
Physics 582, Fall Semester 2011

Professor Eduardo Fradkin

Problem Set No. 2:

Symmetries and Conservation Laws

Due Date: October 2, 2011

Here you will look again at problem 2 of problem set No. 1 in which you studied
some of the properties of the dynamics of a charged (complex) scalar field φ(x)
coupled to the electromagnetic field Aµ(x). Recall that the Lagrangian density
L for this system is
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where Dµ is the covariant derivative

Dµ ≡ ∂µ + ieAµ (2)

e is the electric charge and ∗ denotes complex conjugation. In this problem
set you will determine several important properties of this field theory at the
classical level.

1. Derive an expression for the locally conserved current jµ(x), associated
with the global symmetry

φ(x) → φ′(x) = eiθφ(x)

φ∗(x) → φ′∗(x) = e−iθφ∗(x)

Aµ(x) → A′

µ(x) = Aµ(x) (3)

in terms of the fields of the theory.

2. Show that the conservation of the current jµ implies the existence of a
constant of motion. Find an explicit form for this constant of motion.

3. Consider now the case of the local ( or gauge) transformation

φ(x) → φ′(x) = eiθ(x)φ(x)

φ∗(x) → φ′∗(x) = e−iθ(x)φ∗(x)

Aµ(x) → A′

µ(x) = Aµ(x) + ∂µΛ(x) (4)

where θ(x) and Λ(x) are two functions. What should be the relation
between θ(x) and Λ(x) for this transformation to be a symmetry of the
Lagrangian of the system?
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4. Show that, if the system has the local symmetry of the previous section,
there is a locally conserved gauge current Jµ(x). Find an explicit expres-
sion for Jµ and discuss in which way it is different from the current jµ
of Section 1). Find an explicit expression for the associated constant of
motion and discuss its physical meaning.

5. Find the Energy-Momentum T µν tensor for this system. Show that it can
be written as the sum of two terms

T µν = T µν(A) + T µν(φ,A) (5)

where T µν(A) is the energy-momentum tensor for the free electromagnetic
field and T µν(φ,A) is the tensor which results by modifying the energy-
momentum tensor for the decoupled complex scalar field φ by the minimal

coupling procedure.

6. Find explicit expressions for the Hamiltonian H(x) and the linear momen-

tum ~P(x) densities for this system. Give a physical interpretation for all
of the terms that you found for each quantity.

7. Consider now the case of an infinitesimal Lorentz transformation

xµ → x′

µ + ωµνx
ν (6)

where ωµν infinitesimal and antisymmetric. Show that the invariance of
the Lagrangian of this system under these Lorentz transformation leads
to the existence of a conserved tensor Mµνλ. Find the explicit form of this
tensor. Give a physical interpretation for its spacial components. Does
the conservation of this tensor impose any restriction on the properties of
the energy-momentum tensor T µν? Explain.
Warning: Be very careful in how you treat the fields. Recall that not all
of the fields are scalars!

8. In this section yo will consider again the same system but in a polar

representation for the scalar field φ, i.e.,

φ(x) = ρ(x) eiω(x) (7)

In problem set 1, problem II, you showed that for m2
0 < 0 the lowest

energy states of the system can be well approximated by freezing the
amplitude mode ρ to a constant value ρ0 which you obtained by an energy
minimization argument. In this section you are asked to find the form of
(A) the conserved gauge current Jµ, (B) the total energy E and (C) the

total linear momentum ~P in this limit.

9. Consider now the analytic continuation to imaginary time of this theory.
Find the energy functional of the equivalent system in classical statistical
mechanics. Give a physical interpretation for each of the terms of this
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energy functional. If D is the dimensionality of space-time for the original
system, what is the dimensionality of space for the equivalent classical
problem?.
Warning : Be very careful in the way you continue the components of
the vector potential.
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