Phys 582 - General Field Theory Problem Set No. 1 Solutions

Di Zhou

August 29, 2011

1 The Landau Theory of Phase Transitions as a Classical Field Theory

1. Due to the free energy density ε, the free energy is:

$$
\begin{equation*}
F=\int \varepsilon d^{3} x=\int\left(\frac{1}{2}(\nabla \phi(\vec{x}))^{2}+U(\phi(\vec{x}))\right) d^{3} x \tag{1}
\end{equation*}
$$

To find the saddle point of this free energy, we set the variation of free energy to be zero:

$$
\begin{equation*}
\delta F=\int\left(\frac{\delta \varepsilon}{\delta \nabla \phi} \delta \nabla \phi+\frac{\delta \varepsilon}{\delta \phi} \delta \phi\right) d^{3} x=\int\left(-\nabla\left(\frac{\delta \varepsilon}{\delta \nabla \phi}\right)+\frac{\delta \varepsilon}{\delta \phi}\right) \delta \phi d^{3} x \tag{2}
\end{equation*}
$$

Here we have used: (1) $\nabla \delta \phi=\delta \nabla \phi$; (2) the variation vanishes at the boundaries. The saddle-point equation is, to let the variation of ε to be 0 , i.e.,

$$
\begin{equation*}
-\nabla\left(\frac{\delta \varepsilon}{\delta \nabla \phi}\right)+\frac{\delta \varepsilon}{\delta \phi}=0 \Rightarrow-\nabla^{2} \phi+\frac{\delta U}{\delta \phi}=0 \tag{3}
\end{equation*}
$$

Plugging in the form of $U(\phi)$ in this problem, we have:

$$
\begin{equation*}
-\nabla^{2} \phi+m_{0}^{2} \phi+\frac{\lambda_{4}}{3!} \phi^{3}+\frac{\lambda_{6}}{5!} \phi^{5}=0 \tag{4}
\end{equation*}
$$

2. The constant field ϕ implies that $\nabla \phi=0$. Eq. (4) reduces into:

$$
\begin{equation*}
m_{0}^{2} \phi+\frac{\lambda_{4}}{3!} \phi^{3}+\frac{\lambda_{6}}{5!} \phi^{5}=0 \Rightarrow \bar{\phi}^{2}=0 \quad \text { or } \quad \bar{\phi}^{2}=-10 \frac{\lambda_{4}}{\lambda_{6}}\left(1 \mp \sqrt{1-\frac{6 \mathrm{~m}_{0}^{2} \lambda_{6}}{5 \lambda_{4}^{2}}}\right) \tag{5}
\end{equation*}
$$

Since $\lambda_{4}<0, \lambda_{6}>0$ and the field $\bar{\phi}$ is assumed to be a real field, imaginary $\bar{\phi}$ is meaningless. This implies that for $T<T_{0}$ and $T>T_{0}$ the number of meaningful solutions is different. What is more, above T_{0} also exists a critical transition temperature $T^{*}>T_{0}$ that, the "nontrivial free energy" is lower than "trivial
free energy": $F(\bar{\phi} \neq 0)<F(\bar{\phi}=0)$. The system tends to be in the lower free energy state, equavalently speaking, the symmetry breaking state. The critical temperature can be determined by $F\left(\bar{\phi}_{c} \neq 0\right)=F(\bar{\phi}=0)$. Therefore we need to consider the corresponding free energy density:

$$
\begin{equation*}
\varepsilon\left(\bar{\phi}_{c} \neq 0\right)=\varepsilon(\bar{\phi}=0) \Rightarrow\left(m_{0}^{2}+\frac{\lambda_{4}}{12} \bar{\phi}_{c}^{2}+\frac{\lambda_{6}}{360} \bar{\phi}_{c}^{4}\right) \bar{\phi}_{c}^{2}=0 \tag{6}
\end{equation*}
$$

$\phi_{c}^{2} \neq 0$ due to $T^{*}>T_{0} \Rightarrow m_{0}^{2}>0$, we can solve the above equation as:

$$
\begin{equation*}
m_{0}^{2}+\frac{\lambda_{4}}{12} \bar{\phi}_{c}^{2}+\frac{\lambda_{6}}{360} \bar{\phi}_{c}^{4}=0 \Rightarrow \bar{\phi}_{c}^{2}=180\left(-\frac{\lambda_{4}}{12 \lambda_{6}} \pm \sqrt{\frac{\lambda_{4}^{2}}{144 \lambda_{6}^{2}}-\frac{m_{0}^{2}}{90 \lambda_{6}}}\right) \tag{7}
\end{equation*}
$$

On the other hand, recall the nontrivial solution in Eq.(5), we have:

$$
\begin{equation*}
\bar{\phi}_{c}^{2}=180\left(-\frac{\lambda_{4}}{12 \lambda_{6}} \pm \sqrt{\frac{\lambda_{4}^{2}}{144 \lambda_{6}^{2}}-\frac{m_{0}^{2}}{90 \lambda_{6}}}\right)=-10 \frac{\lambda_{4}}{\lambda_{6}}\left(1 \mp \sqrt{1-\frac{6 m_{0}^{2} \lambda_{6}}{5 \lambda_{4}^{2}}}\right) \tag{8}
\end{equation*}
$$

Let us denote $\frac{m_{0}^{2} \lambda_{6}}{\lambda_{4}^{2}}=x$ and NOTE: the above equation corresponds to 4 equations!

$$
\begin{equation*}
\frac{1}{2} \pm \sqrt{\frac{9}{4}-\frac{18}{5} x}= \pm \sqrt{1-\frac{6}{5} x} \quad \text { and } \quad \frac{1}{2} \pm \sqrt{\frac{9}{4}-\frac{18}{5} \mathrm{x}}=\mp \sqrt{1-\frac{6}{5} \mathrm{x}} \tag{9}
\end{equation*}
$$

Although there are 4 equations, the Physical solution (i.e., real field solution and lower free energy requirements) is only one:

$$
\begin{equation*}
x=\frac{5}{8} \Rightarrow T^{*}=\frac{5}{8} \frac{\lambda_{4}^{2}}{a \lambda_{6}}+T_{0} \tag{10}
\end{equation*}
$$

At the transition temperature $T=T^{*}+\epsilon \rightarrow T=T^{*}-\epsilon$, the mean-field solution switches from $\bar{\phi}^{2}=0 \rightarrow \bar{\phi}^{2}=-\frac{15 \lambda_{4}}{\lambda_{6}}$: this is the incontinuous phase transition, the first-order phase transition.

Up to now, we still havn't decided which $\bar{\phi}^{2}$ of the two solutions in Eq.(5) should be the real ground state. In the two states, the mean-field free energy is given by:
$\varepsilon=\frac{-\lambda_{4}^{3}}{\lambda_{6}^{2}}\left(\frac{5}{9}+\frac{5}{3} \frac{m_{0}^{2} \lambda_{6}}{\lambda_{4}^{2}} \mp \frac{5}{9} \sqrt{1-\frac{6 m_{0}^{2} \lambda_{6}}{5 \lambda_{4}^{2}}}\right)$ for $\bar{\phi}^{2}=\frac{-10 \lambda_{4}}{\lambda_{6}}\left(1 \mp \sqrt{1-\frac{6 \mathrm{~m}_{0}^{2} \lambda_{6}}{5 \lambda_{4}^{2}}}\right)$
Of course the minus-sign free-energy is smaller, which corresponds to the meanfield solution also with the minus sign. The plot for $U(\bar{\phi})$ to $\bar{\phi}$ is from fig. 1 to fig. 6 .
3. Now the four-point coupling constant $\lambda_{4}>0$,

$$
\begin{array}{r}
T>T_{0}, m_{0}^{2}>0 \Rightarrow \min (\varepsilon)=0 \quad \text { when } \quad \bar{\phi}^{2}=0 \\
T<T_{0}, m_{0}^{2}<0 \Rightarrow \min (\varepsilon)<0 \quad \text { when } \quad \bar{\phi}^{2}=10 \frac{\lambda_{4}}{\lambda_{6}}\left(-1+\sqrt{1-\frac{6 \mathrm{~m}_{0}^{2} \lambda_{6}}{5 \lambda_{4}^{2}}}\right) \tag{12}
\end{array}
$$

This implies that the transition temperature occurs at temperature $T=T_{0}$. At $T=T_{0}$ the mean-field solution is exactly 0 . Therefore the order parameter, $\bar{\phi}$ is continuous. This is the second-order phase transition. (Moreover, you can prove the derivative of order parameter to temperature is discontinuous, of order $\left.\left(T-T_{0}\right)^{-1}\right)$.
4. Recall Eq.(10) we have the expression for $\lambda_{4}<0$ gives the behavior of the phase boundary as a function of $T^{*}-T_{0}$, which is the first order phase transition.

$$
\begin{equation*}
\lambda_{4}=-\sqrt{\frac{8 a \lambda_{6}}{5}\left(T^{*}-T_{0}\right)} \tag{13}
\end{equation*}
$$

For $\lambda_{4}>0$, the phase boundary always occurs at $T=T_{0}$, and it corresponds to the second order phase transition. The plot for the boundary is fig. 9 .

2 Scalar Electrodynamics

1. For a local transiformation,

$$
\begin{equation*}
A_{\mu}^{\prime}(x)=A_{\mu}(x)+\partial_{\mu} \Lambda(x) \Rightarrow D_{\mu}^{\prime}=\partial_{\mu}+i e A_{\mu}+i e \partial_{\mu} \Lambda \tag{14}
\end{equation*}
$$

The complex scalar field potential terms are of course invariant:

$$
\begin{gather*}
\left|\phi^{\prime}(x)\right|^{2}=\phi^{\prime *}(x) \phi^{\prime}(x)=\phi^{*}(x) e^{i e \Lambda(x)} \phi(x) e^{-i e \Lambda(x)}=\phi^{*}(x) \phi(x)=|\phi(x)|^{2} \\
\left(\left|\phi^{\prime}(x)\right|^{2}\right)^{2}=\left(|\phi(x)|^{2}\right)^{2} \tag{15}
\end{gather*}
$$

The EM field stress tensor transforms like:

$$
\begin{equation*}
F^{\prime \mu \nu}=\partial^{\mu} A^{\prime \nu}-\partial^{\nu} A^{\prime \mu}=\partial^{\mu}\left(A^{\nu}+\partial^{\nu} \Lambda\right)-\partial^{\nu}\left(A^{\mu}+\partial^{\mu} \Lambda\right)=F^{\mu \nu} \tag{16}
\end{equation*}
$$

Finally the scalar-gauge field dynamic term transforms as:

$$
\begin{gather*}
D_{\mu}^{\prime} \phi^{\prime}(x)=\left(\partial_{\mu}+i e A_{\mu}+i e \partial_{\mu} \Lambda\right)\left(\phi(x) e^{-i e \Lambda(x)}\right)=D_{\mu} \phi(x) e^{-i e \Lambda(x)} \\
\Rightarrow\left(D_{\mu}^{\prime} \phi^{\prime}\right)^{*}\left(D^{\prime \mu} \phi^{\prime}\right)=\left(D_{\mu} \phi e^{-i e \Lambda}\right)^{*}\left(D^{\mu} \phi e^{-i e \Lambda}\right)=\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right) \tag{17}
\end{gather*}
$$

In conclusion, the total Lagrangian Density is invariant under gauge transformation.
2. The classical equations of motion comes from the Lagrange Equation,

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta \phi}-\partial_{\mu}\left(\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \phi}\right)=0, \frac{\delta \mathcal{L}}{\delta \phi^{*}}-\partial_{\mu}\left(\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \phi^{*}}\right)=0, \frac{\delta \mathcal{L}}{\delta A_{\nu}}-\partial_{\mu}\left(\frac{\delta \mathcal{L}}{\delta \partial_{\mu} A_{\nu}}\right)=0 \tag{18}
\end{equation*}
$$

Solving these three equations, we obtain the more ugly form:

$$
\begin{gather*}
-\frac{1}{2} \partial^{2} \phi^{*}+i e A^{\mu} \partial_{\mu} \phi^{*}+\frac{1}{2} i e\left(\partial_{\mu} A^{\mu}\right) \phi^{*}+\frac{1}{2} e^{2} A^{2} \phi^{*}-\frac{m^{2}}{2} \phi^{*}-\frac{\lambda}{12}|\phi|^{2} \phi^{*}=0 \\
-\frac{1}{2} \partial^{2} \phi-i e A^{\mu} \partial_{\mu} \phi-\frac{1}{2} i e\left(\partial_{\mu} A^{\mu}\right) \phi+\frac{1}{2} e^{2} A^{2} \phi-\frac{m^{2}}{2} \phi-\frac{\lambda}{12}|\phi|^{2} \phi=0 \\
\frac{1}{2}\left(\partial^{\nu} \phi\right)^{*} i e \phi-\frac{1}{2}\left(i e \phi^{*}\right) \partial^{\nu} \phi+e^{2} A^{\nu} \phi^{*} \phi+\partial_{\mu} F^{\mu \nu}=0 \tag{19}
\end{gather*}
$$

However, due to the newly defined $D_{\mu}=\partial_{\mu}+i e A_{\mu}$ and $D^{\mu}=\partial^{\mu}+i e A^{\mu}$, one can expect the simplified version of the above equations by using D_{μ} :

$$
\begin{align*}
-\frac{1}{2}\left(D^{\mu} D_{\mu} \phi\right)^{*}-\frac{m^{2}}{2} \phi^{*}-\frac{\lambda}{12}|\phi|^{2} \phi^{*} & =0 \\
-\frac{1}{2} D^{\mu} D_{\mu} \phi-\frac{m^{2}}{2} \phi-\frac{\lambda}{12}|\phi|^{2} \phi & =0 \\
\frac{1}{2} i e\left[\phi\left(D^{\nu} \phi\right)^{*}-\phi^{*}\left(D^{\nu} \phi\right)\right]+\partial_{\mu} F^{\mu \nu} & =0 \tag{20}
\end{align*}
$$

3. The canonical momentum is:

$$
\begin{equation*}
\Pi=\frac{\delta \mathcal{L}}{\delta \partial_{0} \phi} \Rightarrow H=\frac{\delta \mathcal{L}}{\delta \partial_{0} \phi} \phi-\mathcal{L} \tag{21}
\end{equation*}
$$

The scalar field and EM field momentums are:

$$
\begin{gather*}
\Pi=\frac{1}{2}\left(\partial_{0} \phi^{*}-i e A_{0} \phi^{*}\right)=\frac{1}{2}\left(D_{0} \phi\right)^{*} \\
\Pi^{*}=\frac{1}{2}\left(\partial_{0} \phi+i e A_{0} \phi\right)=\frac{1}{2}\left(D_{0} \phi\right) \\
\Pi^{i}=F^{i 0} \tag{22}
\end{gather*}
$$

The Hamiltonian Density by definition, is

$$
\begin{align*}
h & =\Pi \partial_{0} \phi+\Pi^{*} \partial_{0} \phi^{*}+\Pi^{\mu} \partial_{0} A_{\mu}-\mathcal{L} \\
= & \frac{1}{2}\left(D_{0} \phi\right)^{*} \partial_{0} \phi+\frac{1}{2}\left(D_{0} \phi\right) \partial_{0} \phi^{*}+F^{\mu 0} \partial_{0} A_{\mu}-\mathcal{L} \\
& =\left(D_{0} \phi\right)^{*}\left(D_{0} \phi\right)+\frac{1}{2}\left(D_{0} \phi\right)^{*}\left(-i e A_{0}\right) \phi+\frac{1}{2} D_{0} \phi\left(i e A_{0}\right) \phi^{*}+E_{i} \partial_{0} A_{i}-\mathcal{L} \\
& =\frac{1}{2}\left(D_{0} \phi\right)^{*}\left(D_{0} \phi\right)+\frac{1}{2}\left(D_{i} \phi\right)^{*}\left(D_{i} \phi\right)+\frac{1}{2} i e A_{0}\left[\phi^{*}\left(D_{0} \phi\right)-\phi\left(D_{0} \phi\right)^{*}\right] \\
& +U(\phi)+E_{i} \partial_{0} A_{i}+\frac{1}{4} F^{2} \tag{23}
\end{align*}
$$

Note from Eq.(19): the Conserved Quantity, Charge, is the special case of that of the third equation of Eq.(19), and note: $D^{0} \phi=2 \Pi^{*}$:

$$
\begin{equation*}
i e\left(\phi \Pi-\phi^{*} \Pi^{*}\right)+\partial_{\mu} F^{\mu 0}=0 \tag{24}
\end{equation*}
$$

Therefore we have:

$$
\begin{equation*}
-\int d^{3} x \frac{i e A_{0}}{2}\left(\phi \Pi-\phi^{*} \Pi^{*}\right)=\int d^{3} x A_{0} \partial_{\mu} F^{\mu 0}=-\int d^{3} x\left(\partial_{\mu} A_{0}\right) F^{\mu 0} \tag{25}
\end{equation*}
$$

Where we have dropped the boundary term. Combining this back into Eq.(23) with the 3rd and 5th terms, we have:

$$
\begin{align*}
\int d^{3} x\left(\frac{i e A_{0}}{2}\left[\phi^{*}\left(D^{0} \phi\right)-\phi\left(D^{0} \phi\right)^{*}\right]+F^{\mu 0} \partial_{0} A_{\mu}\right) & =\int d^{3} x\left(\partial_{0} A_{\mu}-\partial_{\mu} A_{0}\right) F^{\mu 0} \\
& =\int d^{3} x F_{0 \mu} F^{\mu 0}=\int d^{3} x E_{i}^{2} \tag{26}
\end{align*}
$$

Use this conclusion back into Eq.(23), with $\frac{1}{4} F^{2}$, we finally have,

$$
\begin{equation*}
H=\int d^{3} x\left(\frac{1}{2} \Pi^{*} \Pi+\frac{1}{2}\left(D_{i} \phi\right)^{*}\left(D_{i} \phi\right)+U(\phi)+\frac{1}{2}\left(E^{2}+B^{2}\right)\right) \tag{27}
\end{equation*}
$$

This, together with Gauss's Law, Eq.(24), gives the Hamiltonian of the system. Let us have a look at the third equation in Eq. (22), Π^{i}. In the case of the gauge field, there is no canonical momentum conjugate to A_{0} which is why it is a Lagrange multiplier field that enforces a constraint, Gauss' Law. This is why Professor Fradkin suggest me not to use the notation Π^{μ} but to use Π^{i} since $\Pi^{0}=0$.
4. Using ρ, θ instead of ϕ^{*}, ϕ,

$$
\begin{equation*}
D_{\mu} \phi=\left(\partial_{\mu} \rho+i \rho\left(\partial_{\mu} \theta+e A_{\mu}\right)\right) e^{i \theta} \tag{28}
\end{equation*}
$$

From Eq.(19),

$$
\begin{gather*}
\partial^{2} \rho-\rho\left(\partial_{\mu} \theta+e A_{\mu}\right)^{2}+m_{0}^{2} \rho+\frac{\lambda}{6} \rho^{3}=0 \\
\rho\left(\partial^{2} \theta+e \partial^{\mu} A_{\mu}\right)+\left(\partial^{\mu} \rho\right)\left(2 \partial_{\mu} \theta+e A_{\mu}\right)=0 \\
e \rho\left(\partial^{\nu} \theta+e A^{\nu}\right)+\partial_{\mu} F^{\mu \nu}=0 \tag{29}
\end{gather*}
$$

For the London Gauge $\theta=0$, the equations of motions are reduced into:

$$
\begin{gather*}
\partial^{2} \rho-\rho\left(e A_{\mu}\right)^{2}+m_{0}^{2} \rho+\frac{\lambda}{6} \rho^{3}=0 \\
\rho \partial^{\mu} A_{\mu}+A_{\mu} \partial^{\mu} \rho=0 \\
e^{2} \rho A^{\nu}+\partial_{\mu} F^{\mu \nu}=0 \tag{30}
\end{gather*}
$$

The Lagrangian Density is,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial^{\mu} \rho \partial_{\mu} \rho+\frac{1}{2} e^{2} A^{2} \rho^{2}-\frac{1}{2} m_{0}^{2} \rho^{2}-\frac{\lambda}{4!} \rho^{4}-\frac{1}{4} F^{2} \tag{31}
\end{equation*}
$$

5. If $m_{0}^{2}<0$, then $-\frac{1}{2} m_{0}^{2}>0$. For the case $\rho=\bar{\rho}$ the effective Lagrangian Density for London Gauge is reduced from Eq.(31) that, we set $\partial_{\mu} \rho$ to be 0 ,

$$
\begin{equation*}
\mathcal{L}=\left(\frac{1}{2} e^{2} A^{2} \rho^{2}-\frac{1}{2} m_{0}^{2} \rho^{2}-\frac{\lambda}{4!} \rho^{4}\right)-\frac{1}{4} F^{2} \tag{32}
\end{equation*}
$$

The equations of motion in Eq.(30) gives the minimization of the Lagrangian Density,

$$
\begin{equation*}
\rho=\sqrt{\frac{6}{\lambda}\left(e^{2} A^{2}+\left|m_{0}^{2}\right|\right)}, \quad \partial_{\mu} A^{\mu}=0, \quad A_{\mu}=0 \Rightarrow \bar{\rho}=\sqrt{\frac{6}{\lambda}\left|m_{0}^{2}\right|} \tag{33}
\end{equation*}
$$

Fix the classical solution, and plug back into our Lagrangian Density, Eq.(32),

$$
\begin{equation*}
\mathcal{L}=\frac{3\left|m_{0}^{2}\right|}{2 \lambda}\left(2 e^{2} A^{2}+\left|m_{0}^{2}\right|\right)-\frac{1}{4} F^{2}=\mathcal{L}_{0}+\frac{1}{2} m_{\mathrm{ph}}^{2} A^{2}-\frac{1}{4} F^{2} \tag{34}
\end{equation*}
$$

Where $m_{\mathrm{ph}}^{2}=\bar{\rho} e^{2}$. Now the equations of motion for the fluctuation fields are,

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta A_{\nu}}-\partial_{\mu}\left(\frac{\delta \mathcal{L}}{\delta \partial_{\mu} A_{\nu}}\right)=0 \Rightarrow m_{\mathrm{ph}}^{2} A^{\nu}+\partial_{\mu} F^{\nu \mu}=0 \tag{35}
\end{equation*}
$$

From the previous equations of motion that, $\partial_{\mu} A^{\mu}=0$ in Eq.(33), we have $\partial_{\mu} F^{\nu \mu}$ to be, $\partial_{\mu}\left(\partial^{\nu} A^{\mu}-\partial^{\mu} A^{\nu}\right)=-\partial^{2} A^{\nu}$. Thus Eq.(35) is reduced into:

$$
\begin{equation*}
m_{\mathrm{ph}}^{2} A^{\nu}-\partial^{2} A^{\nu}=0 \tag{36}
\end{equation*}
$$

Which is the famous Klein-Gordon equation. Here, the $m_{\mathrm{ph}}^{2}=\bar{\rho} e^{2}$ is the effective photon mass.

3 The Dirac Equation

1. Two ways to approach this problem. First is to find the algebra properties of γ^{μ} matrices:

$$
\begin{equation*}
\left(\gamma^{0}\right)^{+}=\gamma^{0}, \quad\left(\gamma^{1,2,3}\right)^{+}=-\gamma^{1,2,3} \tag{37}
\end{equation*}
$$

With these relations the Dirac Eqaution $(i \not \partial-m) \psi=0$ transforms as:

$$
\begin{equation*}
\gamma^{0}[(i \not \partial-m) \psi]^{+}=0 \Rightarrow \gamma^{0} \psi^{+}\left[-i(\overleftarrow{\not \partial})^{+}-m\right]=0 \tag{38}
\end{equation*}
$$

Since,

$$
\begin{align*}
\left(\partial_{0}\right)^{+}=\partial_{0} & \Rightarrow\left(\partial_{0} \gamma^{0}\right)^{+}=\partial_{0} \gamma^{0} \\
\left(\partial_{1,2,3}\right)^{+}=-\partial_{1,2,3} & \Rightarrow\left(\partial_{1,2,3} \gamma^{1,2,3}\right)^{+}=\partial_{1,2,3} \gamma^{1,2,3} \\
& \Rightarrow(\not \partial)^{+}=\not \partial \tag{39}
\end{align*}
$$

Therefore, the Dirac Equation can be written as,

$$
\begin{equation*}
\gamma^{0} \psi^{+}(-i \overleftarrow{\not}-m)=0 \Rightarrow \bar{\psi}(-i \overleftarrow{\not}-m)=0 \tag{40}
\end{equation*}
$$

Now let us take care of the 4-current. To prove it is conserved, what we need is to prove $\partial_{\mu} j^{\mu}=0$ (below we have used Eq.(38) and the Dirac Equation):

$$
\begin{equation*}
\partial_{\mu} j^{\mu}=\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right)=\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \psi\right)=(\not \partial \bar{\psi}) \psi+\bar{\psi}(\partial \psi)=0 \tag{41}
\end{equation*}
$$

Another way for this problem, is to use the Lagrangian Density $\mathcal{L}=i \bar{\psi} \not \partial \psi-$ $m \bar{\psi} \psi$, and use the equations of motion,

$$
\begin{equation*}
\partial_{\mu}\left(\frac{\delta L}{\delta \partial_{\mu} \psi}\right)-\frac{\delta L}{\delta \psi}=0 \quad \partial_{\mu}\left(\frac{\delta L}{\delta \partial_{\mu} \bar{\psi}}\right)-\frac{\delta L}{\delta \bar{\psi}}=0 \tag{42}
\end{equation*}
$$

We can also reach the same conclusion.
2. If the spinor satisfies Dirac Equation, $(i \not \partial-m) \psi=0$,

$$
\begin{equation*}
(i \not \partial+m)(i \not \partial-m) \psi=0 \Rightarrow\left(i \not \partial \cdot i \not \partial-m^{2}\right) \psi=0 \tag{43}
\end{equation*}
$$

The first term above turns out to be:

$$
\begin{align*}
& \not \partial \cdot \not \partial=\partial_{\mu} \partial_{\nu} \gamma^{\mu} \gamma^{\nu}=\partial_{\mu} \partial_{\nu}\left(\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \\
& \not \partial \cdot \not \partial=\partial_{\nu} \partial_{\mu} \gamma^{\nu} \gamma^{\mu}=\partial_{\nu} \partial_{\mu}\left(\frac{1}{2}\left\{\gamma^{\nu}, \gamma^{\mu}\right\}+\frac{1}{2}\left[\gamma^{\nu}, \gamma^{\mu}\right]\right) \tag{44}
\end{align*}
$$

Sum these two equations up, use the symmetric property for $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}$ and antisymmetric for $\left[\gamma^{\mu}, \gamma^{\nu}\right]$,

$$
\begin{equation*}
2 \not \partial \cdot \not \partial=\partial_{\mu} \partial_{\nu}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \partial_{\mu} \partial_{\nu} g^{\mu \nu}=2\left(\partial_{0}^{2}-\partial_{1}^{2}-\partial_{2}^{2}-\partial_{3}^{2}\right)=2 \partial^{2} \tag{45}
\end{equation*}
$$

Therefore, the spinor satisfies Klein-Gordon Equation:

$$
\begin{equation*}
\left(\partial^{2}+m^{2}\right) \psi=0 \tag{46}
\end{equation*}
$$

3. (a) Use the properties of gamma matrices,

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}=\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]=g^{\mu \nu}-i \sigma^{\mu \nu} \tag{47}
\end{equation*}
$$

Thus the inner product of $A B$ is,

$$
\begin{equation*}
A B B=A_{\mu} B_{\nu} \gamma^{\mu} \gamma^{\nu}=A_{\mu} B_{\nu}\left(g^{\mu \nu}-i \sigma^{\mu \nu}\right)=A \cdot B-i \sigma_{\mu \nu} A^{\mu} B^{\nu} \tag{48}
\end{equation*}
$$

(b) The trace take over the spinor indices, thus

$$
\begin{equation*}
\operatorname{Tr}(A B B)=\operatorname{Tr}\left(A_{\mu} B_{\nu} g^{\mu \nu}-i \sigma_{\mu \nu} A^{\mu} B^{\nu}\right)=A_{\mu} B_{\nu} g^{\mu \nu} \operatorname{Tr}\left(1_{4}\right)=4 A \cdot B \tag{49}
\end{equation*}
$$

(c) Use $\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=g^{\mu \nu}$,

$$
\begin{equation*}
\gamma^{\lambda} \gamma^{\mu} \gamma_{\lambda}=\gamma^{\lambda} \gamma^{\mu} \gamma^{\lambda} g_{\lambda \lambda}=2 g^{\lambda \mu} \gamma^{\lambda} g_{\lambda \lambda}-\gamma^{\mu} \gamma^{\lambda} \gamma^{\lambda} g_{\lambda \lambda} \tag{50}
\end{equation*}
$$

Since

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\lambda} \gamma^{\lambda} g_{\lambda \lambda}=4 \gamma^{\mu}, \quad g^{\lambda \mu} g_{\lambda \lambda}=g_{\lambda}^{\mu}=\delta_{\lambda}^{\mu} \tag{51}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\gamma^{\lambda} \gamma^{\mu} \gamma_{\lambda}=2 \gamma^{\mu}-4 \gamma^{\mu}=-2 \gamma^{\mu} \tag{52}
\end{equation*}
$$

4 Transformation Properties of Field Bilinears in the Dirac Theory

(a) The spinor transformation is, $\psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$, with $S(\Lambda)=\exp \left(-\frac{i}{4} \sigma_{\mu \nu} \omega^{\mu \nu}\right)$, therefore,
$S(\Lambda)^{+}=\left[\exp \left(-\frac{\mathrm{i}}{4} \sigma_{\mu \nu} \omega^{\mu \nu}\right)\right]^{+}=\exp \left(\frac{\mathrm{i}}{4}\left(\omega^{\mu \nu}\right)^{+} \sigma_{\mu \nu}^{+}\right)=\exp \left(\frac{\mathrm{i}}{4} \omega^{\mu \nu} \sigma_{\mu \nu}^{+}\right)$
Note $\left(\omega^{\mu \nu}\right)^{+}=\omega^{\mu \nu}$ becasue $\omega^{\mu \nu}$ is a number, and ${ }^{\prime}+{ }^{\prime}$ has nothing to do with a number. Therefore, what we want to prove is,

$$
\begin{equation*}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x)\left(\gamma^{0}\right)^{-1} S^{+} \gamma^{0} S \psi(x)=\bar{\psi}(x) \gamma^{0} S^{+} \gamma^{0} S \psi(x) \tag{54}
\end{equation*}
$$

To prove the $\gamma^{0} S^{+} \gamma^{0} S=I$, use the Taylor Series,

$$
\begin{equation*}
\gamma^{0} S^{+} \gamma^{0}=\gamma^{0}\left[\sum_{n=0}^{\infty}\left(\frac{i}{4} \omega^{\mu \nu} \sigma_{\mu \nu}^{+}\right)^{n}\right] \gamma^{0}=\sum_{n=0}^{\infty}\left(\frac{i}{4} \omega^{\mu \nu} \gamma^{0} \sigma_{\mu \nu}^{+} \gamma^{0}\right)^{n} \tag{55}
\end{equation*}
$$

Since $\left(\sigma_{\mu \nu}\right)^{+}=-\frac{i}{2}\left[\gamma^{\nu+}, \gamma^{\mu+}\right]$, and $\left(\gamma^{0}\right)^{+}=\gamma^{0},\left(\gamma^{1,2,3}\right)^{+}=-\gamma^{1,2,3}$, we can prove the identity,

$$
\begin{equation*}
\gamma^{0}\left(\gamma^{\nu+} \gamma^{\mu+}-\gamma^{\mu+} \gamma^{\nu+}\right) \gamma^{0}=-\left[\gamma^{\mu}, \gamma^{\nu}\right] \Rightarrow \gamma^{0} \sigma_{\mu \nu}^{+} \gamma^{0}=\sigma_{\mu \nu} \tag{56}
\end{equation*}
$$

Therefore we reach the conclusion that,

$$
\begin{equation*}
\gamma^{0} S^{+} \gamma^{0}=S^{-1} \Rightarrow \bar{\psi}^{\prime}\left(x^{\prime}\right) \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) \psi(x) \tag{57}
\end{equation*}
$$

(b) Continue from above,

$$
\begin{equation*}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \gamma_{5} \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1} \gamma_{5} S \psi(x)=\bar{\psi}(x) S^{-1} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} S \psi(x) \tag{58}
\end{equation*}
$$

Use $S^{-1} \gamma^{\mu} S\left(\Lambda^{-1}\right)_{\mu}^{\nu}=\gamma^{\nu}$, or, equavalently $S^{-1} \gamma^{\mu} S=\gamma^{\nu} \Lambda_{\nu}^{\mu}$,

$$
\begin{align*}
S^{-1} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} S & =i\left(S^{-1} \gamma^{0} S\right)\left(S^{-1} \gamma^{1} S\right)\left(S^{-1} \gamma^{2} S\right)\left(S^{-1} \gamma^{3} S\right) \\
= & i\left(\gamma^{\alpha} \Lambda_{\alpha}^{0}\right)\left(\gamma^{\beta} \Lambda_{\beta}^{1}\right)\left(\gamma^{\lambda} \Lambda_{\lambda}^{2}\right)\left(\gamma^{\delta} \Lambda_{\delta}^{3}\right) \\
& =i \gamma^{\alpha} \gamma^{\beta} \gamma^{\lambda} \gamma^{\delta} \Lambda_{\alpha}^{0} \Lambda_{\beta}^{1} \Lambda_{\lambda}^{2} \Lambda_{\delta}^{3} \\
& =i \epsilon^{\alpha \beta \lambda \delta} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \Lambda_{\alpha}^{0} \Lambda_{\beta}^{1} \Lambda_{\lambda}^{2} \Lambda_{\delta}^{3} \\
& =\gamma^{5} \epsilon^{\alpha \beta \lambda \delta} \Lambda_{\alpha}^{0} \Lambda_{\beta}^{1} \Lambda_{\lambda}^{2} \Lambda_{\delta}^{3}=\gamma^{5} \operatorname{det} \Lambda \tag{59}
\end{align*}
$$

This is what we need for this proof.

$$
\begin{equation*}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \gamma_{5} \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) \gamma_{5} \psi(x) \operatorname{det} \Lambda \tag{60}
\end{equation*}
$$

(c) This is just the same as the proof in (b) problem:

$$
\begin{equation*}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \gamma^{\mu} \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1} \gamma^{\mu} S \psi(x)=\bar{\psi}(x) \gamma^{\nu} \Lambda_{\nu}^{\mu} \psi(x) \tag{61}
\end{equation*}
$$

(d) Again duplicate the process of (b),
$\bar{\psi}^{\prime}\left(x^{\prime}\right) \gamma_{5} \gamma^{\mu} \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x)\left(S^{-1} \gamma_{5} S\right)\left(S^{-1} \gamma^{\mu} S\right) \psi(x)=\bar{\psi}(x) \gamma_{5} \gamma^{\nu} \psi(x) \Lambda_{\nu}^{\mu} \operatorname{det} \Lambda(62)$
(e) The proof for a combination of γ^{μ} matrices is the same as that of one γ^{μ} matrix:

$$
\begin{gather*}
\bar{\psi}^{\prime}\left(x^{\prime}\right) \sigma^{\mu \nu} \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x)\left(S^{-1} \frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right) S\right) \psi(x) \\
=\bar{\psi}(x)\left(\frac{i}{2}\left(\gamma^{\alpha} \gamma^{\beta}-\gamma^{\beta} \gamma^{\alpha}\right)\right) \psi(x) \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu}=\bar{\psi}(x) \sigma^{\mu \nu} \psi(x) \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} \tag{63}
\end{gather*}
$$

5 Chiral Symmetry

1. Using the new form of slash operators in Chiral Representation, since:

$$
\begin{equation*}
\not \partial=\partial_{0} \gamma^{0}-\vec{\partial} \cdot \vec{\gamma} \tag{64}
\end{equation*}
$$

The new Dirac Equation is written as:

$$
\left(\begin{array}{cc}
-m I & -i \partial_{0} I-i \vec{\sigma} \cdot \vec{\partial} \tag{65}\\
-i \partial_{0} I+i \vec{\sigma} \cdot \vec{\partial} & -m I
\end{array}\right)\binom{\phi}{\chi}=0
$$

or, equavalently,

$$
\begin{align*}
& -m \phi-\left(i \partial_{0} I+i \vec{\sigma} \cdot \vec{\partial}\right) \chi=0 \\
& -m \chi-\left(i \partial_{0} I-i \vec{\sigma} \cdot \vec{\partial}\right) \phi=0 \tag{66}
\end{align*}
$$

2. The massless Dirac Eqaution with $m=0$, reduces to:

$$
\begin{align*}
& \left(\partial_{0} I+\vec{\sigma} \cdot \vec{\partial}\right) \chi=0 \\
& \left(\partial_{0} I-\vec{\sigma} \cdot \vec{\partial}\right) \phi=0 \tag{67}
\end{align*}
$$

Hence ϕ and χ decouples. Let us denote $\chi=\left(\chi_{1}, \chi_{2}\right)^{\mathrm{T}}$ and $\phi=\left(\phi_{1}, \phi_{2}\right)^{\mathrm{T}}$,

$$
\begin{align*}
\left(\begin{array}{cc}
\partial_{0}+\partial_{3} & \partial_{1}-i \partial_{2} \\
\partial_{1}+i \partial_{2} & \partial_{0}-\partial_{3}
\end{array}\right)\binom{\chi_{1}}{\chi_{2}} & =0 \\
\left(\begin{array}{cc}
-\partial_{0}+\partial_{3} & \partial_{1}-i \partial_{2} \\
\partial_{1}+i \partial_{2} & -\partial_{0}-\partial_{3}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}} & =0 \tag{68}
\end{align*}
$$

Plugging into the plane wave solution, i.e., $\chi_{i}=\chi_{i 0} e^{i k_{\mu} x^{\mu}}, \phi_{i}=\phi_{i 0} e^{i p_{\nu} x^{\nu}}$, the above two matrices are:

$$
\begin{align*}
& \left(\begin{array}{cc}
k_{0}-k_{3} & -k_{1}+i k_{2} \\
-k_{1}-i k_{3} & k_{0}+k_{3}
\end{array}\right)\binom{\chi_{1}}{\chi_{2}}=0 \\
& \left(\begin{array}{cc}
-p_{0}-p_{3} & -p_{1}+i p_{2} \\
-p_{1}-i p_{2} & -p_{0}+p_{3}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=0 \tag{69}
\end{align*}
$$

Solving these two matrix equations, we get,

$$
\begin{equation*}
k_{0}^{2}=\vec{k}^{2}, \quad p_{0}^{2}=\vec{p}^{2} \tag{70}
\end{equation*}
$$

Therefore the dispersion relation is $k_{0}=\omega= \pm|\vec{k}|, p_{0}=\omega= \pm|\vec{p}|$. The relations between two components of that of 2 -spinors are:

$$
\begin{equation*}
\chi_{2}=\frac{k_{0}-k_{3}}{k_{1}-i k_{2}} \chi_{1}, \quad \phi_{2}=\frac{-p_{0}-p_{3}}{p_{1}-i p_{2}} \phi_{1} \tag{71}
\end{equation*}
$$

By definition ϕ lives in the upper part of the spinor wave function, and γ_{5} matrix acting on it resulting the +1 eigenvalue, and hence ϕ wave has the +1 chirality. Similar argument shows χ has the -1 chirality.
3. First of all let us calculate what $e^{i \gamma_{5} \theta}$ is (to use Taylor Expansion):
$e^{i \gamma_{5} \theta}=\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!}\left(\gamma_{5}\right)^{n}=\sum_{n=2 k}^{\infty} \frac{(i \theta)^{2 k}}{(2 k)!}+\sum_{n=2 k+1}^{\infty} \frac{(i \theta)^{2 k+1}}{(2 k+1)!} \gamma_{5}=\cos \theta+i \gamma_{5} \sin \theta(72)$
Write in the matrix form:

$$
e^{i \gamma_{5} \theta}=\left(\begin{array}{cc}
e^{i \theta} & 0 \tag{73}\\
0 & e^{-i \theta}
\end{array}\right)
$$

(a) ϕ and χ transforms as:

$$
\left(\begin{array}{cc}
e^{i \theta} & 0 \tag{74}\\
0 & e^{-i \theta}
\end{array}\right)\binom{\phi}{\chi}=\binom{e^{i \theta} \phi}{e^{-i \theta} \chi}
$$

(b) By definition $\bar{\psi}=\psi^{+} \gamma^{0}, \psi^{+}=\psi^{+} e^{-i \gamma_{5} \theta}$, we get $\bar{\psi}^{\prime}=\bar{\psi} \gamma^{0} e^{-i \gamma_{5} \theta} \gamma^{0}=$ $\bar{\psi} e^{i \gamma_{5} \theta}$.
(c) Using the conclusions obtained above, $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} e^{2 i \gamma_{5} \theta} \psi$;

$$
\begin{equation*}
\bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=\bar{\psi} e^{i \gamma_{5} \theta} \gamma^{\mu} e^{i \gamma_{5} \theta} \psi \tag{75}
\end{equation*}
$$

Since,

$$
\left(\begin{array}{cc}
e^{i \theta} & 0 \tag{76}\\
0 & e^{-i \theta}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)=\gamma^{\mu}
$$

We find the quantity is conserved, $\bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=\bar{\psi} \gamma^{\mu} \psi$.
(d) The form of Dirac Equation is written in Eq.(64). If $m \neq 0$, the coupling between ϕ and χ is non-zero. However, under a Chiral Transformation ϕ and χ rotate in the opposite angle, Dirac Equation cannot be invariant. Recall Eq.(64), if the Dirac Eqaution acts on the transformed spinor wave function,

$$
\begin{align*}
& \left(\begin{array}{cc}
-m_{11} I & -i \partial_{0} I-i \vec{\sigma} \cdot \vec{\partial} \\
-i \partial_{0} I+i \vec{\sigma} \cdot \vec{\partial} & -m_{22} I
\end{array}\right)\binom{e^{i \theta} \phi}{e^{-i \theta} \chi}=0 \\
& \Rightarrow\left(\begin{array}{cc}
-m_{11} I e^{2 i \theta} & -i \partial_{0} I-i \vec{\sigma} \cdot \vec{\partial} \\
-i \partial_{0} I+i \vec{\sigma} \cdot \vec{\partial} & -m_{22} I e^{-2 i \theta}
\end{array}\right)\binom{\phi}{\chi}=0 \tag{77}
\end{align*}
$$

The mass term breaks the Chiral Symmetry, the newly defined mass is,

$$
m\left(\begin{array}{cc}
I e^{-2 i \theta} & 0 \tag{78}\\
0 & I e^{2 i \theta}
\end{array}\right)=m e^{-2 i \gamma_{5} \theta}
$$

Fig. 1. $x>\frac{5}{6}$

Fig 5. $\frac{5}{8}>x>0$

Fig 2. $x=\frac{5}{6}$

Fig 4. $\frac{5}{6}>x>\frac{5}{8}$

Fig 6. $\quad x<0$

