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Before proceeding, I want to mention that I use Eq.(n) to denote the nth
equation in my solution, while eq.(n) for the nth equation in Professor Fradkin’s
problem set.

1 Spin waves in a quantum Heisenberg antifer-
romagnet

1. Let us denote e to be even, and o to be odd, in the Heisenberg representation,
the time derivative of the operators are,

i∂0Â(x) = [Â(x), Ĥ] (1)

This, as an important conclusion could be derived below. In the Heisenberg
Representation, the operator Â is,

Â = eiĤtÂ0e
−iĤt (2)

Where Â0 is the Schrodinger Representation operator. Taking partial derivative
on the time,

i∂0Â = eiĤt
(
ĤÂ0 − Â0Ĥ

)
e−iĤt =

(
ĤeiĤtÂ0e

−iĤt − eiĤtÂ0e
−iĤtĤ

)
(3)

This is what we want to get for Eq.(1). Note the Pauli Spin Operator commuta-
tion relations. For operators on different sites, they commute while when they
are on the same site; one has the commutation relations,

[Ŝ+, Ŝ−] = 2Ŝ3; [Ŝ3, Ŝ
+] = Ŝ+, [Ŝ3, Ŝ

−] = −Ŝ− (4)

We want to use Ŝ+, Ŝ−, Ŝ3 instead of Ŝ1, Ŝ2, Ŝ3 in the Heisenberg Hamiltonian,

2Ŝk(j)Ŝk(j + 1) = 2Ŝ1(j)Ŝ1(j + 1) + 2Ŝ2(j)Ŝ2(j + 1) + 2Ŝ3(j)Ŝ3(j + 1)

= Ŝ−(j)Ŝ+(j + 1) + Ŝ+(j)Ŝ−(j + 1) + 2Ŝ3(j)Ŝ3(j + 1) (5)
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Thus the Heisenberg Hamiltonian is reduced into the form as,

Ĥ =
J

4

∑
j

(
Ŝ−(j)Ŝ+(j + 1) + Ŝ+(j)Ŝ−(j + 1) + 2Ŝ3(j)Ŝ3(j + 1)

)
+
J

4

∑
j

(
Ŝ−(j)Ŝ+(j − 1) + Ŝ+(j)Ŝ−(j − 1) + 2Ŝ3(j)Ŝ3(j − 1)

)
(6)

If we want to obtain the equations of motion, first we have to investigate the
value of:

[Ŝ+(j), Ĥ] =
J

2

[
Ŝ3(j)

(
Ŝ+(j + 1) + Ŝ+(j − 1)

)
− Ŝ+(j)

(
Ŝ3(j + 1) + Ŝ3(j − 1)

)]
(7)

[Ŝ−(j), Ĥ] =
J

2

[
Ŝ−(j)

(
Ŝ3(j + 1) + Ŝ3(j − 1)

)
− Ŝ3(j)

(
Ŝ−(j + 1) + Ŝ−(j − 1)

)]
(8)

[Ŝ3(j), Ĥ] =
J

4

[
Ŝ+(j)

(
Ŝ−(j + 1) + Ŝ−(j − 1)

)
− Ŝ−(j)

(
Ŝ+(j + 1) + Ŝ+(j − 1)

)]
(9)

Therefore the equations of motion are,

i∂0S
+(j) =

J

2

[
Ŝ3(j)

(
Ŝ+(j + 1) + Ŝ+(j − 1)

)
− Ŝ+(j)

(
Ŝ3(j + 1) + Ŝ3(j − 1)

)]
i∂0S

−(j) =
J

2

[
Ŝ−(j)

(
Ŝ3(j + 1) + Ŝ3(j − 1)

)
− Ŝ3(j)

(
Ŝ−(j + 1) + Ŝ−(j − 1)

)]
i∂0S3(j) =

J

4

[
Ŝ+(j)

(
Ŝ−(j + 1) + Ŝ−(j − 1)

)
− Ŝ−(j)

(
Ŝ+(j + 1) + Ŝ+(j − 1)

)]
(10)

for both j odd and even. These equations nonlinear because on the r.h.s. the
operators are bilinear.
2. For even sites, from eq.(8) of the problem set,

Ŝ+(j)|n〉 =
√

2S

[
1− n̂(j)

2S

] 1
2 √

n|n− 1〉 =

[
2S

(
1− n− 1

2S

)
n

] 1
2

|n− 1〉

Ŝ−(j)|n〉 =
√

2Sâ+(j)
(

1− n

2S

) 1
2 |n〉 =

[
2S (n+ 1)

(
1− n

2S

)] 1
2 |n+ 1〉(11)

For odd sites,

Ŝ−(j)|n〉 =
√

2S

[
1− n̂(j)

2S

] 1
2 √

n|n− 1〉 =

[
2S

(
1− n− 1

2S

)
n

] 1
2

|n− 1〉

Ŝ+(j)|n〉 =
√

2Sb̂+(j)
(

1− n

2S

) 1
2 |n〉 =

[
2S (n+ 1)

(
1− n

2S

)] 1
2 |n+ 1〉(12)

Which is the same as that of eq.(5) in the problem set.
3. Let us write the Hamiltonian as the even part and the odd part,

Ĥ =
J

2

∑
jo+je

(
Ŝ−(j)Ŝ+(j + 1) + Ŝ+(j)Ŝ−(j + 1) + 2Ŝ3(j)Ŝ3(j + 1)

)
(13)
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Use the Hamiltonian with ladder operators S+, S−, Sz, and to apply the rela-
tions in eq.(8) and eq.(9), we can write the even and odd Hamiltonian parts as
follows,

Ĥo = J
∑
jo

(
S

[
1− n(j)

2S

] 1
2
[
1− n(j + 1)

2S

] 1
2

a(j + 1)b(j)

)

+ J
∑
jo

(
Sa+(j + 1)b+(j)

[
1− n(j)

2S

] 1
2
[
1− n(j + 1)

2S

] 1
2

)
− J

∑
jo

([S − n(j)][S − n(j + 1)]) (14)

He has the same form except for the interchange between a and b,

Ĥe = J
∑
je

(
S

[
1− n(j)

2S

] 1
2
[
1− n(j + 1)

2S

] 1
2

a(j)b(j + 1)

)

+ J
∑
je

(
Sa+(j)b+(j + 1)

[
1− n(j)

2S

] 1
2
[
1− n(j + 1)

2S

] 1
2

)
− J

∑
je

([S − n(j)][S − n(j + 1)]) (15)

4. Let us investigate Hamiltonian Ho for example, the first part is already
quadratic for operators a(j + 1)b(j), and higher orders in the bracket can be
dropped; the second is the same, since a+(j + 1)b+(j) is quadratic; the third
should be approximated to the first order in the bracket, because S2 is the
0th-order operator, and Sn(j) is the quadratic operator. Therefore the approx-
imated operator should be written as,

Ĥo = JS
∑
jo

(
a(j + 1)b(j) + a+(j + 1)b+(j) + b+(j)b(j) + a+(j + 1)a(j + 1)− S

)
Ĥe = JS

∑
je

(
a(j)b(j + 1) + a+(j)b+(j + 1) + a+(j)a(j) + b+(j + 1)b(j + 1)− S

)
(16)

It is obvious that these two Hamiltonians are quadratic in operators a and b.
And the total Hamiltonian is,

Ĥ = Ĥe + Ĥo (17)

5. Use the equations of motion for Heisenberg Representaton, Eq.(10), and
taking the classical limit again with S → ∞ I keep things to leading non-
vanishing order in S1, and drop S0 orders and lower, i.e., to drop terms of
n
S and n2

S2 . For j even(corresponds to ∂0a(j) terms) and j odd(corresponds to
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∂0b(j) terms),

i∂0a(j) =
JS

2

[
b+(j − 1) + b+(j + 1) + 2a(j)

]
−i∂0a+(j) =

JS

2

[
b(j − 1) + b(j + 1) + 2a+(j)

]
i∂0b(j) =

JS

2

[
a+(j − 1) + a+(j + 1) + 2b(j)

]
−i∂0b+(j) =

JS

2

[
a(j − 1) + a(j + 1) + 2b+(j)

]
(18)

and,

i∂0n(j) =
JS

2

{
b+(j)

[
a+(j + 1) + a+(j − 1)

]
− b(j) [a(j + 1) + a(j − 1))]

}
−i∂0n(j) =

JS

2

{
a(j) [b(j + 1) + b(j − 1)]− a+(j)

[
b+(j + 1) + b+(j − 1))

]}
(19)

The four equations in Eq.(17) is the new equations of motion for a, b opera-
tors, and, we can find it becomes linear in the quadratic approximation of the
Hamiltonian. Eq.(18), however, needs more discussions. Since by definition
n(j) = S−S3 for even sites and n(j) = S3−S for odd sites, the time derivative
of n(j) corresponds to the time derivative of S3 operator. What is more, if
we look back to the Heisenberg Hamiltonian, Eq.(13), we find that the Ground
State seems to be, S3(j) = 1

2 , S3(j+1) = − 1
2 . (Although this is not the exact

Ground State of antiferromagnetic system, it is a good approximation for your
physical picture. The real ground state should include zero-point energy.) This
is called the antiferromagnetic case: each spin align in the opposite direction.
Therefore, the physical purpose to use Holstein-Primakoff Transformation, i.e.,
the equations in the problem set eq.(4)-(9), is to carriy out the Ground State
background and consider excitations upon it. Now it is clear that the quadratic
approximation is to consider the excitations of this system, and the operator
S3 should be small to S for low energy excitations. Thus we should expect
∂0n(j)→ 0 and hence, we reach the conclusion from Eq.(18) that,

b+(j)
[
a+(j + 1) + a+(j − 1)

]
= b(j) [a(j + 1) + a(j − 1))]

a(j) [b(j + 1) + b(j − 1)] = a+(j)
[
b+(j + 1) + b+(j − 1))

]
(20)

6. The lattice constant is assumed to be a = 1 so the Fourier Transformation
in the problem set eq.(10) use the lattice constant as 1. The Fourier Transfor-
mation in eq.(10), however, is the transform for lattice constant A = 2a = 2
because it transforms over only the even or odd lattice sites. Therefore we can
prove the identity that,

2

N

∑
q

eiqj =
2

N

− 1
2N≤n≤

1
2N∑

q = 2π n
N

neven/odd

eiqj = δj,0 (21)

4



Let us find what a(j), b(j) is in terms of a(q), b(q).√
2

N

∑
q

e−iqne â(q) =
2

N

∑
je

∑
q

e−iqne+iqje â(je) =
∑
je

δne,je â(je) = â(ne)√
2

N

∑
q

e+iqno b̂(q) =
2

N

∑
jo

∑
q

e+iqno−iqjo b̂(jo) =
∑
jo

δno,jo b̂(jo) = b̂(no)

(22)

Similarly√
2

N

∑
q

e+iqne â+(q) =
2

N

∑
je

∑
q

e+iqne−iqje â+(je) =
∑
je

δne,je â
+(je) = â+(ne)√

2

N

∑
q

e−iqno b̂+(q) =
2

N

∑
jo

∑
q

e−iqno+iqjo b̂+(jo) =
∑
jo

δno,jo b̂
+(jo) = b̂+(no)

(23)

What is more, the momentum-space operators also obey bosonic statistics,[
â(q′), â+(q)

]
=

2

N

∑
jj′

e+iq
′j′−iqj [â(j′), â+(j)

]
=

2

N

∑
jj′

e+iq
′j′−iqjδjj′ = δqq′

[
b̂(q′), b̂+(q)

]
=

2

N

∑
jj′

e−iq
′j′+iqj

[
b̂(j′), b̂+(j)

]
=

2

N

∑
jj′

e−iq
′j′+iqjδjj′ = δqq′

[
â(q′), b̂(q)

]
=

2

N

∑
jj′

eiq
′j′−iqj

[
â(j′), b̂(j)

]
= 0

[
â+(q′), b̂+(q)

]
=

2

N

∑
jj′

e−iq
′j′+iqj

[
â+(j′), b̂+(j)

]
= 0 (24)

Plug these Fourier Transformations back into our quadratic Hamiltonian, Eq.(16)
and Eq.(17),

Ĥ = −JS2N + JS
∑
jeqq′

2

N

[
e−iqj+iq

′j−iqâ(q)b̂(q′) + e+iqj−iq
′j+iqâ+(q)b̂+(q′)

]
+ JS

∑
jeqq′

2

N

[
e−iqj+iq

′j b̂+(q)b̂(q′) + e+iq(j+1)−iq′(j+1)â+(q)â(q′)
]

+ JS
∑
joqq′

2

N

[
e−iqj+iq

′j+iq′ â(q)b̂(q′) + eiqj−iq
′j−iq′ â+(q)b̂+(q′)

]
+ JS

∑
joqq′

2

N

[
e+iqj−iq

′j â+(q)â(q′) + e−iq(j+1)+iq′(j+1)b̂+(q)b̂(q′)
]

(25)
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Using the identity Eq.(21), and denote −JS2N = H0 this can be reduced into,

Ĥ = H0 + JS
∑
q

[
e−iqâ(q)b̂(q) + e+iqâ+(q)b̂+(q) + b̂+(q)b̂(q) + â+(q)â(q)

]
+ JS

∑
q

[
e+iqâ(q)b̂(q) + e−iqâ+(q)b̂+(q) + â+(q)â(q) + b̂+(q)b̂(q)

]
(26)

Where we use the notation in Eq.(21) that,

∑
q

=

− 1
2N≤n≤

1
2N∑

q = 2π n
N

neven/odd

(27)

Use the identity eiq + e−iq = 2 cos q, the Hamiltonian reduces into,

Ĥ = H0 + 2JS
∑
q

[
â(q)b̂(q) cos q + â+(q)b̂+(q) cos q + b̂+(q)b̂(q) + â+(q)â(q)

]
(28)

Now it’s the time to diagonalize the Hamiltonian by using Bogoliubov Trans-
formation. Following eq.(11) in the problem set, we find

ĉ+(q) = cosh(θ(q))â+(q) + sinh(θ(q))b̂(q)

d̂+(q) = cosh(θ(q))b̂+(q) + sinh(θ(q))â(q)

ĉ(q) = cosh(θ(q))â(q) + sinh(θ(q))b̂+(q)

d̂(q) = cosh(θ(q))b̂(q) + sinh(θ(q))â+(q) (29)

NOTE: This is a little bit problematic, since no evidence shows the coefficient
cosh(θ(q)), sinh(θ(q)) are REAL! However, we can prove these two coefficients
are real numbers by setting them to be complex numbers, and prove the imag-
inary parts are 0. For simplicity I will only give a self-consistent argument on
the real coefficients later. Now let us use ĉ(q), d̂(q) for â(q), b̂(q) operators:

â+(q) = cosh(θ(q))ĉ+(q)− sinh(θ(q))d̂(q)

b̂+(q) = cosh(θ(q))d̂+(q)− sinh(θ(q))ĉ(q)

â(q) = cosh(θ(q))ĉ(q)− sinh(θ(q))d̂+(q)

b̂(q) = cosh(θ(q))d̂(q)− sinh(θ(q))ĉ+(q) (30)

And plug this relation into Eq.(28), we get the following terms’ coefficients,

ĉ+(q)ĉ(q) : sinh2(θ(q)) + cosh2(θ(q))− 2 sinh(θ(q)) cosh(θ(q)) cos(q)

d̂+(q)d̂(q) : sinh2(θ(q)) + cosh2(θ(q))− 2 sinh(θ(q)) cosh(θ(q)) cos(q)

ĉ(q)d̂(q) :
(
cosh2(θ(q)) + sinh2(θ(q))

)
cos(q)− 2 sinh(θ(q)) cosh(θ(q))

ĉ+(q)d̂+(q) :
(
cosh2(θ(q)) + sinh2(θ(q))

)
cos(q)− 2 sinh(θ(q)) cosh(θ(q))

(31)
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and an extra term comes from cc+ = 1 + c+c and dd+ = 1 + d+d:

2 sinh2(θ)− 2 sinh(θ) cosh(θ) cos(q) (32)

Using the identities,

2 sinh(x) cosh(x) = sinh(2x); cosh2(x) + sinh2(x) = cosh(2x) (33)

To diagonalize the Hamiltonian, we want the off-diagonal terms to be zero, that
is, the third and fourth equations of Eq.(31) to be zero, we obtain:

tanh(2θ) = cos(q)⇒ θ(q) = −1

2
ln

(
tanh

(
1

2
q

))
(34)

The extra term becomes,

| sin(q)| − 1 (35)

With this choice of θ(q), the diagonalized Hamiltonian is,

Ĥ = −JS2N + 2JS
∑
q

[
| sin(q)|

(
ĉ+(q)ĉ(q) + d̂+(q)d̂(q)

)
+ (| sin(q)| − 1)

]
(36)

Using Eq.(27), we can find

∑
q

= N

∫ π

−π

dq

4π
= N

∫ 1
2π

− 1
2π

dq

2π
(37)

Since ∫ 1
2π

− 1
2π

dq

2π
(| sin(q)| − 1) =

1

π
− 1

2
(38)

Therefore the Hamiltonian,

Ĥ = −JS(S + γ)N + 2JSN

∫ 1
2π

− 1
2π

dq

2π
| sin(q)|

(
ĉ+(q)ĉ(q) + d̂+(q)d̂(q)

)
(39)

where

γ = 1− 2

π
< 1 (40)

In conclusion, the explicit expression for both θ(q) and ω(q) are:

tanh(2θ) = cos(q), ω(q) = | sin(q)| (41)

7. The ground state of this approximation, is, when n(c) = n(d) = 0. They are

states where ĉ(q)|0〉 = 0 and d̂(q)|0〉 = 0. Note that these are not the original
degrees of freedom, the a and b. They are some collective configuration of the
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original spins.
8. The single particle states are ĉ+|0〉 and d̂+|0〉.These states have the same
energy which can be seen by simply finding the expectation value of the energy
for each state. The one-quasiparticle excitation energy is, by the Hamiltonian
in Eq.(39),

E(q) = 2JSN | sin(q)| (42)

This is of course zero for q = nπ, but since −π2 ≤ q ≤
π
2 , n = 0 is the only choice.

At this q = 0 point, | sin(q)| → |q|. Hence, there’s a linear dispersion relation
E(q) → 2NJS|q|. Since E(q) → 2NJSq for positive q and E(q) → −2NJSq
for negative q, there are two branches of dispersion relations. The wave velocity
is given by vs = dω/dq = 2NJS near the q = 0 point.

2 Two-Component Complex Scalar Field

1. (a) The canonical momentum Πa conjugate to the field φa is,

Πa =
δL

δ∂0φa
=

1

2

(
∂0φa

)∗
, Π∗a =

δL
δ∂0φ∗a

=
1

2
∂0φa (43)

(b) The Hamiltonian is defined as,

H = Πa∂0φa + Π∗a∂0φ
∗
a − L = 2ΠaΠ∗a +

1

2
|∇φa|2 +

1

2
m2

0|φa|2 (44)

(c) The total momentum P i is given by,

P i =

∫
d3xT 0i =

∫
d3x

[
δL

δ∂0φa
∂iφa +

δL
δ∂0φ∗a

∂iφ∗a

]
=

∫
d3x

(
Πa∂

iφa + Π∗a∂
iφ∗a
)

(45)

2. The transformations between two components are:

φ′a(x) = Uabφb(x), φ′∗a (x) = U−1ab φ
∗
b(x) (46)

Since (
ei
~θ·~σab

)+
= e−iθ

iσi+
ab = e−iθ

iσiab (47)

The variation of the fields are,

δφa(x) = i
(
~θ · ~σab

)
φb ⇒ δφ+a (x) = −iφ+b (x)

(
~θ · ~σab

)
⇒ δφ∗a(x) = −i

(
~θ · ~σba

)
φ∗b(x) (48)

Where in the last step we take transverse at the l.h.s. and r.h.s. of the equation.
Note σab changes into σba now. Here, there are the three Pauli matrices, i =
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1, 2, 3. In addition, there is also the 2 × 2 identity matrix, i = 0. Hence,
i = 0, 1, 2, 3 are the four generators, and there should be four conserved charges
corresponding to these four generators. The variation of the action is,

δS =

∫
ddx δL =

∫
ddx

(
δL
δφa

δφa +
δL

δ (∂µφa)
δ (∂µφa) + c.c.

)
(49)

Using the equations of motion,

δL
δφa

= ∂µ
δL

δ (∂µφa)
,

δL
δφ∗a

= ∂µ
δL

δ (∂µφ∗a)
(50)

The action reduces into the boundary term,

δS =

∫
ddx ∂µ

(
δL

δ (∂µφa)
δφa + c.c.

)
=

1

2

∫
ddx θi∂µ

(
i∂µφ∗a

(
σiab
)
φb + c.c.

)
(51)

NOTE: the a b contractions above represents ALL contractions over indices
a = 1, b = 2, a = 2, b = 1, a = 1, b = 1, a = 2, b = 2. To make the variation of
action always zero, we want the current to be conserved, i.e.,

∂µjµ = 0, jiµ =
i

2

(
∂µφ

∗
aσ

i
abφb − ∂µφaσibaφ∗b

)
=
i

2

(
∂µφ

∗
aσ

i
abφb − ∂µφbσiabφ∗a

)
(52)

There are i = 0, 1, 2, 3 conserved currents for each generator as expected. There
are 4 constant of motion. The constant of motion, i.e., the space integral of zero
component of the 4-current, is

Qi =

∫
d3x jiµ=0 = i

∫
d3x

(
Πaσ

i
abφb −Π∗bσ

i
abφ
∗
a

)
(53)

3. By imposing canonical commutation relations,

[φ̂a(x), Π̂b(y)] = ih̄δ(x− y)δab (54)

and,

[φ̂+a (x), Π̂+
b (y)] = ih̄δ(x− y)δab (55)

The quantum mechanical Hamiltonian is written as:

Ĥ =

∫
d3x

(
2Π̂+

a Π̂a +
1

2
∇φ̂+a∇φ̂a +

m2
0

2
φ̂+a φ̂a

)
(56)

The momentum operator is written as:

P̂ i =

∫
d3x T̂ 0i =

∫
d3x

(
δL

δ∂0φ̂a
∂iφ̂a +

δL
δ∂0φ̂

+
a

∂iφ̂+a

)
=

1

2

∫
d3x

(
∂0φ̂

+
a ∂

iφ̂a + ∂0φ̂a∂
iφ̂+a

)
=

∫
d3x

(
Π̂a∂

iφ̂a + Π̂+
a ∂

iφ̂+a

)
(57)
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4. In the quantum theory the operator A is conserved if its time derivative
obeys:

i
dÂH
dt

= [ÂH , Ĥ] = 0⇒ i
dQ̂i

dt
= [Q̂i, Ĥ] = 0 (58)

where we have set h̄ = 1. Then the constants of motion, derived in the classical
field theory, must commute with the Hamiltonian in the quantum theory. The
classical constant of motion, defined in Eq.(53), just need to be changed into
the operator form for the quantum theory as below:

Q̂i = i

∫
d3x

(
Π̂aσ

i
abφ̂b − Π̂+

b σ
i
abφ̂

+
a

)
(59)

Let us make sure the commutator of Q̂ and Ĥ is zero. To prove this we just
need to prove that the charge density and Hamiltonian density commute:[

q̂, ĥ
]

=

[(
Π̂aσ

i
abφ̂b − Π̂+

b σ
i
abφ̂

+
a

)
,

(
2Π̂+

a Π̂a +
1

2
∇φ̂+a∇φ̂a +

m2
0

2
φ̂+a φ̂a

)]
(60)

By using the conclusions that,[
φ̂b(x), Π̂+

a (y)Π̂a(y)
]

= ih̄Π̂+
a (y)δabδ(x− y)[

φ̂+b (y), Π̂+
a (x)Π̂a(x)

]
= ih̄Π̂a(x)δabδ(x− y)[

φ̂+a (y)φ̂a(y), Π̂a(x)
]

= ih̄φ̂+a (y)δabδ(x− y)[
φ̂+a (y)φ̂a(y), Π̂+

a (x)
]

= ih̄φ̂a(y)δabδ(x− y) (61)

We can find the charge and Hamiltonian operators indeed commute. Therefore
the charges constitute a representation of the generators of the Lie group in
the Hilbert space of the theory. One safely can write the quantum mechanical
generators of transformations of operator Q̂i as Eq.(59).
5. In the Heisenberg Representation, the equations of motion is

∂

∂t
Â = −i[Â, Ĥ] (62)

For the field and momentum operators, and using the conclusions from Eq.(61),

∂

∂t
φ̂a(x) = −i[φ̂a(x), Ĥ] = −i

∫
d3y

[
φ̂a(x),

(
2Π̂+

b Π̂b +
1

2
∇φ̂+b ∇φ̂b +

m2
0

2
φ̂+b φ̂b

)]
= 2

∫
d3yδ(x− y)δabΠ̂

+
b (y) = 2Π̂+

a (x) (63)

with this relation we can also easily find: ∂0φ̂
+
a (x) = 2Π̂a(x).

The other operator’s time detivative, Π̂a(x), is given as:

∂

∂t
Π̂a(x) = −i[Π̂a(x), Ĥ] = −i

∫
d3y

[
Π̂a(x),

(
2Π̂+

b Π̂b +
1

2
∇φ̂+b ∇φ̂b +

m2
0

2
φ̂+b φ̂b

)]
= −i

∫
d3y

[
Π̂a(x),

(
1

2
∇φ̂+b ∇φ̂b +

m2
0

2
φ̂+b φ̂b

)]
(64)
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Here we are left to treat two terms:[
Π̂a(x),∇φ̂+b (y)∇φ̂b(y)

]
,
[
Π̂a(x), φ̂+b (y)φ̂b(y)

]
(65)

The second term is easy to obtain, i.e., −ih̄δ(x− y)δabφ̂
+
b (y), by using Eq.(61).

The first term, however, need more treatment. NOTE: the space gradient on
φ̂b(y) is actually ∇y. Therefore we have

∇yΠ̂a(x) = 0 (66)

Thus for the first term in Eq.(65) we have,[
Π̂a(x),∇yφ̂+b (y)∇yφ̂b(y)

]
= +Π̂a(x)∇yφ̂+b (y)∇yφ̂b(y)−∇yφ̂+b (y)∇yφ̂b(y)Π̂a(x)

= −∇yΠ̂a(x)φ̂+b (y)∇yφ̂b(y)− Π̂a(x)φ̂+b (y)∇2
yφ̂b(y)

+φ̂+b (y)∇yφ̂b(y)∇yΠ̂a(x) + φ̂+b (y)∇2
yφ̂b(y)Π̂a(x)

⇒ −Π̂a(x)φ̂+b (y)∇2
yφ̂b(y) + φ̂+b (y)∇2

yφ̂b(y)Π̂a(x)

= −φ̂+b (y)Π̂a(x)∇2
yφ̂b(y) + φ̂+b (y)∇2

yφ̂b(y)Π̂a(x) (67)

Where we have dropped the boundary terms above. Again use the relation
Eq.(66),

−φ̂+b (y)Π̂a(x)∇2
yφ̂b(y) + φ̂+b (y)∇2

yφ̂b(y)Π̂a(x) = φ̂+b (y)∇2
y

[
φ̂b(y), Π̂a(x)

]
= ih̄φ̂+a (y)∇2

yδ(x− y)

= ih̄δ(x− y)∇2
yφ̂

+
a (y) (68)

Finally set h̄ = 1, we get the equation of motion for the momentum operator
that,

∂

∂t
Π̂a(x) =

1

2

(
∇2 −m2

0

)
φ̂+a (x) (69)

Combining both Eq.(63) and Eq.(69), we obtain the famous Klein-Gordon Equa-
tion:

∂20 φ̂a(x) =
(
∇2 −m2

0

)
φ̂a(x) (70)

where the spectrum is a little different from before,

ω =
√
k2 +m2 (71)

6. Now since the scalar field is complex, we can divide the field into two parts:

φ̂1(x) =
1√
2

[
φ̂1r(x) + iφ̂1i(x)

]
φ̂2(x) =

1√
2

[
φ̂2r(x) + iφ̂2i(x)

]
(72)
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And the momentum operator decomposes into

Π̂1(x) =
1√
2

[
Π̂1r(x) + iΠ̂1i(x)

]
=

1

2
√

2

[
∂0φ̂1r(x)− i∂0φ̂1i(x)

]
Π̂2(x) =

1√
2

[
Π̂2r(x) + iΠ̂2i(x)

]
=

1

2
√

2

[
∂0φ̂2r(x)− i∂0φ̂2i(x)

]
(73)

where r denotes real, and i denotes imaginary. Use the Fourier Transformation,

φ̂a(r,i)(x) =

∫
d3k

(2π)3
φ̂a(r,i)(~k, x0)ei

~k·~x (74)

Since φ̂a(r,i)(x) are real and Hermitian field, φ̂a(r,i)(~k, x0) must satisfy:

φ̂+a(r,i)(
~k, x0) = φ̂a(r,i)(−~k, x0) (75)

Now define the Forward Moving wave function component, and the Backward
Moving wave function component as follows:

φ̂+a(r,i)(
~k, x0) = φ̂a(r,i)(−~k, x0) (76)

Therefore let us define â, b̂ operators as follows:

φ̂ar(x) =

∫
d3k

(2π)32ω(~k)

[
âa(~k)e−iωx0+i~k·~x + â+a (~k)eiωx0−i~k·~x

]
φ̂ai(x) =

∫
d3k

(2π)32ω(~k)

[
b̂a(~k)e−iωx0+i~k·~x + b̂+a (~k)eiωx0−i~k·~x

]
(77)

Π̂ar(x) =

∫
d3k

(2π)32ω(~k)

ω(~k)

2

[
−b̂a(~k)e−iωx+i

~k·~x + b̂+a (~k)eiωx0−i~k·~x
]

Π̂ai(x) =

∫
d3k

(2π)32ω(~k)

ω(~k)

2

[
−âa(~k)e−iωx0+i~k·~x + â+a (~k)eiωx0−i~k·~x

]
(78)

However, this set of operators cannot diagonalize the Hamiltonian. Let us define
â1a(~k), â2a(~k), â2a(~k), â+2a(~k) as follows:

â1a(~k) =
1√
2

[
âa(~k) + ib̂a(~k)

]
, â+1a(~k) =

1√
2

[
â+a (~k)− ib̂+a (~k)

]
â2a(~k) =

1√
2

[
âa(~k)− ib̂a(~k)

]
, â+2a(~k) =

1√
2

[
â+a (~k) + ib̂+a (~k)

]
(79)

From the above definition we can find â2a(~k), â+2a(~k) as follows:

φ̂a(x) =

∫
d3k

(2π)32ω(~k)

[
â1a(~k)e−iωx0+i~k·~x + â+2a(~k)eiωx0−i~k·~x

]
φ̂+a (x) =

∫
d3k

(2π)32ω(~k)

[
â2a(~k)e−iωx0+i~k·~x + â+1a(~k)eiωx0−i~k·~x

]
(80)
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and

Π̂+
a (x) =

∫
d3k

(2π)32ω(~k)

ω(~k)

2

[
−iâ1a(~k)e−iωx0+i~k·~x + iâ+2a(~k)eiωx0−i~k·~x

]
Π̂a(x) =

∫
d3k

(2π)32ω(~k)

ω(~k)

2

[
−iâ2a(~k)e−iωx0+i~k·~x + iâ+1a(~k)eiωx0−i~k·~x

]
(81)

Use the quantization condition of Eq.(54) and Eq.(55), we find the commutation
relation for the defined new operators are:[

âia(~p), â+jb(~q)
]

= (2π)34ω(~k)δ(~p− ~q)δijδab, [âia(~p), âjb(~q)] = 0 (82)

In conclusion, there are 4 species of creation and annihilation operators we need:
â11(~k), â+11(~k), â12(~k), â+12(~k), â21(~k), â+21(~k), â22(~k), â+22(~k).
7. The SU(2) generator is just the 4-constant of motions Qi:

Q̂i = i

∫
d3x

(
Π̂aσ

i
abφ̂b − Π̂+

b σ
i
abφ̂

+
a

)
Together with Eq.(80), (81). (83)

The above Eq.(83) has four components, two are diagonal, two are off-diagonal.
The diagonal terms are:

+

∫
d3x

∫
d3p

(2π)32ω(p)

ω(p)

2

∫
d3q

(2π)32ω(q)

[
â2a(~p)â+2b(~q) + â+2a(~p)â2b(~q)

]
ei(−pµ+qµ)x

µ

−
∫
d3x

∫
d3p

(2π)32ω(p)

ω(p)

2

∫
d3q

(2π)32ω(q)

[
â+1a(~p)â1b(~q) + â1a(~p)â+1b(~q)

]
ei(+pµ−qµ)x

µ

(84)

Taking the integral over
∫
d3x first and use∫

d3xei(pµ−qµ)x
µ

= ei(ω(p)−ω(q))t
∫
d3xe−i(~p−~q)·~x = (2π)3δ(~p− ~q) (85)

The diagonal terms reduces into∫
σkabd

3p

(2π)38ω(p)

[
â2a(~p)â+2b(~p) + â+2a(~p)â2b(~p)− â1a(~p)â+1b(~p)− â

+
1a(~p)â1b(~p)

]
(86)

Next, the off-diagonal terms are:

+

∫
d3x

∫
d3p

(2π)32ω(p)

ω(p)

2

∫
d3q

(2π)32ω(q)

[
â2a(~p)â1b(~q) + â+2a(~p)â+1b(~q)

]
ei(−pµ−qµ)x

µ

−
∫
d3x

∫
d3p

(2π)32ω(p)

ω(p)

2

∫
d3q

(2π)32ω(q)

[
â1a(~p)â2b(~q) + â+1a(~p)â+2b(~q)

]
ei(+pµ+qµ)x

µ

(87)

Taking the integral over
∫
d3x again and use∫

d3xei(pµ+qµ)x
µ

= ei(ω(p)+ω(q))t
∫
d3xe−i(~p+~q)·~x = (2π)3δ(~p+ ~q)e2iωt (88)
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Now the off-diagonal term reduces into:∫
σkabd

3p

(2π)38ω(p)

[
â2a(~p)â1b(−~p) + â+2a(~p)â+1b(−~p)

]
e−2iωt

−
∫

σkabd
3p

(2π)38ω(p)

[
â1a(~p)â2b(−~p) + â+1a(~p)â+2b(−~p)

]
e+2iωt (89)

This term is, a little problematic, however, if we look back to Eq.(59), the charge
operator, and take the Hermitian conjugation on that operator, we can find:

Q̂i+ = Q̂i (90)

Where we have used σk+ab = σkab. The diagonal part of Q̂i is of course Hermitian,
therefore, applying Eq.(90) on the off-diagonal part, Eq.(89), one finds the off-
diagonal term equals:∫

σkbad
3p

(2π)38ω(p)

[
â2a(~p)â1b(−~p) + â+2a(~p)â+1b(−~p)

]
e+2iωt

−
∫

σkbad
3p

(2π)38ω(p)

[
â1a(~p)â2b(−~p) + â+1a(~p)â+2b(−~p)

]
e−2iωt (91)

Let us take the summation on Eq.(91)+Eq.(89), and note:∫
d3p

[
â2a(~p)σkabâ1b(−~p)− â1a(~p)σkbaâ2b(−~p)

]
e+2iωt

=

∫
d3p

[
â2a(~p)σkabâ1b(−~p)− â1b(~p)σkabâ2a(−~p)

]
e+2iωt (92)

Using ∫
d3pf(~p) =

∫
d3(−q)f(−~q) =

∫
d3qf(−~q) (93)

Eq.(92) must be zero. In addition, other 3 terms in the off-diagonal term also
vanish with the same arguments.
Finally we reach the conclusion that the charge operator only has diagonal
terms,

Q̂k =
σkab
2

∫
d3p

(2π)34ω(p)

[{
â2a(~p), â+2b(~p)

}
−
{
â1a(~p), â+1b(~p)

}]
(94)

As noted before, there are two diagonal operators in the {a, b} basis where the
Hamiltonian is also diagonal. Hence, the good quantum numbers are labelled
by the eigenvalues of the Hamiltonian, σ0

ab and σ3
ab. Notice that for σ0

ab, â
+

particles and b̂+ have eigenvalues with opposite sign in Q̂0 while for Ĥ and σ3
ab

in Q̂3 they have the same sign. In this sense, one has particles with the same
energy and spin, but opposite charge given by σ0

ab.
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8. The Hamiltonian can be written in terms of creation annihilation operators,
the diagonal terms are:

1

2

∫
d3x

∫
d3p

(2π)32ω(~p)

∫
d3q

(2π)32ω(~q)
× ei(qµ−pµ)x

µ

×{
ω(~p)ω(~q)â1a(~p)â+1a(~q) +m2

0â2a(~p)â+2a(~q) + ~p · ~qâ2a(~p)â+2a(~q)
}

+
1

2

∫
d3x

∫
d3p

(2π)32ω(~p)

∫
d3q

(2π)32ω(~q)
× ei(pµ−qµ)x

µ

×{
ω(~p)ω(~q)â+2a(~p)â2a(~q) +m2

0â
+
1a(~p)â1a(~q) + ~p · ~qâ+1a(~p)â+1a(~q)

}
(95)

Again, taking integral on
∫
d3x and integral on

∫
d3q, and use ω2(~k) = (k2+m2

0)
we get the reduced diagonal term as:∫

d3p

(2π)32ω(~p)

ω(~p)

4

(
â1aâ

+
1a + â2aâ

+
2a + â+1aâ1a + â+2aâ2a

)
(96)

The off-diagonal terms, however, vanishes. For example, let us consider â1aâ2a
term’s coefficient:

1

2

∫
d3x

∫
d3p

(2π)32ω(~p)

∫
d3q

(2π)32ω(~q)
× ei(−qµ−pµ)x

µ

×{
−ω(~p)ω(~q)â1a(~p)â2a(~q) +m2

0â2a(~p)â1a(~q)− ~p · ~qâ2a(~p)â1a(~q)
}

(97)

Again take integral over
∫
d3x, however, due to the exponential term in Eq.(97),

which gives δ(~p+ ~q), ~q = −~p, the coefficient gives −ω2 + (p2 +m2
0) = 0.

Thus the Hamiltonian could be written as:

Ĥ =

∫
d3p

(2π)32ω(~p)

ω(~p)

4

(
â1aâ

+
1a + â2aâ

+
2a + â+1aâ1a + â+2aâ2a

)
(98)

Using the normal-order of the Hamiltonian,

: Ĥ :=

∫
d3p

(2π)32ω(~p)

ω(~p)

2

(
â+1aâ1a + â+2aâ2a

)
, E0 =

∫
ω(p)d3p (99)

The momentum operator, is also diagonal. To prove this, let us have a look at
the off-diagonal terms. For example, the off-diagonal term of â1a(~q)â2a(~p)∫

d3p

(2π)32ω(~p)

ω(~p)

2
{−~pâ2a(~p)â1a(−~p)− ~pâ1a(~p)â2a(−~p))}

=

∫
d3p

(2π)32ω(~p)

ω(~p)

2
{−~pâ2a(~p)â1a(−~p) + ~pâ1a(−~p)â2a(~p))} (100)

This means the off-diagonal term must be zero.
The diagonal term is:∫

d3x

∫
d3p

(2π)32ω(~p)

ω(~p)

2

∫
d3q

(2π)32ω(~q)
× ~qei(qµ−pµ)x

µ

×{
â2a(~p)â+2a(~q) + â+1a(~p)â1a(~q)) + â1a(~p)â+1a(~q) + â+2a(~p)â2a(~q))

}
(101)
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Thus the momentum operatpr P̂ could be written as:

P̂ =

∫
d3p

(2π)32ω(~p)

~p

4

(
â+1aâ1a + â1aâ

+
1a + â+2aâ2a + â2aâ

+
2a

)
(102)

The normal-ordered operator, is,

: P̂ :=

∫
d3p

(2π)32ω(~p)

~p

2

(
â+1aâ1a + â+2aâ2a

)
(103)

The ground state of this system are states where:

âi=(1,2),j=(1,2)|gnd〉 = 0 (104)

The generator acts on the ground state is also zero,

Q̂i|0〉 = 0 (105)

9. As mentioned before, the dispersion relation is given by ω =
√
k2 +m2

0 Each
particle type has E(k) = ω(k). This is four fold degenerate. This can be seen
directly from the Hamiltonian. There are four terms, each of which have the
same energy. The â2j particles have charge +1 while the â1j particles have
charge -1. In addition to this, there are two components for each of these. I
label them by j = 1 and j = 2. Hence, states can be labelled by

â+21(k)|0〉 = |+, 1, k〉 â+22(k)|0〉 = |+, 2, k〉
â+11(k)|0〉 = |−, 1, k〉 â+12(k)|0〉 = |−, 2, k〉 (106)
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