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A Hamiltonian describing a one-dimensional Coulomb field with an electric field in the same direction is useful for
the discussion of electrons outside a free surface of liquid helium [1, 2] and also for the study of far-infrared emission
from Si inversion layers {3]. We present both a semi-classical and a WKB solution to the problem, which exhibits many

of the features found experimentally.

Electrons outside a free surface of liquid helium
are trapped in an image potential, which is essentially
one-dimensional Coulombic [1, 2]. Recent experi-
ments have measured Stark-shifted energies for transi-
tions from the ground state to excited states in this po-
tential. Thus, the approximate Hamiltonian is (in
atomic units) the same as that for a one-dimensional
hydrogenic atom in an electric field viz.

P2 Z
H= 5 —x+Cx. )

Here P, € and Z refer to the momentum in the x direc-
tion, the electric field (applied in the x direction), and
the effective strength of the trapping potential. For li-
quid helium [1, 2], Z = 7 X 103, This Hamiltonian
is also appropriate to the study of far-infrared emis-
sion from Si inversion layers [3] — one simply uses
different numerical values for Z and the effective elec-
tronic mass mg¢¢.

The Schrédinger equation for this problem cannot
be solved exactly. Furthermore, the use of perturba-
tion theory is limited to weak ¢ fields. Thus we are
led to consider the WKB approach (used in ref. [4]
for the case of Z = 0) or the semi-classical approach of
the present author [5] (which was used successfully
to analyze the measurements on highly excited states
in a magnetic field [6]). It turns out that both of
these approaches lead to similar results and so we will
present here an analysis based on the latter approach.

In the case where € = 0, the energy levels £ are
given by [7]

E=E =—2Z2/2n?2 (n=1,2,3,..), 2)

and, in the case where Z = 0, the energy levels are given
by [4]
E=Ep=33meE?3 (n=1,2,3,.). 3)

In the latter case we replaced (n — 5) by n, which s
the appropriate quantum number when we deal with
the combined fields (due to the elimination of a (n/2)
phase factor characteristic of such problems).

For the combined fields problem, we see from an
examination of eqgs. (2) and (3) that the electric field
dominates over the Coulomb field for € values greater
than about®

E* =73)2n8. 4)

In this regime (€ = €*), we calculate the effect of the
Coulomb field by assuming (see ref. [5]) that the
magnitude of x appearing in the Coulomb potential is
determined primarily by the € field forces. As a result,
we find that the total energy in this strong € field re-
gion (E =E) is given by

Eg=Ep{l1 — 04" /ENBY (€ >¢7). (5)

Using similar techniques, we find that the total energy
in the strong Coulomb field or weak electric field re-
gion (E =E\,) is given by

Ey=E{1-(€/EM} (€<EM. (6)

Since experimental observations were carried out
on transitions from the ground state n = 1, we calcu-
late the transition energies w between levels n and 1

*In general € * (m;ff/m)z. For the helium problem, we
have meff = m, which is equal to unity in our units.
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and find (with the subscripts s and w again denoting
strong and weak electric field regimes) that

W, =3(3TEB (12— 1)(1 + b0 23, ™)
and

Wy =Z72 (1 - niz)(l +an?), ®)
where

b= {62/(3my*3 €173}, (9)
and

a=(2E(73). (10)

Thus, a plot of transition frequency versus electric
field € will go linearly as ¢ initially (since ¢ ~ € ) but
for stronger fields it will go as ¢ 2/3 (the dominant
term in eq. (7)). As a result, the curve will display a
decrease in slope as we approach ¢ *. In the case of
liquid helium, we find (recalling that € (atomic)
=5.142 X 10° V/cm) that

¢ =882n4 V/em. (11)

Thus, for n = 1, 2, 3, we have that ¢ * equals 882, 55,
and 11 V/cm, respectively. In other words, the present
experiments (which used fields as high as 60 V/cm)

are already in the strong field regime. In fact, the exist-

ing data (see fig. 2 of ref. {1]) display the decrease in
slope discussed above, as well as the n dependence of
the transition frequency (slope of w,, ~ n? and slope
of g~ n2/3) given in eqs. (7) and (8).

We have also carried out a WKB calculation (exten-
sion of the calculation of ref. [4] to include the
Coulomb potential). The resuit obtained is valid for
all values of € but unfortunately the energy must be
obtained from the transcendental equation
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nm :%(C }\)1/2 {()\ﬁ)F(g,a) + 25E(§,a)} . (12)

where
_E [z 2)”2 _A+8
i 26‘7\—(6-”3‘ o= >

and where £((n/2), o) and E((n/2), &) are the complete
elliptic integrals [8] of the first and second kind, re-
spectively. In the strong and weak field limits, the re-
sults for the energy exhibit the same behavior dis-
cussed above. For values of € ~ ¢*, a numerical eval-
uation of eq. (12) will be necessary, the details of
which will be given elsewhere, along with a detailed
comparison with experimental data.

The author would like to thank Prof. A.K.
Rajagopal for bringing this problem to his attention
and for the benefit of many fruitful discussions.
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