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1 Symmetries and Conservation Laws

1. Under a global transformation, the scalar field changes while the vector field
not. The variation of these fields are:

δφ(x) = φ′(x)− φ(x) = iθφ

δφ∗(x) = φ′∗(x)− φ∗(x) = −iθφ∗

δAµ(x) = A′µ(x)−Aµ(x) = 0 (1)

The total variation of the Action is,

δS =

∫
ddx

(
δL
δφ
δφ+

δL
δ∂µφ

δ∂µφ+
δL
δφ∗

δφ∗ +
δL

δ∂µφ∗
δ∂µφ

∗ +
δL
δAµ

δAµ +
δL

δ∂νAµ
δ∂νAµ

)
(2)

In this problem, the variation of vector field is zero, we can obtain the locally
conserved current as:

δS =

∫
ddx

([
δL
δφ
− ∂µ

δL
δ (∂µφ)

]
δφ+ ∂µ

[
δL

δ (∂µφ)
δφ

]
+ c.c.

)
(3)

The classical equations of motion should vanish in the first bracket above,

δL
δφ
− ∂µ

δL
δ (∂µφ)

= 0,
δL
δφ∗
− ∂µ

δL
δ (∂µφ∗)

= 0 (4)

The above variation of Action is reduced to:

δS =

∫
ddx

(
∂µ

[
δL

δ (∂µφ)
δφ+

δL
δ (∂µφ∗)

δφ∗
])

= θ

∫
ddx (∂µj

µ) (5)

The partial derivative on θ is zero because of the global transformation. In the
above equation we have defined,

θjµ =
δL

δ (∂µφ)
δφ+

δL
δ (∂µφ∗)

δφ∗ (6)
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Now have a look at the exact form of that of the Action:

S =

∫
ddx

(
(∂µφ∗) (∂µφ) + ieAµ (φ∂µφ∗ − φ∗∂µφ) + (e2A2 −m2

0)|φ|2 − λ

4!
|φ|4 − 1

4
F 2

)
(7)

The conserved current becomes, ∂µj
µ = 0,

jµ = [(∂µφ
∗)− ieAµφ∗] iφ− [(∂µφ) + ieAµφ] iφ∗ = i

[
φ (Dµφ)

∗ − φ∗ (Dµφ)
]
(8)

2. As ∂µj
µ = 0, we get

∫
ddx∂µj

µ = 0. Use the Gauss theorem,∫
ddx∂µj

µ =

∫
S

dSµj
µ = 0 (9)

The surface tends to infinity if the real volume’s coordinates x, y, z →∞. If the
current ~J vanishes at x, y, z →∞, from Eq.(9) we have,∫

S(t)

dS0j
0 = −

∫
S(t)

d~S ·~j = 0

⇒
∫
S(t)

dS0j
0 =

(∫
V (t+∆t)

−
∫
V (t)

)
dS0j

0 = 0 (10)

Therefore doesn’t depend on time, more explicitly,∫
V (t+∆t)

dS0j
0 =

∫
V (t)

dS0j
0 (11)

Since the surface for a fixed 0th dimension – time, is the volume in the real
space, dS0 = d3x. Finally we get∫

V (t)

d3xj0 = Q (12)

is independent of time, which is, a constant of motion. From Eq.(8) above, we
can obtain the explicit form for this constant of motion that,

Q =

∫
V (t)

d3xi
[
φ (D0φ)

∗ − φ∗ (D0φ)
]

(13)

3. We want the Lagrangian to be invariant under this local gauge transforma-
tion, that is to make at least (Dµφ)

∗
(Dµφ) to be invariant under local gauge

transformation.

D′µφ
′ = (∂µ + ieAµ + ie∂µΛ)

(
eiθφ

)
= eiθDµφ+ (ie∂µΛ + i∂µθ) e

iθφ (14)

The l.h.s to be equal to eiθDµφ, the second term must be zero. This gives

ie∂µΛ + i∂µθ = 0⇒ Λ = −1

e
θ (15)
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On the other hand, the vector field Fµν keeps invariant, so the requirement
above is the only what we need.

F ′µν = ∂µA
′
ν − ∂νA′µ = ∂µAν − ∂νAµ + (∂µ∂ν − ∂ν∂µ) Λ = Fµν (16)

4. Now let us investigate the variation of the Action in the gauge transformation:

δS =

∫
ddx

([
δL
δφ
− ∂µ

δL
δ (∂µφ)

]
δφ+ ∂µ

[
δL

δ (∂µφ)
δφ

]
+ c.c.

)
+

∫
ddx

([
δL
δAµ

− ∂ν
δL

δ (∂νAµ)

]
δAµ + ∂ν

[
δL

δ (∂νAµ)
δAµ

])
(17)

Again the first and third term above in the bracket is 0 due to the classical
equations of motion. The second and fourth term corresponds to the gauge
current. Using δAµ = A′µ −Aµ = ∂µΛ and δφ = iθφ, δφ∗ = −iθφ∗, we have the
second and fourth term in the bracket above as follows:

δS =

∫
ddx

(
∂µ

[
δL

δ (∂µφ)
iθφ

]
− ∂µ

[
δL

δ (∂µφ∗)
iθφ∗

]
− ∂ν

[
δL

δ (∂νAµ)
∂µ

(
θ

e

)])
(18)

Note that, now ∂µθ 6= 0 since it is the gauge transformation. Using ∂µj
µ = 0,

and

δL
δ (∂νAµ)

= Fµν (19)

the above equation is reduced into:

δS =

∫
ddx

(
jµ∂µθ −

1

e
∂ν (Fµν) ∂µθ −

1

e
Fµν∂ν∂µθ

)
(20)

Note that, the above third term is antisymmetric with µν indices in Fµν while
symmetric in ∂µ∂ν . This term must be vanish.

δS =

∫
ddx

(
jµ − 1

e
∂νF

µν

)
∂µθ (21)

This term vanishes since the term in parenthesis is zero by the equations of
motion which follows from the 3rd term in Eq.(17). The real issue is that the
gauge current Jµ, which is defined by the variation of the action with respect
to the vector field, is forced by gauge invariance to be Jµ = ejµ. Making this
equation vanish, we have to set up the relation,

∂νF
µν = ejµ (22)

This equation above, is known as the Maxwell’s Equations. Now let us define
the gauge current Jµ, satisfying ∂µJ

µ = 0:

Jµ = ∂νF
µν ⇒ Jµ = ejµ (23)
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The difference from jµ is the charge e. The associated constant of motion is,
similar with that of problem 2,

Q =

∫
d3x∇ · ~E =

∫
dd−1x

(
ej0
)

= e

∫
V

d3xi
[
φ (D0φ)

∗ − φ∗ (D0φ)
]

(24)

5. Now we are going to consider under a space-time transformation, how the
system reponses,

δS = δ

(∫
ddxL

)
=

∫
δddxL+

∫
ddxδL (25)

Due to a translational transformation of the space-time,

x′µ = xµ + δxµ ⇒
∂x′µ
∂xν

=
∂

∂xν
(xµ + δxµ) = gνµ + ∂νδxµ (26)

The volume element d4x changes by a Jacobian Determinent:

d4x′ = d4xJ, J =

∣∣∣∣det

(
∂x′µ
∂xj

)∣∣∣∣ =
∣∣det

(
gνµ + ∂νδxµ

)∣∣ (27)

The above determinent is, mostly determined by the diagonal terms, gνµ. Al-
though ∂νδxµ CAN have off-diagonal terms and contribute to the determinent,
it is of second-order or even higher. The first-order contribution from ∂νδxµ is,
those diagonal terms of ∂νδxµ. Let us denote the diagonal term of ∂νδxµ to be
(∂νδxµ)nn. Therefore we have the approximation that,

J =

4∏
n=1

(
1 + (∂νδxµ)nn

)
+O

(
(∂νδxµ)

2
)
≈ 1 + ∂µδxµ (28)

This gives,

δd4x = ∂µδxµd
4x (29)

This is what we want to get in the first term of Eq.(29). Next, consider
δL(x, φ, ∂φ,A, ∂A),

δL = ∂µLδx
µ +

(
δL
δφ
δφ+

δL
δ (∂µφ)

δ (∂µφ) + c.c.

)
+

δL
δAµ

δAµ +
δL

δ (∂νAµ)
δ (∂νAµ)

(30)

The total change of scalar field and vector field are:

φ′(x′) = φ′(x+ δx) = φ′(x) + ∂µφ(x)δxµ = φ(x) + δφ(x) + ∂µφ(x)δxµ

⇒ δTφ = δφ(x) + ∂µφ(x)δxµ

A′µ(x′) = A′µ(x) + ∂νAµ(x)δxν = Aµ(x) + δAµ(x) + ∂νAµ(x)δxν

⇒ δTAµ = δAµ(x) + ∂νAµ(x)δxν (31)
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The variation of Lagrangian can be reduced into:

δL = ∂µLδxµ +

[
δL
δφ
− ∂µ

(
δL

δ (∂µφ)

)]
δφ+ ∂µ

(
δL

δ (∂µφ)
δφ

)
+ c.c.

+

[
δL
δAµ

− ∂ν
(

δL
δ (∂νAµ)

)]
δAµ + ∂ν

[
δL

δ (∂νAµ)
δAµ

]
(32)

Using the equations of motion, we further reduce it into:

δL = ∂µLδxµ + ∂µ

[
δL

δ (∂µφ)
(δTφ− ∂αφδxα)

]
+ c.c.

+∂ν

[
δL

δ (∂νAµ)
(δTAµ − ∂αAµδxα)

]
(33)

Since the translation transform does not affect the real change of the fields,
including both scalar and vector, the total variation of them, δTφ = 0, δTAµ = 0.

δL = ∂µLδxµ − ∂µ
[

δL
δ (∂µφ)

∂αφδx
α

]
+ c.c.− ∂ν

[
δL

δ (∂νAµ)
∂αAµδx

α

]
(34)

Since δS =
∫
d4x (L∂µδxµ + δL), the first term in the variation of Action can

combine with the first term in Eq.(34), resulting:

(L∂µδxµ + ∂µLδxµ) = ∂µ (Lδxµ) = ∂µ (Lgµαδxα) (35)

Therefore we can further reduce the variation of the Action,

δS =

∫
d4x∂µ

(
Lgµα −

δL
δ (∂µφ)

∂αφ−
δL

δ (∂µφ∗)
∂αφ

∗ − δL
δ (∂µAν)

∂αAν

)
δxα(36)

Define the stress tensor as,

Tµν = −Lgµν +
δL

δ (∂µφ)
∂νφ+

δL
δ (∂µφ∗)

∂νφ∗ +
δL

δ (∂µAα)
∂νAα (37)

Which satisfies

∂µT
µν = 0 (38)

Following the requirement of this problem, to divide the stress tensor into two
parts, one dependent both on φ,Aµ and the other independent of φ, one gets

Tµν(A) =
1

4
gµνF 2 + Fαµ∂νAα

Tµν(A, φ) = (Dµφ)
∗
∂νφ+Dµφ (∂νφ)

∗ − gµν
(
L+

1

4
F 2

)
(39)

These however, seems not so symmetric as we want. Let us use the prop-
erty that, for an antisymmetric tensor ∂αB

αµν which is antisymmetric for the
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first two indices, then ∂µ∂αB
αµν = 0 is always correct. Therefore T̃µν =

Tµν + ∂αB
αµν still satisfies ∂µT̃

µν = 0. Looking at the two stress tensors
Tµν(A), Tµν(A, φ), if we can find some ∂αB

αµν , to make them transforms into:

T̃µν(A) =
1

4
gµνF 2 − Fµα

(
∂νAβ − ∂βAν

)
gαβ = Tµν(A) + Fµα∂βAνgαβ (40)

and,

T̃µν(A, φ) = (Dµφ)
∗
Dνφ+Dµφ (Dνφ)

∗ − gµν
(
L − 1

4
F 2

)
(41)

Using Eq.(8) and Eq.(23),

T̃µν(A, φ) = Tµν(A, φ) + ieAν
(
φ (Dµφ)

∗ − φ∗Dµφ
)

= Tµν(A, φ) + JµAν(42)

By Maxwell’s equation, Eq.(22),

T̃µν(A, φ) = Tµν(A, φ) + ∂αF
µαAν (43)

Combining Eq.(43) and Eq.(40) together, and find

∂αF
µαAν + Fµα∂αA

ν = ∂α (FµαAν) = ∂α (Bµαν) (44)

We can find that the newly defined T̃µν satisfies ∂µT̃
µν = 0. Finally write out

the new stress tensor,

T̃µν = (Dµφ)
∗
Dνφ+Dµφ (Dνφ)

∗ − FµαF ναgαα − gµνL (45)

which is not only symmetric but also gauge invariant.
6. The tensor Tµν is known as the energy-momentum tensor. The corresponding
constant of motion is defined to be the Hamiltonian and Momentum.

H =

∫
d3xT̃ 00 =

∫
d3x

((
D0φ

)∗
D0φ+D0φ

(
D0φ

)∗ − F 0αF 0αgαα − L
)

=

∫
d3x

(
Π∗Π + (Diφ)

∗
(Diφ) + V (φ) +

1

2

(
E2 +B2

))
(46)

In the Hamiltonian above, the first three terms are the scalar field energy, and
the fourth is the EM field energy. The Momemtum is,

Pµ =

∫
d3xT̃ 0µ =

∫
d3x

((
D0φ

)∗
Dµφ+D0φ (Dµφ)

∗ − F 0αFµαgαα

)
=

∫
d3x

((
D0φ

)∗
Dµφ+D0φ (Dµφ)

∗
+
(
~E × ~B

)µ)
(47)

The first two are the scalar field momentum while the third is the EM field’s
momentum.
7. The coordinates transforms as below:

x′µ = xµ + ωµνx
ν ⇒ δxµ = ωµνx

ν (48)
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For a scalar field, note the field itself is independent of the change of the space-
time. Therefore the following relation still satisfies:

δTφ = 0 (49)

However, this is not correct for that of the vector field. Consider the special
case that the space-time only has the Lorentz Transfomation, thus we have the
total variation of the vector field as,

A′µ = λµνA
ν ⇒ δTAµ =

(
λνµ − gνµ

)
Aν = ωνµAν (50)

This is what the total variation is for the vector field. For other kinds of space-
time transformations, no matter how it changes, the total variation of vector
field keep the same form as Eq.(50). On the other hand, what we need in use,
is δAµ and δφ:

δφ = δTφ− ∂αφδxα = −∂αφδxα

δAµ = δTAµ − ∂αAµδxα = ωαµAα − ∂αAµδxα (51)

Now let us proceed to explore the variation of that of the Action,

δS =

∫
d4x

{
∂µ

[
Lxβgµα −

δL
δ (∂µφ)

xβ∂αφ+ c.c.+
δL

δ (∂µAν)

(
gβνAα − ∂αAνxβ

)]
ωαβ

}
(52)

Which could be further reduced into,

δS =

∫
d4x

{
∂µ

[(
Lgµα −

δL
δ (∂µφ)

∂αφ+ c.c.− δL
δ (∂µAν)

∂αAν

)
xβ +

δL
δ (∂µAν)

gβνAα

]
ωαβ

}
(53)

The variation of Action again should be froced to be 0 for an arbitrary ωαβ . This
requires the partial derivative to be zero in Eq.(53). However, one should note
that since ωµν and ωνµ or NOT independent, the equation below is NON-zero:

∂µ

[(
Lgµα −

δL
δ (∂µφ)

∂αφ+ c.c.− δL
δ (∂µAν)

∂αAν

)
xβ +

δL
δ (∂µAν)

gβνAα

]
6= 0

(54)

Becasue another term, with α, β indices exchanged, to be the opposite value of
Eq.(54). Thus we can reach the conclusion that,

∂µ

[(
Lgµα −

δL
δ (∂µφ)

∂αφ+ c.c.− δL
δ (∂µAν)

∂αAν

)
xβ +

δL
δ (∂µAν)

gβνAα

]
− ∂µ

[(
Lgµβ −

δL
δ (∂µφ)

∂βφ+ c.c.− δL
δ (∂µAν)

∂βAν

)
xα +

δL
δ (∂µAν)

gανAβ

]
= 0

(55)
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Recall Eq.(37), the definition of stress tensor due to the translational change of
the space-time, Tµν , we find:
(1) The first bracket in Eq.(53) corresponds to −Tµα, and −T̃µα respectively
(because ∂µB

µαν = 0 if Bµαν is antisymmetric in the indices µ, α).
(2) The second term is the extra term which cannot be seen in translational
change but can be seen in Lorentz transformation. This is because δTAµ 6= 0
in Lorentz transformation.
Now it is the time to define the conserved tensor Mµαβ , satisfying ∂µM

µαβ = 0,

Mµαβ =

(
Lgµα − δL

δ (∂µφ)
∂αφ+ c.c.− δL

δ (∂µAν)
∂αAν

)
xβ +

δL
δ (∂µAν)

gβνA
α

−
(
Lgµβ − δL

δ (∂µφ)
∂βφ+ c.c.− δL

δ (∂µAν)
∂βAν

)
xα − δL

δ (∂µAν)
gανA

β

(56)

Plugging in the full form of Lagrangian, and use T̃ instead of T , we get

Mµαβ = Tµβxα − Tµαxβ −
(
FµβAα − FµαAβ

)
Mµαβ = T̃µβxα − T̃µαxβ (57)

The spatial part of the stress tensor shows the spatial angular momentum of
the total angular momentum. The second part is the EM vector field angular
momentum. The antisymmetricity of Mµαβ implies the symmtricity of T̃µν .
8. (A)In HW-1 we showed that the lowest energy states can be approximated by
freezing the amplitude mode ρ = ρ0, now let us consider the quantum fluctuation
of the phase ω(x) and Aµ. The gauge current is just to take the derivatives on
the phase term ω,

Jµ = 2eρ2
0 (∂µω + eAµ) (58)

(B) The total energy corresponds to the Hamiltonian, H,

E =

∫
d3x

[
ρ2

0 (∂0ω + eA0)
2

+ ρ2
0 (∂iω + eAi)

2
+ V (ρ) +

1

2

(
E2 +B2

)]
(59)

(C) The linear momentum is,

P i =

∫
d3x

[
2ρ2

0

(
∂0ω + eA0

) (
∂iω + eAi

)
+
(
~E × ~B

)i]
(60)

9. The analytic continuation to imaginary time of this theory is, to use the Wick
rotation t → −iτ , and ∂0 → i∂τ . However, under the Wick rotation the inner
product of ∂µ and Aµ between Euclidean and Minkowski space-time should be
similar with that of the inner product of xµ and xµ, this results in

s2
M = t2 − x2 − y2 − z2, s2

E = −t2 − x2 − y2 − z2

∂µA
µ
M = ∂0A0 −∇ · ~A, ∂µA

µ
E = i∂τ · iA0 −∇ · ~A = −∂τA0 −∇ · ~A (61)
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Plug these two relations back into Eq.(59), we get:

EE =

∫
d3x

[
ρ2

0 (∂0ω + eA0)
2

+ ρ2
0 (∂iω + eAi)

2
+ V (ρ) +

1

2

(
E2 +B2

)]
(62)

This implies that under the Wick rotation, the vector field changes as

AµM = (Φ, ~A)→ AµE = (iΦ, ~A) (63)

Now the energy becomes in the Minkowski space,

EM =

∫
d3x

[
−ρ2

0 (∂0ω + eA0)
2

+ ρ2
0 (∂iω + eAi)

2
+ V (ρ) +

1

2

(
E2 +B2

)]
(64)

And the path-integral becomes in Minkowski space, (dτ = idt)

Z =

∫
Dφe

i
h̄S =

∫
Dφe

i
h̄

∫
d4x(ρ2

0(∂0ω+eA0)2−ρ2
0(∂iω+eAi)

2−V (ρ)− 1
2 (E2+B2))(65)

In Minkowski space-time, the path-integral’s exponential term is the Lagrangian,
while in Euclidean Space-time, it is the Hamiltonian. In Euclidean space-time
the dimension is 1 less than that in Minkowski space-time, because the tem-
perature is the time-dimention in Minkowski space-time. Thus if we call the
dimension in original space-time – the Minkowski space-time to be D, it is
d+ 1 = D in Euclidean space-time, i.e., the classical statistical system.
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