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1 The Landau Theory of Phase Transitions as a
Classical Field Theory

1. Due to the free energy density e, the free energy is:
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To find the saddle point of this free energy, we set the variation of free energy
to be zero:
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Here we have used: (1) V¢ = §V¢; (2) the variation vanishes at the boundaries.
The saddle-point equation is, to let the variation of € to be 0, i.e.,
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Plugging in the form of U(¢) in this problem, we have:
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2. The constant field ¢ implies that V¢ = 0. Eq. (4) reduces into:
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Since Ay < 0, \g > 0 and the field ¢ is assumed to be a real field, imaginary ¢ is
meaningless. This implies that for T' < Ty and T > Tj the number of meaningful
solutions is different. What is more, above Ty also exists a critical transition
temperature T* > Ty that, the "nontrivial free energy” is lower than ”trivial



free energy”: F(¢ # 0) < F(¢ = 0). The system tends to be in the lower free
energy state, equavalently speaking, the symmetry breaking state. The critical
temperature can be determined by F(¢. # 0) = F(¢ = 0). Therefore we need
to consider the corresponding free energy density:
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#2 # 0 due to T* > Ty = m3 > 0, we can solve the above equation as:
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On the other hand, recall the nontrivial solution in Eq.(5), we have:
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Let us denote m)\ng ¢ = g and NOTE: the above equation corresponds to 4 equa-
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tions!
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Although there are 4 equations, the Physical solution (i.e., real field solution
and lower free energy requirements) is only one:
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At the transition temperature T = T* +€¢ — T = T* — ¢, the mean-field
solution switches from ¢? = 0 — ¢? = —%: this is the incontinuous phase
transition, the first-order phase transition.

Up to now, we still havn’t decided which ¢? of the two solutions in Eq.(5)
should be the real ground state. In the two states, the mean-field free energy is
given by:
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Of course the minus-sign free-energy is smaller, which corresponds to the mean-
field solution also with the minus sign. The plot for U(¢) to ¢ is from fig.1 to
fig.6.

3. Now the four-point coupling constant Ay > 0,

T >Ty,m:>0=min(e) =0 when ¢*=0
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This implies that the transition temperature occurs at temperature T' = T. At
T = T, the mean-field solution is exactly 0. Therefore the order parameter, ¢
is continuous. This is the second-order phase transition. (Moreover, you can
prove the derivative of order parameter to temperature is discontinuous, of order
(T —To)™).

4. Recall Eq.(10) we have the expression for Ay < 0 gives the behavior of the
phase boundary as a function of T* —Tj, which is the first order phase transition.
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For A4 > 0, the phase boundary always occurs at T' = Tj, and it corresponds to
the second order phase transition. The plot for the boundary is fig.9.

2 Scalar Electrodynamics

1. For a local transiformation,
Al (z) = Au(x) + 0uM(z) = D), = 0, +ieA, + ied, A (14)
The complex scalar field potential terms are of course invariant:
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The EM field stress tensor transforms like:
F'M = gAY — 9V A = 9M (AY + 0V A) — 0¥ (AM + O N) = FH (16)
Finally the scalar-gauge field dynamic term transforms as:
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In conclusion, the total Lagrangian Density is invariant under gauge transfor-
mation.
2. The classical equations of motion comes from the Lagrange Equation,
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Solving these three equations, we obtain the more ugly form:
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However, due to the newly defined D, = 0, + ieA, and D* = 0" + ieA", one
can expect the simplified version of the above equations by using D,:
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3. The canonical momentum is:
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The scalar field and EM field momentums are:
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The Hamiltonian Density by definition, is
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Note from Eq.(19): the Conserved Quantity, Charge, is the special case of that
of the third equation of Eq.(19), and note: D% = 2IT*:

ie (¢ — ¢*I1*) + 9, F"° = 0 (24)
Therefore we have:
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Where we have dropped the boundary term. Combining this back into Eq.(23)
with the 3rd and 5th terms, we have:
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Use this conclusion back into Eq.(23), with %F2, we finally have,
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This, together with Gauss’s Law, Eq.(24), gives the Hamiltonian of the system.
Let us have a look at the third equation in Eq.(22), II*. In the case of the
gauge field, there is no canonical momentum conjugate to Ag which is why it is
a Lagrange multiplier field that enforces a constraint, Gauss’ Law. This is why
Professor Fradkin suggest me not to use the notation IT* but to use IT° since
Im° = 0.

4. Using p, 0 instead of ¢*, ¢,

D¢ = (Oup+ip (0,0 +eA,))e® (28)

From Eq.(19),
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For the London Gauge 6 = 0, the equations of motions are reduced into:
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The Lagrangian Density is,
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5. If m3 < 0, then —im3 > 0. For the case p = p the effective Lagrangian
Density for London Gauge is reduced from Eq.(31) that, we set d,p to be 0,
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The equations of motion in Eq.(30) gives the minimization of the Lagrangian
Density,
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Fix the classical solution, and plug back into our Lagrangian Density, Eq.(32),
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Where mf)h = pe?. Now the equations of motion for the fluctuation fields are,

oL oL B 2 au v
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From the previous equations of motion that, 9, A" = 0 in Eq.(33), we have
0, F"" to be, 9, (0" A* — 9* A”) = —9? A¥. Thus Eq.(35) is reduced into:
m2,AY — 07 AY =0 (36)

Which is the famous Klein-Gordon equation. Here, the m?, = pe? is the effective

p
photon mass.

3 The Dirac Equation

1. Two ways to approach this problem. First is to find the algebra properties
of y* matrices:

(W’O)+ _ 7o7 (71,2,3)+ _ _71,2,3 (37)

With these relations the Dirac Eqaution (ig —m) 1 = 0 transforms as:
. ()T
P17 =yl =0 %" =i (7) " = m| =0 (38)
Since,
(00)" =8y = (3070)+ = 9p7°
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Therefore, the Dirac Equation can be written as,
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Now let us take care of the 4-current. To prove it is conserved, what we need is
to prove 9,j" = 0 (below we have used Eq.(38) and the Dirac Equation):

i = 0 (P7"9) = (0u80) 10 + " (99)) = (F0) ¥+ P (F) =0 (41)

Another way for this problem, is to use the Lagrangian Density £ = iy —
map1p, and use the equations of motion,
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We can also reach the same conclusion.
2. If the spinor satisfies Dirac Equation, (¢¢ — m) ) = 0,

(ig +m) (ig —m)p = 0= (ig - ig —m?) ¢ = 0
The first term above turns out to be:
1 1
9-0=0,0,07" =0,0, 5 1" 2") + 3 4,
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Sum these two equations up, use the symmetric property for {y*,~v"} and anti-

symmetric for [y#, "],
29§ = 0,0, {v",7"} = 20,0,9" =2 (05 — 0} — 03 — 03) = 20°
Therefore, the spinor satisfies Klein-Gordon Equation:
(62 + m2) =0
3. (a) Use the properties of gamma matrices,
P = %{v”w”} + % V"] = g"" —io"”
Thus the inner product of AB is,
AB = A, B A"y =A,B, (9" —ic")=A-B —io,, A'B”
(b) The trace take over the spinor indices, thus
Tr(AB) =Tr (A,Byg" —io,, A'BY) = A,B,g""Tr (14) =4A- B
(c) Use g {v*,7"} = g™,
PV = o = 209 g — 1M o
Since
PP on = 49", g = gk = 54
Therefore we have
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4 Transformation Properties of Field Bilinears
in the Dirac Theory

(a) The spinor transformation is, ¢’ (2') = S(A)(z), with S(A) = exp (— o ,,w"),
therefore,
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S(A)t = [exp (—iouyw“”>} = exp (; (W)t a;fy) = exp (;w‘“’o;ﬂ,) (53)

Note (w’“’)+ = wM” becasue w*” is a number, and '+’ has nothing to do with a
number. Therefore, what we want to prove is,

P (@)W (@) = d(a) (%) STAOSu(e) = d(2)r St Sy (x) (54)
To prove the Y9S7~%8 = I, use the Taylor Series,
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Since (0,,)" = —& [y, 4], and (%) = 4%, (v123) T = 4123, we can
prove the identity,
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Therefore we reach the conclusion that,
108790 = 71 = ¢ (a")y' (@) = Y (a)(x) (57)
(b) Continue from above,
P (@) (a) = (x) ST s S(x) = (@) ST Hin y 24 S (@) (58)
Use S~1y18 (Afl): =4, or, equavalently ST1yH*S = y¥AH,
S—li,yo,yl,y2,y3s =4 (S_I’YOS) (S_l’}/lS) (3_1725) (5—1735)
=i (77A%) (17A%) (*A3) (+°A3)
= ir*y AL AFASA
= 1P 0y 2 A0 AGASAG
= PPN NLAZAG = A detA (59)
This is what we need for this proof.
&' (@ )59 (2") = ()59 (x)detA (60)
(c) This is just the same as the proof in (b) problem:
G (@ )y (2") = (@) ST SP(x) = ()7 Abip(x) (61)



(d) Again duplicate the process of (b),
V' (@) (2') = (@) (ST158) (ST19"8) Y(z) = Y(@)y57" b (a) Al detA (62)

(e) The proof for a combination of v* matrices is the same as that of one *
matrix:

P (@) = ) (575 (07 =999 8) vla)
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5 Chiral Symmetry

1. Using the new form of slash operators in Chiral Representation, since:

§=007" 97 (64)
The new Dirac Equation is written as:
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or, equavalently,
—mé — (i80[+i5-5) Y =0
—my — (iaof — g 5) 6=0 (66)
2. The massless Dirac Eqaution with m = 0, reduces to:
(301+5.5)x:o
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Hence ¢ and x decouples. Let us denote x = (Xl,XQ)T and ¢ = (¢1, (bg)T7
( Oo + 03 01 — 10 ) ( X1 ) _0
O +1i02 9o — 03 X2
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Plugging into the plane wave solution, i.e., x; = yioe™ ", ¢; = p0e?**" | the
above two matrices are:

ko — ks —ki+iko X1\ _
—kl — Zkg ko + ]Cg X2
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Solving these two matrix equations, we get,
ko =k*, pg=p" (70)

Therefore the dispersion relation is ko = w = +|k|, po = w = =+[p]. The relations
between two components of that of 2-spinors are:

X2 = ——X1, ¢2= M@H (71)
2 P1— P2

By definition ¢ lives in the upper part of the spinor wave function, and 5 matrix
acting on it resulting the 41 eigenvalue, and hence ¢ wave has the +1 chirality.
Similar argument shows y has the —1 chirality.

3. First of all let us calculate what ¢75? is (to use Taylor Expansion):

[e’s} T e} N2k 00 2kl
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Write in the matrix form:

(a) ¢ and x transforms as:

(5 L) (9)=(2%) -

(b) By definition ¢ = %+40 't = pre 0 we get i = PpyPe 115040 =
7,/;6”56.
(c) Using the conclusions obtained above, 1)1’ = 1e2"15%);

Py = et 150yt eirsly (75)
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We find the quantity is conserved, ¥/t = y*ap.

(d) The form of Dirac Equation is written in Eq.(64). If m # 0, the coupling
between ¢ and x is non-zero. However, under a Chiral Transformation ¢ and
X rotate in the opposite angle, Dirac Equation cannot be invariant. Recall
Eq.(64), if the Dirac Eqaution acts on the transformed spinor wave function,

—my [ —idol —iG -0 ( e ) o
—iaol + 0 - 5 —TTLQQI eilex
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The mass term breaks the Chiral Symmetry, the newly defined mass is,
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