at T → −∞ and at some
point tunnels through the barrier and is at rest in the opposite well at T →∞.
The second case is reminiscent of calculations in classical mechanics of planetary
bodies. Solve the integral as E = 0 and the positive sign (the negative is just
the time reversal, so the particle’s behavior is similar):

τ − τ0 =

∫ q

−q0

√
m

2λ

(
dq

q2
0 − q2

)
=

√
m

8λq2
0

ln

(
q0 + q

q0 − q

)
(11)

Rewriting q in terms of τ − τ0, we obtain

qc(τ) = q0 tanh

(√
2λq2

0

m
(τ − τ0)

)
(12)
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Here I write qc instead of q because I want to emphasize this is the classical
trajectory. Therefore at q = −q0, τ = −T/2; at q = q0, τ = T/2, and T → ∞.
Although there are two solutions, every trajectory is unique. The physical
interpretation of this trajectory is from Newton’s second law, and the amplitude
of this is the probability for a particle to move from −q0 to q0, which is nearly
zero.
3. The imaginary action is, by definition,

S =

∫ T/2

−T/2
dτ

[
1

2
m

(
∂q

∂τ

)2

+ λ(q2 − q2
0)2

]
(13)

Using

E =
1

2
m

(
∂q

∂τ

)2

− λ(q2 − q2
0)2 = 0, dτ =

√
m

2λ

dq

(q2
0 − q2)

(14)

We can obtain the action as:

S =
√

2mλ

∫ q0

−q0
(q2

0 − q2)dq =
4

3
q3
0

√
2mλ (15)

4. Expand q = qc+q1, where qc is the classical trajectory and q1 is the quantum
fluctuation.

S = Sqc +

∫ T
2

−T2
dτ

{[
1

2
m

(
∂q1

∂τ

)2

+
1

2

∂2Vqc
∂q2

q2
1

]
+

d

dτ
(mq1q̇c) +

(
∂Vqc
∂q
−mq̈c

)
q1

}
(16)

The third term in the bracket, is the boundary term and we can set it into
zero; the fourth term, is the Newton’s second law, also to be zero. Therefore we
obtain the relation that,

S = S(qc) +

∫ T/2

−T/2
dτ

[
1

2
m

(
∂q1

∂τ

)2

+
1

2

∂2V (qc)

∂q2
q2
1

]
(17)

therefore for the path integral,

〈q0, T/2| − q0,−T/2〉 = 〈q0, T/2|e−S(qc) (1− S(q1) + ...) | − q0,−T/2〉 (18)

Since

〈q0, T/2| − q0,−T/2〉 = 0 (19)

The leading order term is the first order expansion of Eq.(17):

−e− 4
3 q

3
0

√
2mλ〈q0,

T

2
|S(q1)| − q0,−

T

2
〉, S(q1) =

1

2

(
∂q1

∂τ

)2

+
1

2

∂2V (qc)

∂q2
q2
1 (20)
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Therefore the operator is

Â = −1

2

(
∂

∂τ

)2

+
1

2

∂2V (qc)

∂q2
= −1

2

(
∂

∂τ

)2

+ 2λ(3q2
c − q2

0)

= −1

2

(
∂

∂τ

)2

+ 2λq2
0

2− 3

cosh2

[√
2λq2

0

m (τ − τ0)

]
 (21)

2 Path Integral for a charged particle moving
on a plane in the presence of a perpendicular
magnetic field

1. We’re given the Hamiltonian for a particle in a magnetic field and so this can
be expressed in the Heisenberg picture where operators carry time dependence
and the states do not,

〈~r0, tf |~r0, ti〉 = 〈~r0|e
−
∫ tf
ti

iĤdt
|~r0〉 (22)

Inserting a complete set of momentum states and position states, one can arrive
at the standard expression for the path integral as in the usual case, same as
that of 3-dimensional case, that,

〈~r0, tf |~r0, ti〉 =

∫
DpDqe−i

∫
dt[~p·~̇q−H(~p,~q)] (23)

Use the eq.(3) in the problem set,

~p · ~̇q −H(~p, ~q) = − 1

2m

(
~p−m~̇q +

e

c
~A
)2

+
1

2
m~̇q

2
− e

c
~̇q · ~A (24)

Taking the integral over ~p, which give a constant out of the path integral, we
obtain the final path integral that,

〈~r0, tf |~r0, ti〉 = N
∫
D~q exp

{∫ tf

ti

i

h̄

(
1

2
m~̇q

2
− e

c
~̇q · ~A

)
dt

}
(25)

2. For the ultra-quantum limit m→ 0,

1

2
m~̇q

2
− e

c
~̇q · ~A→ −e

c
~̇q · ~A =

eB

2c
(ẋy − ẏx) (26)

Therefore the action becomes,

1

h̄
S =

eB

2h̄c

∫ tf

ti

dt (ẋy − ẏx) =
eB

2h̄c

∮
(ydx− xdy) =

eB

2h̄c

∮
(yêx − xêy) · d~l

=
eB

2h̄c

∫
S

∇× (yêx − xêy) · d~S = − e

h̄c
Φ (27)
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where Φ is the flux inclosed by the path. The line integral around a closed path
came from the boundary conditions on allowed paths: they had to begin and
end at the same point. Of course, there’s no condition on how long the path is,
what the initial point is, and what the shape of the path is.
3. The ambiguity comes from the path’s enclosed area. We only fixed the
particle’s begin and end point at the same point and have not specified a nor-
mal vector, which will lead to the ambiguity of inside and outside boundary.
Geometrically on the plane, one could say that the area enclosed is the inside
surface, Ω1 or the outside surface Ω2. The difference is in the definition of the
normal vector to the boundary. In both cases, One should find that

1

h̄
S = − e

h̄c
ΦΩ1 ,

1

h̄
S = − e

h̄c
ΦΩ2 (28)

Since the path enclose the area is in the positive direction while the path corre-
sponds to the outside area is in the opposite direction, the actions above should
be written as:

1

h̄
S = − e

h̄c
ΦΩ1

,
1

h̄
S = − e

h̄c

(
−BL2 + ΦΩ1

)
(29)

Finally because this ambiguity do not matter in the physical transition ampli-
tude, the difference must be 2nπ:

− e

h̄c
ΦΩ1

+ 2nπ = − e

h̄c

(
−BL2 + ΦΩ1

)
(30)

Denote Φ = BL2 and define flux quantum as,

Φ0 =
hc

e
⇒ Φ = nΦ0 (31)

This gives a quantization condition for the total flux in units of flux quantum.

3 Path Integrals for a Scalar Field Theory

1. The vacuum persistent amplitude is given by:

Z[J, J∗] = J〈0|0〉J =

∫
DφDφ∗ei

∫
d4x(L−Jφ∗−J∗φ) (32)

In imaginary space-time, by changing t→ −iτ ,

Z[J, J∗]E = (J〈0|0〉J)E =

∫
DφDφ∗e−

∫
dτd3x(LE+Jφ∗+J∗φ) (33)

where

LE = (∂0φ)
∗

(∂0φ) + (∇φ)
∗

(∇φ) +m2φ∗φ (34)
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2. Using the method discussed in class, we want to expand the field into the
classical solution term and fluctuation term:

φ = φ0 + ψ (35)

where φ0 is the classical solution. In Minkowski space-time, the Lagrangian is
expanded as:

L = L(φ0) + L(ψ)−
(
∂2φ∗0 +m2φ∗0 + J∗

)
ψ −

(
∂2φ0 +m2φ0 + J

)
ψ∗ (36)

where

L(φ0) = ∂µφ
∗
0∂
µφ0 −m2φ∗0φ0 − Jφ∗0 − J∗φ0, L(ψ) = ∂µψ

∗∂µψ −m2ψ∗ψ(37)

Let us choose the classical solution φ0 to make the linear term in ψ vanish,
which requires

∂2φ0 +m2φ0 + J = 0, ∂2φ∗0 +m2φ∗0 + J∗ = 0 (38)

Define the Green Function as(
∂2 +m2

)
G(x− x′) = δ(x− x′) (39)

The solution of the classical field is,

φ0(x) = −
∫
d4x′G(x− x′)J(x′) (40)

Plugging this back into the original Lagrangian and the path integral, one gets

Z[J, J∗] = Z[0]ei
∫
d4x
∫
d4x′J∗(x′)G(x−x′)J(x) (41)

where

Z[0] =

∫
DψDψ∗e−i

∫
d4xψ∗(∂2+m2)ψ (42)

Next in the Euclidean space-time, expand the Lagrangian as:

LE = LE(φ0) + LE(ψ) +
(
−∂2

µφ
∗
0 +m2φ∗0 + J∗

)
ψ +

(
−∂2

µφ0 +m2φ0 + J
)
ψ∗(43)

where

LE(φ0) = ∂µφ
∗
0∂µφ0 +m2φ∗0φ0 + Jφ∗0 + J∗φ0, LE(ψ) = ∂µψ

∗∂µψ +m2ψ∗ψ(44)

The equations for the classical field should satisfy:

−∂2
µφ
∗
0 +m2φ∗0 + J∗ = 0, −∂2

µφ0 +m2φ0 + J = 0 (45)

Define the Euclidean Green Function as,(
−∂2

µ +m2
)
GE(x− x′) = δ(x− x′) (46)
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The classical solution is given by:

φ0(x) = −
∫
d4x′GE(x− x′)J(x′) (47)

The path-integral becomes,

ZE [J, J∗] = ZE [0]e
∫
d4x
∫
d4x′J∗(x′)GE(x−x′)J(x) (48)

where

ZE [0] =

∫
DψDψ∗e−

∫
d4xψ∗(−∂2

µ+m2)ψ (49)

3. Correlation functions are compute by taking the function derivative with
respect to the sources. In this problem I would like to use the Minkowski Space-
Time:

G∗2(x− x′) =
1

Z[0]

(
δ2Z[J ]

δ(−iJ(x))δ(−iJ∗(x′))

)
J,J∗=0

= −iGM (x− x′)

G2(x− x′) =
1

Z[0]

(
δ2Z[J ]

δ(−iJ∗(x))δ(−iJ(x′))

)
J,J∗=0

= −iGM (x− x′)

G′2(x− x′) = 〈0|Tφ(x)φ(x′)|0〉 = G′∗2 (x− x′) = 〈0|Tφ∗(x)φ∗(x′)|0〉 = 0 (50)

For the last two term, one could compute the functional derivatives in the same
way as above to arrive at this result, or one could realize that the combinations
φ∗φ∗ and φφ do not respect the U(1) symmetry of the system and should vanish.
4. Recall Eq.(45), the differential equation for Euclidean Space, this gives the
Green Function as,

GE(x− x′) =

∫
d4k

(2π)4

ei(x−x
′)·k

k2 +m2
(51)

Use Schwinger Transformation that,

1

k2 +m2
=

1

2

∫ ∞
0

e−
1
2α(k2+m2)dα (52)

The important fact is now the k2+m2 is in the exponential and one can complete
the square, shift the momentum integration and change into a Gaussian integral.
The remaining integral yields a Bessel function (details are explicitly in the
lecture notes). The result is: (to plug in D = 4 in the lecture notes)

GE(x− x′) =
1

(2π)2

(
m

|x− x′|

)
K1 (m|x− x′|) (53)

On the other hand, the Minkowski space-time Green Function is give by t →
−iτ , from the lecture notes we obtain

GM (x− x′) =
i

(2π)2

(
m√
−s2

)
K1

(
m
√
−s2

)
(54)
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where

s2 = ∆µx∆µx (55)

The asymptotic behavior of the Bessel functions can be obtained from the lecture
notes. The Euclidean Green Function is, the long range behavior is,

GE(x− x′) ≈
√
π/2m2e−m|x−x

′|

(2π)2(m|x− x′|) 3
2

(56)

while the short range behavior is

GE(x− x′) ≈ 1

4π2|x− x′|2
(57)

Hence, there is power law decay at short distances and exponential decay at
longer distances.
For Minkowski space, there are two regimes. Space like s2 < 0 and time like s2 >
0. For space like separations, these correspond to the regime where −s2 > 0, so
the asymptotic behavior at long and short distances is similar as the Euclidean
space version. For timelike separations, −s2 < 0 and so the Green Function’s
long range behavior is

GM (x− x′) ≈
√
π/2m2eim

√
s2

(2π)2(m
√
s2)

3
2

(58)

it is exponential vibration. While for short range, it is

GE(x− x′) ≈ 1

4π2s2
(59)

still has power law decay.
5. The four point functions can be computed by taking the desired functional
derivatives with respect to the sources. This yields familiar expressions that one
could obtain via Wick’s theorem. Taking all possible combinations between φ∗

and φ, the four point field have two point combinations as:

φ∗(x1)φ∗(x2)φ(x3)φ(x4) → [φ∗(x1)φ(x3)] [φ∗(x2)φ(x4)]

+ [φ∗(x1)φ(x4)] [φ∗(x2)φ(x3)] (60)

Therefore, the four point Green Function is,

〈0|Tφ∗(x1)φ∗(x2)φ(x3)φ(x4)|0〉 = G(x1, x2, x3, x4)

= G(x3 − x1)G(x4 − x2) +G(x4 − x1)G(x3 − x2) (61)

and

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = 〈0|Tφ∗(x1)φ∗(x2)φ∗(x3)φ∗(x4)|0〉 = 0 (62)
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the other two terms are just similar with the first 4-point Green Function:

〈0|Tφ∗(x1)φ(x2)φ∗(x3)φ(x4)|0〉 = G(x1, x3, x2, x4)

〈0|Tφ∗(x1)φ(x2)φ(x3)φ∗(x4)|0〉 = G(x1, x4, x3, x2) (63)

The rule, from performing the functional derivatives explicitly is that only con-
tractions (two point functions) appear for pairs 〈φ∗φ〉. Other contractions van-
ish. This is expected since the other combinations do not preserve the symmetry
of the system. The non-vanishing three 4-point Green Functions’ relation is just
to permute the position of x1, x2,3 , x4 because the position change of ∗ symble
just affect the contration combination of the field operators.
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