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1 The Landau Theory of Phase Transitions as a
Classical Field Theory

1. Due to the free energy density ε, the free energy is:

F =

∫
εd3x =

∫ (
1

2
(∇φ(~x))

2
+ U (φ(~x))

)
d3x (1)

To find the saddle point of this free energy, we set the variation of free energy
to be zero:

δF =

∫ (
δε

δ∇φ
δ∇φ+

δε

δφ
δφ

)
d3x =

∫ (
−∇

(
δε

δ∇φ

)
+
δε

δφ

)
δφd3x (2)

Here we have used: (1)∇δφ = δ∇φ; (2) the variation vanishes at the boundaries.
The saddle-point equation is, to let the variation of ε to be 0, i.e.,

−∇
(

δε

δ∇φ

)
+
δε

δφ
= 0⇒ −∇2φ+

δU

δφ
= 0 (3)

Plugging in the form of U(φ) in this problem, we have:

−∇2φ+m2
0φ+

λ4

3!
φ3 +

λ6

5!
φ5 = 0 (4)

2. The constant field φ implies that ∇φ = 0. Eq. (4) reduces into:

m2
0φ+

λ4

3!
φ3+

λ6

5!
φ5 = 0⇒ φ̄2 = 0 or φ̄2 = −10

λ4

λ6

(
1∓

√
1− 6m2

0λ6

5λ2
4

)
(5)

Since λ4 < 0, λ6 > 0 and the field φ̄ is assumed to be a real field, imaginary φ̄ is
meaningless. This implies that for T < T0 and T > T0 the number of meaningful
solutions is different. What is more, above T0 also exists a critical transition
temperature T ∗ > T0 that, the ”nontrivial free energy” is lower than ”trivial
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free energy”: F (φ̄ 6= 0) < F (φ̄ = 0). The system tends to be in the lower free
energy state, equavalently speaking, the symmetry breaking state. The critical
temperature can be determined by F (φ̄c 6= 0) = F (φ̄ = 0). Therefore we need
to consider the corresponding free energy density:

ε
(
φ̄c 6= 0

)
= ε(φ̄ = 0)⇒

(
m2

0 +
λ4

12
φ̄2
c +

λ6

360
φ̄4
c

)
φ̄2
c = 0 (6)

φ2
c 6= 0 due to T ∗ > T0 ⇒ m2

0 > 0, we can solve the above equation as:

m2
0 +

λ4

12
φ̄2
c +

λ6

360
φ̄4
c = 0⇒ φ̄2

c = 180

(
− λ4

12λ6
±

√
λ2

4

144λ2
6

− m2
0

90λ6

)
(7)

On the other hand, recall the nontrivial solution in Eq.(5), we have:

φ̄2
c = 180

(
− λ4

12λ6
±

√
λ2

4

144λ2
6

− m2
0

90λ6

)
= −10

λ4

λ6

(
1∓

√
1− 6m2

0λ6

5λ2
4

)
(8)

Let us denote
m2

0λ6

λ2
4

= x and NOTE: the above equation corresponds to 4 equa-

tions!

1

2
±
√

9

4
− 18

5
x = ±

√
1− 6

5
x and

1

2
±
√

9

4
− 18

5
x = ∓

√
1− 6

5
x (9)

Although there are 4 equations, the Physical solution (i.e., real field solution
and lower free energy requirements) is only one:

x =
5

8
⇒ T ∗ =

5

8

λ2
4

aλ6
+ T0 (10)

At the transition temperature T = T ∗ + ε → T = T ∗ − ε, the mean-field
solution switches from φ̄2 = 0 → φ̄2 = − 15λ4

λ6
: this is the incontinuous phase

transition, the first-order phase transition.
Up to now, we still havn’t decided which φ̄2 of the two solutions in Eq.(5)

should be the real ground state. In the two states, the mean-field free energy is
given by:

ε =
−λ3

4

λ2
6

(
5

9
+

5

3

m2
0λ6

λ2
4

∓ 5

9

√
1− 6m2

0λ6

5λ2
4

)
forφ̄2 =

−10λ4

λ6

(
1∓

√
1− 6m2

0λ6

5λ2
4

)
(11)

Of course the minus-sign free-energy is smaller, which corresponds to the mean-
field solution also with the minus sign. The plot for U(φ̄) to φ̄ is from fig.1 to
fig.6.
3. Now the four-point coupling constant λ4 > 0,

T > T0,m
2
0 > 0⇒ min (ε) = 0 when φ̄2 = 0

T < T0,m
2
0 < 0⇒ min (ε) < 0 when φ̄2 = 10

λ4

λ6

(
−1 +

√
1− 6m2

0λ6

5λ2
4

)
(12)
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This implies that the transition temperature occurs at temperature T = T0. At
T = T0 the mean-field solution is exactly 0. Therefore the order parameter, φ̄
is continuous. This is the second-order phase transition. (Moreover, you can
prove the derivative of order parameter to temperature is discontinuous, of order
(T − T0)−1).
4. Recall Eq.(10) we have the expression for λ4 < 0 gives the behavior of the
phase boundary as a function of T ∗−T0, which is the first order phase transition.

λ4 = −
√

8aλ6

5
(T ∗ − T0) (13)

For λ4 > 0, the phase boundary always occurs at T = T0, and it corresponds to
the second order phase transition. The plot for the boundary is fig.9.

2 Scalar Electrodynamics

1. For a local transiformation,

A′µ(x) = Aµ(x) + ∂µΛ(x)⇒ D′µ = ∂µ + ieAµ + ie∂µΛ (14)

The complex scalar field potential terms are of course invariant:

|φ′(x)|2 = φ′∗(x)φ′(x) = φ∗(x)eieΛ(x)φ(x)e−ieΛ(x) = φ∗(x)φ(x) = |φ(x)|2(
|φ′(x)|2

)2
=
(
|φ(x)|2

)2
(15)

The EM field stress tensor transforms like:

F ′µν = ∂µA′ν − ∂νA′µ = ∂µ (Aν + ∂νΛ)− ∂ν (Aµ + ∂µΛ) = Fµν (16)

Finally the scalar-gauge field dynamic term transforms as:

D′µφ
′(x) = (∂µ + ieAµ + ie∂µΛ)

(
φ(x)e−ieΛ(x)

)
= Dµφ(x)e−ieΛ(x)

⇒
(
D′µφ

′)∗ (D′µφ′) =
(
Dµφe

−ieΛ)∗ (Dµφe−ieΛ
)

= (Dµφ)
∗

(Dµφ) (17)

In conclusion, the total Lagrangian Density is invariant under gauge transfor-
mation.
2. The classical equations of motion comes from the Lagrange Equation,

δL
δφ
− ∂µ

(
δL
δ∂µφ

)
= 0,

δL
δφ∗
− ∂µ

(
δL

δ∂µφ∗

)
= 0,

δL
δAν

− ∂µ
(

δL
δ∂µAν

)
= 0 (18)

Solving these three equations, we obtain the more ugly form:

−1

2
∂2φ∗ + ieAµ∂µφ

∗ +
1

2
ie (∂µA

µ)φ∗ +
1

2
e2A2φ∗ − m2

2
φ∗ − λ

12
|φ|2φ∗ = 0

−1

2
∂2φ− ieAµ∂µφ−

1

2
ie (∂µA

µ)φ+
1

2
e2A2φ− m2

2
φ− λ

12
|φ|2φ = 0

1

2
(∂νφ)

∗
ieφ− 1

2
(ieφ∗)∂νφ+ e2Aνφ∗φ+ ∂µF

µν = 0 (19)
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However, due to the newly defined Dµ = ∂µ + ieAµ and Dµ = ∂µ + ieAµ, one
can expect the simplified version of the above equations by using Dµ:

−1

2
(DµDµφ)

∗ − m2

2
φ∗ − λ

12
|φ|2φ∗ = 0

−1

2
DµDµφ−

m2

2
φ− λ

12
|φ|2φ = 0

1

2
ie[φ (Dνφ)

∗ − φ∗ (Dνφ)] + ∂µF
µν = 0 (20)

3. The canonical momentum is:

Π =
δL
δ∂0φ

⇒ H =
δL
δ∂0φ

φ− L (21)

The scalar field and EM field momentums are:

Π =
1

2
(∂0φ

∗ − ieA0φ
∗) =

1

2
(D0φ)

∗

Π∗ =
1

2
(∂0φ+ ieA0φ) =

1

2
(D0φ)

Πi = F i0 (22)

The Hamiltonian Density by definition, is

h = Π∂0φ+ Π∗∂0φ
∗ + Πµ∂0Aµ − L

=
1

2
(D0φ)

∗
∂0φ+

1

2
(D0φ) ∂0φ

∗ + Fµ0∂0Aµ − L

= (D0φ)
∗

(D0φ) +
1

2
(D0φ)

∗
(−ieA0)φ+

1

2
D0φ (ieA0)φ∗ + Ei∂0Ai − L

=
1

2
(D0φ)

∗
(D0φ) +

1

2
(Diφ)

∗
(Diφ) +

1

2
ieA0

[
φ∗ (D0φ)− φ (D0φ)

∗]
+U(φ) + Ei∂0Ai +

1

4
F 2

(23)

Note from Eq.(19): the Conserved Quantity, Charge, is the special case of that
of the third equation of Eq.(19), and note: D0φ = 2Π∗:

ie (φΠ− φ∗Π∗) + ∂µF
µ0 = 0 (24)

Therefore we have:

−
∫
d3x

ieA0

2
(φΠ− φ∗Π∗) =

∫
d3xA0∂µF

µ0 = −
∫
d3x (∂µA0)Fµ0 (25)

Where we have dropped the boundary term. Combining this back into Eq.(23)
with the 3rd and 5th terms, we have:∫
d3x

(
ieA0

2
[φ∗
(
D0φ

)
− φ

(
D0φ

)∗
] + Fµ0∂0Aµ

)
=

∫
d3x (∂0Aµ − ∂µA0)Fµ0

=

∫
d3xF0µF

µ0 =

∫
d3xE2

i (26)
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Use this conclusion back into Eq.(23), with 1
4F

2, we finally have,

H =

∫
d3x

(
1

2
Π∗Π +

1

2
(Diφ)

∗
(Diφ) + U(φ) +

1

2

(
E2 +B2

))
(27)

This, together with Gauss’s Law, Eq.(24), gives the Hamiltonian of the system.
Let us have a look at the third equation in Eq.(22), Πi. In the case of the
gauge field, there is no canonical momentum conjugate to A0 which is why it is
a Lagrange multiplier field that enforces a constraint, Gauss’ Law. This is why
Professor Fradkin suggest me not to use the notation Πµ but to use Πi since
Π0 = 0.
4. Using ρ, θ instead of φ∗, φ,

Dµφ = (∂µρ+ iρ (∂µθ + eAµ)) eiθ (28)

From Eq.(19),

∂2ρ− ρ (∂µθ + eAµ)
2

+m2
0ρ+

λ

6
ρ3 = 0

ρ
(
∂2θ + e∂µAµ

)
+ (∂µρ) (2∂µθ + eAµ) = 0

eρ (∂νθ + eAν) + ∂µF
µν = 0 (29)

For the London Gauge θ = 0, the equations of motions are reduced into:

∂2ρ− ρ (eAµ)
2

+m2
0ρ+

λ

6
ρ3 = 0

ρ∂µAµ +Aµ∂
µρ = 0

e2ρAν + ∂µF
µν = 0 (30)

The Lagrangian Density is,

L =
1

2
∂µρ∂µρ+

1

2
e2A2ρ2 − 1

2
m2

0ρ
2 − λ

4!
ρ4 − 1

4
F 2 (31)

5. If m2
0 < 0, then − 1

2m
2
0 > 0. For the case ρ = ρ̄ the effective Lagrangian

Density for London Gauge is reduced from Eq.(31) that, we set ∂µρ to be 0,

L =

(
1

2
e2A2ρ2 − 1

2
m2

0ρ
2 − λ

4!
ρ4

)
− 1

4
F 2 (32)

The equations of motion in Eq.(30) gives the minimization of the Lagrangian
Density,

ρ =

√
6

λ
(e2A2 + |m2

0|), ∂µA
µ = 0, Aµ = 0⇒ ρ̄ =

√
6

λ
|m2

0| (33)

Fix the classical solution, and plug back into our Lagrangian Density, Eq.(32),

L =
3|m2

0|
2λ

(
2e2A2 + |m2

0|
)
− 1

4
F 2 = L0 +

1

2
m2

phA
2 − 1

4
F 2 (34)
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Where m2
ph = ρ̄e2. Now the equations of motion for the fluctuation fields are,

δL
δAν

− ∂µ
(

δL
δ∂µAν

)
= 0⇒ m2

phA
ν + ∂µF

νµ = 0 (35)

From the previous equations of motion that, ∂µA
µ = 0 in Eq.(33), we have

∂µF
νµ to be, ∂µ (∂νAµ − ∂µAν) = −∂2Aν . Thus Eq.(35) is reduced into:

m2
phA

ν − ∂2Aν = 0 (36)

Which is the famous Klein-Gordon equation. Here, them2
ph = ρ̄e2 is the effective

photon mass.

3 The Dirac Equation

1. Two ways to approach this problem. First is to find the algebra properties
of γµ matrices: (

γ0
)+

= γ0,
(
γ1,2,3

)+
= −γ1,2,3 (37)

With these relations the Dirac Eqaution (i6∂ −m)ψ = 0 transforms as:

γ0 [(i6∂ −m)ψ]
+

= 0⇒ γ0ψ+

[
−i
(←−6∂ )+

−m
]

= 0 (38)

Since,

(∂0)
+

= ∂0 ⇒
(
∂0γ

0
)+

= ∂0γ
0

(∂1,2,3)
+

= −∂1,2,3 ⇒
(
∂1,2,3γ

1,2,3
)+

= ∂1,2,3γ
1,2,3

⇒ (6∂)
+

= 6∂ (39)

Therefore, the Dirac Equation can be written as,

γ0ψ+
(
−i←−6∂ −m

)
= 0⇒ ψ̄

(
−i←−6∂ −m

)
= 0 (40)

Now let us take care of the 4-current. To prove it is conserved, what we need is
to prove ∂µj

µ = 0 (below we have used Eq.(38) and the Dirac Equation):

∂µj
µ = ∂µ

(
ψ̄γµψ

)
=
(
∂µψ̄

)
γµψ + ψ̄γµ (∂µψ) =

(
6∂ψ̄
)
ψ + ψ̄ ( 6∂ψ) = 0 (41)

Another way for this problem, is to use the Lagrangian Density L = iψ̄ 6∂ψ −
mψ̄ψ, and use the equations of motion,

∂µ

(
δL

δ∂µψ

)
− δL

δψ
= 0 ∂µ

(
δL

δ∂µψ̄

)
− δL

δψ̄
= 0 (42)
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We can also reach the same conclusion.
2. If the spinor satisfies Dirac Equation, (i6∂ −m)ψ = 0,

(i6∂ +m) (i6∂ −m)ψ = 0⇒
(
i6∂ · i6∂ −m2

)
ψ = 0 (43)

The first term above turns out to be:

6∂ · 6∂ = ∂µ∂νγ
µγν = ∂µ∂ν

(
1

2
{γµ, γν}+

1

2
[γµ, γν ]

)
6∂ · 6∂ = ∂ν∂µγ

νγµ = ∂ν∂µ

(
1

2
{γν , γµ}+

1

2
[γν , γµ]

)
(44)

Sum these two equations up, use the symmetric property for {γµ, γν} and anti-
symmetric for [γµ, γν ],

26∂ · 6∂ = ∂µ∂ν {γµ, γν} = 2∂µ∂νg
µν = 2

(
∂2

0 − ∂2
1 − ∂2

2 − ∂2
3

)
= 2∂2 (45)

Therefore, the spinor satisfies Klein-Gordon Equation:(
∂2 +m2

)
ψ = 0 (46)

3. (a) Use the properties of gamma matrices,

γµγν =
1

2
{γµ, γν}+

1

2
[γµ, γν ] = gµν − iσµν (47)

Thus the inner product of 6A 6B is,

6A 6B = AµBνγ
µγν = AµBν (gµν − iσµν) = A ·B − iσµνAµBν (48)

(b) The trace take over the spinor indices, thus

Tr (6A 6B) = Tr (AµBνg
µν − iσµνAµBν) = AµBνg

µνTr (14) = 4A ·B (49)

(c) Use 1
2 {γ

µ, γν} = gµν ,

γλγµγλ = γλγµγλgλλ = 2gλµγλgλλ − γµγλγλgλλ (50)

Since

γµγλγλgλλ = 4γµ, gλµgλλ = gµλ = δµλ (51)

Therefore we have

γλγµγλ = 2γµ − 4γµ = −2γµ (52)
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4 Transformation Properties of Field Bilinears
in the Dirac Theory

(a) The spinor transformation is, ψ′(x′) = S(Λ)ψ(x), with S(Λ) = exp
(
− i

4σµνω
µν
)
,

therefore,

S(Λ)+ =

[
exp

(
− i

4
σµνω

µν

)]+

= exp

(
i

4
(ωµν)

+
σ+
µν

)
= exp

(
i

4
ωµνσ+

µν

)
(53)

Note (ωµν)
+

= ωµν becasue ωµν is a number, and ’+’ has nothing to do with a
number. Therefore, what we want to prove is,

ψ̄′(x′)ψ′(x′) = ψ̄(x)
(
γ0
)−1

S+γ0Sψ(x) = ψ̄(x)γ0S+γ0Sψ(x) (54)

To prove the γ0S+γ0S = I, use the Taylor Series,

γ0S+γ0 = γ0

[ ∞∑
n=0

(
i

4
ωµνσ+

µν

)n]
γ0 =

∞∑
n=0

(
i

4
ωµνγ0σ+

µνγ
0

)n
(55)

Since (σµν)
+

= − i
2 [γν+, γµ+], and

(
γ0
)+

= γ0,
(
γ1,2,3

)+
= −γ1,2,3, we can

prove the identity,

γ0
(
γν+γµ+ − γµ+γν+

)
γ0 = − [γµ, γν ]⇒ γ0σ+

µνγ
0 = σµν (56)

Therefore we reach the conclusion that,

γ0S+γ0 = S−1 ⇒ ψ̄′(x′)ψ′(x′) = ψ̄(x)ψ(x) (57)

(b) Continue from above,

ψ̄′(x′)γ5ψ
′(x′) = ψ̄(x)S−1γ5Sψ(x) = ψ̄(x)S−1iγ0γ1γ2γ3Sψ(x) (58)

Use S−1γµS
(
Λ−1

)ν
µ

= γν , or, equavalently S−1γµS = γνΛµν ,

S−1iγ0γ1γ2γ3S = i
(
S−1γ0S

) (
S−1γ1S

) (
S−1γ2S

) (
S−1γ3S

)
= i
(
γαΛ0

α

) (
γβΛ1

β

) (
γλΛ2

λ

) (
γδΛ3

δ

)
= iγαγβγλγδΛ0

αΛ1
βΛ2

λΛ3
δ

= iεαβλδγ0γ1γ2γ3Λ0
αΛ1

βΛ2
λΛ3

δ

= γ5εαβλδΛ0
αΛ1

βΛ2
λΛ3

δ = γ5detΛ (59)

This is what we need for this proof.

ψ̄′(x′)γ5ψ
′(x′) = ψ̄(x)γ5ψ(x)detΛ (60)

(c) This is just the same as the proof in (b) problem:

ψ̄′(x′)γµψ′(x′) = ψ̄(x)S−1γµSψ(x) = ψ̄(x)γνΛµνψ(x) (61)
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(d) Again duplicate the process of (b),

ψ̄′(x′)γ5γ
µψ′(x′) = ψ̄(x)

(
S−1γ5S

) (
S−1γµS

)
ψ(x) = ψ̄(x)γ5γ

νψ(x)ΛµνdetΛ (62)

(e) The proof for a combination of γµ matrices is the same as that of one γµ

matrix:

ψ̄′(x′)σµνψ′(x′) = ψ̄(x)

(
S−1 i

2
(γµγν − γνγµ)S

)
ψ(x)

= ψ̄(x)

(
i

2

(
γαγβ − γβγα

))
ψ(x)ΛµαΛνβ = ψ̄(x)σµνψ(x)ΛµαΛνβ (63)

5 Chiral Symmetry

1. Using the new form of slash operators in Chiral Representation, since:

6∂ = ∂0γ
0 − ~∂ · ~γ (64)

The new Dirac Equation is written as:(
−mI −i∂0I − i~σ · ~∂

−i∂0I + i~σ · ~∂ −mI

)(
φ
χ

)
= 0 (65)

or, equavalently,

−mφ−
(
i∂0I + i~σ · ~∂

)
χ = 0

−mχ−
(
i∂0I − i~σ · ~∂

)
φ = 0 (66)

2. The massless Dirac Eqaution with m = 0, reduces to:(
∂0I + ~σ · ~∂

)
χ = 0(

∂0I − ~σ · ~∂
)
φ = 0 (67)

Hence φ and χ decouples. Let us denote χ = (χ1, χ2)
T

and φ = (φ1, φ2)
T

,(
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)(
χ1

χ2

)
= 0(

−∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 −∂0 − ∂3

)(
φ1

φ2

)
= 0 (68)

Plugging into the plane wave solution, i.e., χi = χi0e
ikµx

µ

, φi = φi0e
ipνx

ν

, the
above two matrices are:(

k0 − k3 −k1 + ik2

−k1 − ik3 k0 + k3

)(
χ1

χ2

)
= 0(

−p0 − p3 −p1 + ip2

−p1 − ip2 −p0 + p3

)(
φ1

φ2

)
= 0 (69)
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Solving these two matrix equations, we get,

k2
0 = ~k2, p2

0 = ~p2 (70)

Therefore the dispersion relation is k0 = ω = ±|~k|, p0 = ω = ±|~p|. The relations
between two components of that of 2-spinors are:

χ2 =
k0 − k3

k1 − ik2
χ1, φ2 =

−p0 − p3

p1 − ip2
φ1 (71)

By definition φ lives in the upper part of the spinor wave function, and γ5 matrix
acting on it resulting the +1 eigenvalue, and hence φ wave has the +1 chirality.
Similar argument shows χ has the −1 chirality.
3. First of all let us calculate what eiγ5θ is (to use Taylor Expansion):

eiγ5θ =

∞∑
n=0

(iθ)
n

n!
(γ5)

n
=

∞∑
n=2k

(iθ)
2k

(2k)!
+

∞∑
n=2k+1

(iθ)
2k+1

(2k + 1)!
γ5 = cos θ + iγ5 sin θ (72)

Write in the matrix form:

eiγ5θ =

(
eiθ 0
0 e−iθ

)
(73)

(a) φ and χ transforms as:(
eiθ 0
0 e−iθ

)(
φ
χ

)
=

(
eiθφ
e−iθχ

)
(74)

(b) By definition ψ̄ = ψ+γ0, ψ′+ = ψ+e−iγ5θ, we get ψ̄′ = ψ̄γ0e−iγ5θγ0 =
ψ̄eiγ5θ.
(c) Using the conclusions obtained above, ψ̄′ψ′ = ψ̄e2iγ5θψ;

ψ̄′γµψ′ = ψ̄eiγ5θγµeiγ5θψ (75)

Since, (
eiθ 0
0 e−iθ

)
γµ
(
eiθ 0
0 e−iθ

)
= γµ (76)

We find the quantity is conserved, ψ̄′γµψ′ = ψ̄γµψ.
(d) The form of Dirac Equation is written in Eq.(64). If m 6= 0, the coupling
between φ and χ is non-zero. However, under a Chiral Transformation φ and
χ rotate in the opposite angle, Dirac Equation cannot be invariant. Recall
Eq.(64), if the Dirac Eqaution acts on the transformed spinor wave function,(

−m11I −i∂0I − i~σ · ~∂
−i∂0I + i~σ · ~∂ −m22I

)(
eiθφ
e−iθχ

)
= 0

⇒

(
−m11Ie

2iθ −i∂0I − i~σ · ~∂
−i∂0I + i~σ · ~∂ −m22Ie

−2iθ

)(
φ
χ

)
= 0 (77)
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The mass term breaks the Chiral Symmetry, the newly defined mass is,

m

(
Ie−2iθ 0

0 Ie2iθ

)
= me−2iγ5θ (78)
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