Gyroscope Test of Gravitation: An Analysis of the Important Perturbations

R. F. O'Connell
Louisiana State University

We discuss two important perturbations due to (1) the earth's quadrupole moment (Refs. 1 and 2) and (2) the earth's revolution around the sun (Ref. 3), which must be taken into account in the analysis of Schiff's (Ref. 4) proposed gyroscope test of gravitation. The rate of change of the spin axis \vec{S} of a gyroscope may be written (Ref. 4)

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S}$$ \hspace{1cm} (1)

where $\vec{\Omega}$ is the angular velocity of precession.

Explicitly, in Einstein theory ($\vec{\Omega} = \vec{\Omega}_p$), we have (Refs. 1-4)

$$\vec{\Omega}_E = \vec{\Omega}_T + \vec{\Omega}_{DS} + \vec{\Omega}_{LT} + \vec{\Omega}_Q + \vec{\Omega}_{BD}$$ \hspace{1cm} (2)

where $\vec{\Omega}_E$, $\vec{\Omega}_{DS}$, $\vec{\Omega}_{LT}$, $\vec{\Omega}_Q$, and $\vec{\Omega}_{BD}$ are the so-called Thomas, de Sitter, Lense-Thirring, quadrupole-moment (Refs. 1 and 2) and sun (Ref. 3) contributions, respectively. The corresponding quantity in the Brans-Dicke (BD) scalar-tensor theory (Ref. 5), say $\vec{\Omega}_{BD}$, is given by (Ref. 6)

$$\vec{\Omega}_{BD} = \vec{\Omega}_T + \frac{4 - 3\omega}{6 - 3\omega} \vec{\Omega}_{DS} + \vec{\Omega}_Q + \vec{\Omega}_{LT}^3$$ \hspace{1cm} (3)

where ω is the dimensionless coupling constant of the BD theory. It is possible to have $\vec{\Omega}_T$ essentially zero (Ref. 4) by putting the gyroscope in a satellite. Henceforth, we will regard $\vec{\Omega}$ as being averaged over a period of the motion and confine our discussion to orbits which would be circular in the absence of the earth's quadrupole moment \vec{Q} (although elliptic orbits have also been treated: Ref. 2). The term $\vec{\Omega}_Q$ is referred to as the direct quadrupole moment effect, but there is also an indirect effect which manifests itself only when the principal term $\vec{\Omega}_T$ is averaged over a period of the motion (Ref. 1).

We define a length α such that Kepler's law holds in its normal form for the distorted (due to Q) circular orbit; i.e.,

$$\omega = \frac{2\pi}{T} = \left(\frac{GM}{\alpha^3}\right)^{1/2}$$ \hspace{1cm} (3a)

where T is the period and ω is the average angular velocity (Ref. 2) of the gyroscope in the field of the earth of mass M, spin angular momentum $\vec{S}(t)$, and quadrupole moment \vec{Q}, given by (Ref. 7)

$$2\Omega = \left(1032.64 \pm 0.08\right) \times 10^{-6} \alpha^2$$ \hspace{1cm} (4)

where α is the earth's equatorial radius. It follows (Refs. 1-4) that, to the accuracy required,
The magnitude\(^7\) of \(\mathbf{\Omega}_{LT}\) for a satellite in a circular polar orbit 308 miles above the earth is 43.3 \times 10^{-7} \text{ sec/yr} (at this altitude the magnitude of \(\mathbf{\Omega}_{DS}\) is the unquoted value of 7.0 \text{ sec/yr}. Using BD theory, this value is reduced (Ref. 6) by a factor of 1/106. Since 106 is a large number, we take \(k = 6\). Thus, to distinguish between the Einstein and BD theories, the experiment should be capable of measuring such small precession angles. In fact, measurements accurate to 10^{-7} \text{ sec/yr} will be possible (Ref. 9).

The question we wish to consider is whether there are any perturbations of magnitude greater than 10^{-7} \text{ sec/yr} along the z-axis, in addition to \(\mathbf{\Omega}_{LT}\). With regard to \(\mathbf{\Omega}_{DS}\), as is clear from Eq. (7), this contribution turns out to be in the same direction as \(\mathbf{\Omega}_{DS}\) for a polar orbit (though this is not true in general), and thus it has no component along \(\mathbf{n}\). However, the magnitude\(^8\) of \(\mathbf{\Omega}_{DS}\) is 15.2 \times 10^{-7} \text{ sec/yr}, and since the earth's equator is inclined at an angle of 23.44 deg to the ecliptic, the z-component is 0.917 \(\mathbf{\Omega}_{DS}\), or 17.6 \times 10^{-7} \text{ sec/yr}. It is more than 6 times as large as the difference between the Lense-Thirring contributions arising from the Einstein and BD theories and 11.6 times larger than what can be measured actually! In this regard, we expect for the purpose of obtaining the "cleanest" test of \(\mathbf{\Omega}_{LT}\) to be one inclined at an angle 0 to the equator so that \(\mathbf{n}\) and \(\mathbf{n}_S\) point in the same direction (i.e., \(0 = 0\)).

A gyro \(2\) is again placed in the \(y\) direction so that it will now be insensitive to both \(\mathbf{\Omega}_{DS}\) and \(\mathbf{\Omega}_{DS}\). Unfortunately, a price must be paid: that is, the Lense-Thirring contribution to the precession of gyro 2 is reduced by a factor \(k = 0.388\) to a value 17.4 \times 10^{-7} \text{ sec/yr}, and the difference between the Einstein and BD contributions is in this case 1.1 \times 10^{-7}, very close to the limits of the expected experimental accuracy. In addition, there is a new contribution from \(\mathbf{\Omega}_{Q}\) amounting to 3.6 \times 10^{-7} \text{ sec/yr}. For this configuration, similar to the polar orbit case, a possible gyro quadruple moment does not contribute to the precession.

To summarize, we wish to emphasise that, although the perturbations discussed will certainly make the analysis of the observations more complex, they have all been calculated previously to the accuracy desired, with the result that the experiment should be capable of deciphering each separate contribution to the angular velocity of precession of the spin.

References

\(^7\) The value of \(\mathbf{\Omega}_{LT}\) is usually calculated by assuming that the earth is homogeneous in density. However, for our present purposes, it is necessary to use a value for the angular momentum of the earth which is based on a more realistic mass distribution for the earth (Ref. 11). This is a significant modification because it reduces \(\mathbf{\Omega}_{LT}\) by about 1%, which is considerably larger than the approximately 1% difference between the Einstein and Brans-Dicke predictions, the quantity which the experiment proposes to measure.

\(^8\) From Eq. (7a), Ref. 2. It follows that \(\mathbf{\Omega}_{DS}\) is simply one-half of the perihelion precession of the earth around the sun.