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We show how the spin-orbit contribution to the two-body Hamiltonian, to order ¢

~2, may be derived

classically, in a simple but rigorous manner, from a knowledge of just the corresponding contributions for the
one-body problem. As an illustration of the generality of our results, we consider, as particular cases, the
electromagnetic and gravitational interactions and demonstrate how the usual results follow directly.

The Hamiltonian, to order c-2, for the electro-
magnetic interaction between two charged bodies,
of arbitrary masses and spins, was derived by
Breit! in 1929, and the corresponding gravitational
interaction by Barker and O’Connell® in 1975.
Modern derivations of the Breit interaction use
field-theory techniques® and this was also the basis
of the approach of Barker and O’Connell. A key el-
ement which emerges from the work of the latter
authors is that one can write down a Hamiltonian
which describes both microscopic and macroscopic
interactions®*—from the gravitational interaction
of elementary spinning particles with arbitrary
spin values to the gravitational interaction of mas-
sive rotating celestial bodies.® The results in the
latter case have now been verified by a variety of
purely classical techniques.®*® However, since all
of these derivations are rather lengthy, compared
to the derivation when one particle is heavy (“one-
body” problem), we feel it is worthwhile to show
that the spin-orbit contribution to the two-body
Hamiltonian, to order c™%, may be derived classi-
cally, in a simple but rigorous manner, from a
knowledge of just the corresponding contributions
for the one-body problem

Let m;, T;, ¥, P,, and § (i=1,2) denote the
masses, coordinates, velocities, canonical mo-
menta, and spins of bodies 1 and 2, respectively.
In addition, let e; and —e, denote the correspond-
ing charges (the choice of charges with opposite
signs is purely for convenience). Then the spin-
orbit interaction of body 2 in its own rest system
may be written as

’ — (2) z7

U= 2crs (><) 1
where T =T, -T,, V=V, -w’rz, V is the static nonrel-
ativistic potential [v=-= (elez/r) for the electro-
magnetic interaction and V= —(Gm,m,/7) for the
gravitational interaction], and y is a parameter
which characterizes the interaction. For the elec-
tromagnetic interaction,'® as is well known,m Y
=g/2, whereas for the Einstein gravitational inter-
action y=2, both for the interaction of elementary
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particles® and macroscopic bodies.* 112

We now consider the spin-orbit interaction ener-
gy, due to the spin of body 2, in the center-of-mo-
mentum system (P, = -P,= P). It is simply

U,=Up+ Uy, @)

where U7, the Thomas interaction term' associ-
ated with body 2, is given explicitly by

1

UP= 55 84 @ XV, (3)

where 3, is the acceleration of body 2. Thus

1 dV
(ry_ _ @) 7 x
v, 2m,ctr S @ xT,) dr )
Now, to lowest order, ¥,=DP,/m, and
P=yuv, (5)

where p=m,m,/(m,+m,). It follows, from Egs.
(1), (2), (4), and (5), that

_ 1 ‘_1_V m, }_ 1] T T
U"f_ mymyctr dr [y<l+ > 3 m, > L
(6)

where T.=F X D is the total angular momentum of
the two-body system. Similarly,

-1 av My l__z.] Jo.g,
b= mymyc?v dr [y<1+ m1>_ Zm, > L
)

Now, to order ¢, the spin-orbit coupling interac-
tion involves only lowest order in the appropriate
coupling constant. This linearity in the spin-orbit
contribution implies that the sum

U=U,+U, @®)

is thus the total spin-orbit interaction for the two-
body system, in the center-of-momentum coordi-
nate system. In particular, for the electromagnet-
ic [U=U, and we write g =2(1+ ), where « is the
anomalous magnetic moment] and gravitational in-
teractions (U=U,) we obtain
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U,=(me—hifnz)czl,,s{[(«+ D+ (e ) 1|5 Te (1 2)}
(9)

and
- 1 ?_ my\ &) 7 ]
U;=G =23 [<2+ 5 —-2>s L+(1—2)|, (10)

in agreement with the results of Breit,! and Barker
and O’Connell,? respectively.

In the case of arbitrary theories of gravitation'®
[U=U,(»)], y=7+1, where v is the familiar para-
metrized-post-Newtonian parameter. Hence

U,1)=G c—zly_s{[(')’*' 1)+ (y+3) %] .1+ (1 -.2)} ,
(11)

again in agreement with previously obtained re-
sults,%!3

A comment is necessary on the use of the UT
(i=1, 2) terms for the gravitational interactions.
These Thomas terms!® arise from the use of the
Lorentz transformation and one might object that
such a transformation is no longer appropriate in
a curved space. However, while this is so in gen-
eral, we are working only to order ¢~2, and thus
it becomes clear that we may ignore gravitational
corrections to the Lorentz transformation.

Finally, we wish to emphasize that Egs. (6) to
(8) are applicable to any static potential—for ex-
ample, to the Yukawa potential, to the Hulthén po-
tentials, and to combined potentials (the latter is
of interestfor the treatment of charged black holes).
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Hgee Ref. 9. This derivation is purely classical. It is
based on an analysis of the motion a nonspinning test
body of mass m; in the gravitational field of a station-
ar‘)y body of mass m, and rotational angular momentum
5. To the order required, the metric of body 2 is
simply the well-known Lense-Thirring metric.
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2. Using techniques analogous to those_‘_used in elec-
trodynamics it follows that U4 = —ﬁgz) . B?) , where
7 }2’ =52 /2¢ is the effective “gravitational magne-
tic moment” of body 2 and B D= 4@ xF)@v/dr)/cr is
the effective “gravitational magnetic field” due to the
motion of body 1, as seen from the rest frame of
body 2.
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