
Physics 582, Fall Semester 2011

Professor Eduardo Fradkin

Problem Set No. 3:

Canonical Quantization

Due Date: October 16, 2011

1 Spin waves in a quantum Heisenberg antifer-

romagnet

In this problem you will consider the Heisenberg model of a one-dimensional
quantum antiferromagnet. I first give you a brief summary on the Heisenberg
model. You do not need to have any previous knowledge on magnetism (or the
Heisenberg model) to do this problem. You will be able to solve this problem
only with the methods that were discussed in class.

The one-dimensional Heisenberg model is defined on a linear chain ( a one-
dimensional lattice) with N sites. The lattice spacing will be taken to be equal
to one (i.e. it is the unit of length). The quantum mechanical Hamiltonian for
this system is

Ĥ = J

N/2
∑

j=−N/2+1

Ŝk(j) · Ŝk(j + 1) (1)

where the exchange constant J > 0 ( i.e. an antiferromagnet) and the operators
Ŝk (k = 1, 2, 3) are the three angular momentum operators in the spin-S repre-
sentation ( S is integer or half-integer) which satisfy the commutation relations

[Ŝj , Ŝk] = iǫjklŜl (2)

For simplicity we will assume periodic boundary conditions, Ŝk(j) ≡ Ŝk(j+N).
In the semi-classical limit, S → ∞, the operators act like real numbers since

the commutators vanish. In this limit, the state with lowest energy has nearby
spins which point in opposite ( but arbitrary!) directions in spin space. This
is the classical Néel state. In this state the spins on one sub-lattice ( say the
even sites) point up along some direction in space while the spins on the other
sub-lattice ( the odd sites) point down. At finite values of S, the spins can only
have a definite projection along one axis but not along all three at the same
time. Thus we should expect to see some zero-point motion precessional effect
that will depress the net projection of the spin along any axis but, if the state
is stable, even sites will have predominantly up spins while odd sites will have
predominantly down spins. This observations motivate the following definition
of a set of basis states for the full Hilbert space of this system.

The states |Ψ〉 of the Hilbert space of this chain are spanned by the tensor
product of the Hilbert spaces of each individual jth spin |Ψj〉, |Ψ〉 = ∏

j ⊗|Ψj〉.
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The latter are simply the 2S + 1 degenerate multiplet of states with angular
momentum S of the form {|S,M(j)〉} (|M(j)| ≤ S) which satisfy

~S2(j)|S,M(j)〉 = S(S + 1)|S,M(j)〉
S3(j)|S,M(j)〉 = M(j)|S,M(j)〉 (3)

The states in this multiplet can be obtained from the highest weight state |S, S〉
by using the lowering operator Ŝ− = Ŝ1− iŜ2. Its adjoint is the raising operator
Ŝ+(j) = Ŝ1(j)+iŜ2(j). For reasons that will become clear below, it is convenient
to define for j even ( even site) the spin-deviation operator n̂(j) ≡ S − Ŝ3(j).
For an odd site ( j odd) the spin deviation operator is n̂(j) ≡ S + Ŝ3(j). For
j even, the highest weight state |S, S〉 is an eigenstate of n̂(j) with eigenvalue
zero while the state |S,−S〉 has eigenvalue 2S

n̂(j)|S, S〉 = (S − Ŝ3(j))|S, S〉 = 0

n̂(j)|S,−S〉 = (S − Ŝ3(j))|S,−S〉 = 2S |S,−S〉 (4)

whereas for j odd the state |S,−S〉 has zero eigenvalue while the state |S, S〉
has eigenvalue 2S.

In terms of the operators n̂(j), the basis states are {|S,M(j)〉} ≡ {|n(j)〉},
where M(j) = S∓n(j). For even sites, the raising and lowering operators Ŝ(j)±

act on the states of this basis like

Ŝ+|n〉 =

[

2S

(

1− n− 1

2S

)

n

]
1

2

|n− 1〉

Ŝ−|n〉 =
[

2S(n+ 1)
(

1− n

2S

)]
1

2 |n+ 1〉 (5)

For odd sites the action of the above two operators is interchanged.
The action of the operators Ŝ± is somewhat similar to that of annihilation

and creation operators in harmonic oscillator states. For this reason we define
a set of creation and annihilation operators â† and â such that

â†|n〉 =
√
n+ 1|n+ 1〉

â|n〉 =
√
n|n− 1〉 (6)

which satisfy the conventional algebra [â, â†] = 1. Since we have two sub-lattices
and the operators Ŝ± are different on each sub-lattice, it is useful to introduce
two types of creation and annihilation operators: the operators â†(j) and â(j)

which act on even sites, and b̂†(j) and b̂(j) which act on odd sites. They obey
the commutation relations

[

â(j), â†(k)
]

=
[

b̂(j), b̂†(k)
]

= δjk

[â(j), â(k)] =
[

b̂(j), b̂(k)
]

=
[

â(j), b̂(k)
]

= 0

(7)
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and similar equations for their hermitian conjugates. It is easy to check that
the action of raising and lowering operators on the states {|n〉} is the same as
the action of the following operators on the same states

1. On even sites:

Ŝ+(j) =
√
2S

[

1− n̂(j)

2S

]
1

2

â(j)

Ŝ−(j) =
√
2Sâ†(j)

[

1− n̂(j)

2S

]
1

2

Ŝ3(j) = S − n̂(j)

n̂(j) = â†(j)â(j) (8)

2. On odd sites:

Ŝ−(j) =
√
2S

[

1− n̂(j)

2S

]
1

2

b̂(j)

Ŝ+(j) =
√
2Sb̂†(j)

[

1− n̂(j)

2S

]
1

2

Ŝ3(j) = −S + n̂(j)

n̂(j) = b̂†(j)b̂(j) (9)

Notice that although the integers n can now range from 0 to infinity, the Hilbert
space is still finite since (for even sites) Ŝ−|n = 2S〉 = 0. Similarly, for odd sites,
the state |n = 2S〉 is anihilated by the operator Ŝ+.

1. Derive the quantum mechanical equations of motion obeyed by the the
spin operators Ŝ±(j), Ŝ3(j) in the Heisenberg representation, for both j

even and j odd. Are these equations linear? Explain your result.

2. Verify that the definition for the operators S± and S3 of equations (8) and
(9) are consistent with those of equation (5).

3. Use the definitions given above to show that the Heisenberg Hamiltonian
can be written in terms of two sets of creation and annihilation operators
â†(j) and â(j) (which act on even sites), and b̂†(j) and b̂(j) which act on
odd sites.

4. Find an approximate form for the Hamiltonian which is valid in the semi-
classical limit S → ∞ ( or 1

S → 0). Include terms which are of order 1

S
(relative to the leading order term). Show that the approximate Hamilto-
nian is quadratic in the operators a and b.

5. Make the approximations of part 4 on the equations of motion of part 1.
Show that the equations of motion are now linear. Of what order in 1

S are
the terms that have been neglected?
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6. Show that the Fourier transform

â(q) =

√

2

N

∑

j even

eiqj â(j)

b̂(q) =

√

2

N

∑

j odd

e−iqj b̂(j) (10)

followed by the canonical (Bogoliubov) transformation

ĉ(q) = cosh(θ(q)) â(q) + sinh(θ(q)) b̂†(q)

d̂(q) = cosh(θ(q)) b̂(q) + sinh(θ(q)) â†(q) (11)

yields a diagonal Hamiltonian HSW of the form

HSW = E0 +

∫ +π

2

−π

2

dq

2π
ω(q)(n̂c(q) + n̂d(q)) (12)

where n̂c(q) = ĉ†(q)ĉ(q), n̂d(q) = d̂†(q)d̂(q), provided that the angle θ(q)

is chosen properly. The operators ĉ(q) and d̂(q) and their hermitian con-
jugates obey the algebra of eq.(7). Derive an explicit expression for the
angle θ(q) and for the frequency ω(q).

7. Find the ground state for this system in this approximation ( usually called
the spin-wave approximation).

8. Find the single particle eigenstates within this approximation. Determine
the quantum numbers of the excitations. Find their dispersion (or energy-
momentum) relations. Find a set of values of the momentum q for which
the energy of the excited states goes to zero. Show that the energy of these
states vanish linearly as the momentum approaches the special points and
determine the spin-wave velocity vs at these points.

Note: This is the semi-classical or spin-wave approximation. The identities of
eq.(8) and eq.(9) are known as the Holstein-Primakoff identities.

2 Two-Component Complex Scalar Field

In this problem, you will consider the theory of a two-component complex scalar
field φa(x) ( a = 1, 2) which has the Lagrangian

L =
1

2
(∂µφa(x))

∗ (∂µφa(x)) − V (φ(x)) (13)

where the potential V (φ(x)) is

V (φ(x)) =
m2

0

2
φ∗
a(x) φa(x) (14)
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As you know from our discussion in class this theory is invariant under the
classical global symmetry

φa(x) → φ′
a(x) = Uab φb(x)

φ∗
a(x) → φ′∗

a (x) = U−1

ab φ∗
b (x)

L(φ′) = L(φ) (15)

where U is a 2 × 2 unitary matrix,i.e. U−1 = U †. This is the symmetry
group SU(2). Thus φ transforms like the fundamental (spinor) representation
of SU(2). The matrices U can be expanded in the basis of 2× 2 Pauli matrices
(σk)ab and are parametrized by three Euler angles θk (k = 1, 2, 3):

Uab = [exp (iθk σk)]ab

= cos(|~θ|)δab + i
~θ

|~θ|
· ~σab sin(|~θ|) (16)

1. Use the classical canonical formalism to find: (a) the canonical momentum
πa, conjugate to the field φa, (b) the Hamiltonian H , and (c) the total
momentum Pj .

2. Derive the classical constants of motion associated with the global sym-
metry SU(2). Relate these constants of motion with the generators of
infinitesimal SU(2) transformations. How many constants of motion do
you find? Explain your results.

3. Quantize this theory by imposing canonical commutation relations. Write
an expression for the quantum mechanical Hamiltonian and total momen-
tum operators in therms of the field and canonical momentum operators.

4. Derive an expression for the quantum mechanical generators of global in-
finitesimal SU(2) transformations in the Hilbert space of states of the
system. Explain what relation, if any, do they have withe the conserved
charges of the classical theory.

5. Derive the quantum mechanical equations of motion of the Heisenberg
representation operators.

6. Find an expansion of the field and canonical momentum operators in terms
of a suitable set of creation and annihilation operators. How many species
of creation and annihilation operators do you need?. Justify your results.

7. Find an expression for the SU(2) generators in terms of creation and
annihilation operators.

8. Find the ground state of the system and its quantum numbers. Find the
normal ordered Hamiltonian, total momentum and the SU(2) generators
relative to this state.
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9. Find the spectrum of single particle states. Give an expression for their
energies and assign quantum numbers to these states. Do you find any
degeneracies?. What is the degree of this degeneracy and why?
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