I would like to acknowledge my indebtedness to Prof. J. R. Dorfman of the University of Maryland for suggesting the problem and for his most counsel and guidance.

References

EFFECT OF A CONSTANT MAGNETIC FIELD ON THE BETA DECAY RATE OF A NEUTRON IMMERSED IN A COMPLETELY DEGENERATE ELECTRON GAS

R. F. O'CONNELL and J. J. MATESE
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

Received 23 May 1969

Our previous work on the effect of a constant magnetic field on neutron decay in a vacuum is extended to the case where the process takes place in dense bodies (white dwarfs, neutron stars), at zero temperature.

As part of a general program to examine the various effects of a large magnetic field [1], we have recently calculated [2] the effect of a constant magnetic field on the rate of neutron beta decay in a vacuum and the astrophysical implications [3] arising from same. For consideration of objects such as white dwarfs and neutron stars, where magnetic fields H as large as $10^{14} - 10^{16}$ G have been speculated to exist [4], it is necessary to take into account the effect on the decay rate of the existing electron sea, the latter being characterized by a number density N, temperature T and chemical potential μ. For $T = 0$, an extension of previous analysis [2, 3] leads to a total β decay rate ($K = c = m_e = 1$)

$$\omega(H, \mu) = \frac{\gamma g^2}{\pi \lambda^2} \times \frac{n(\max)}{n'(\max)} \times \left\{ \sum_{n=0}^{n(\max)} F_n(H, W_0) - \sum_{n=0}^{n'(\max)} F_n(H, \mu) \right\},$$

where

$$F_n(H, Z) = (1 - \frac{1}{2}e^{\lambda^2}) \{K_n(W_0^2 + Z^2 - K_n^2)^{1/2} K_n - W_0 K_n Z - W_0^2 (Z^2 - K_n^2) \ar sinh[K_n (Z^2 - K_n^2)^{1/2}] \}$$

and $K_n \equiv (Z^2 - 1 - 4\gamma^2)^{1/2}$, $\lambda = g_A/g_V \approx 1.18$, $W_0 = 2.53$ is the total decay energy, $\gamma = H/2H_c$ (where $H_c = 4.4 \times 10^{13}$ G) and $n(\max)$ and $n'(\max)$

Fig. 1. The dependence of ω, the β decay rate in a magnetic field of a neutron immersed in a completely degenerate electron gas, normalized to the free-field decay rate in vacuum ω_0, as a function of the nuclear matter density ρ_0, for values of H/H_c equal to 0, 2 and 3.
are the largest integers occurring in \((W_0^2 - 1)/4\gamma\)
and \((\mu^2 - 1)/4\gamma\), respectively.

Now the energy eigenvalues \(E\) of a relativistic
electron in a magnetic field \(H = H_2\) are \([5]\)
\[
E = \left\{ 1 + \frac{k^2}{(H/H_c)(2n + s - 1)} \right\}^{1/2},
\]
where \(n = 0, 1, 2 \ldots, \ s = \pm 1\) and \(k\) is the \(z\)
component of the electron momentum. Thus,
the number density is
\[
N = \frac{1}{4\pi^2} \frac{H}{H_c} \sum_{n=0}^{\infty} \sum_{s=\pm 1} \int_{-\infty}^{\infty} \left\{ 1 + \exp[(E - \mu)/kT]\right\}^{-1} dk,
\]
and so, analogous to the non-relativistic case
\([6]\), \(\mu\) may be determined implicitly as a func-
tion of \(N\) and \(H\). Now \(N\) may be related to the nu-
clear matter density \(\rho\) by the relation
\[
\rho N = \frac{1}{2\pi^2} \frac{H}{H_c},
\]
where \(\mu_e = \text{(number of nucleons/number of protons)},\)
and \(m_n\) is the nucleon mass.

In the case of completely degenerate electron
gas, the Fermi distribution function reduces to
a step function and eq. (4) reduces to
\[
\rho_6 = 4.16 \frac{(H/H_c)^{1/2}}{\pi} \sum_{n=0}^{\infty} \left(1 + \frac{\delta_{n0}}{Q(2n + 1)^{1/2}}\right) \frac{g}{\text{cm}^3},
\]
where \(\rho_6 = 10^{-6}(\rho/\mu_e)\) and \(Q = (\mu^2 - 1)/4\gamma\). This
equation was used for the numerical evaluation
of explicit values of \(\mu\) for various values of \(\rho_6\)
and \(H\). In fig. 1 we plotted \(\omega(H, \mu)\) as a function
of \(\rho_6\) for various values of \(H\) and we have also
included the \(H = 0\) rate for comparison. The num-
ber of nodes increases with decreasing \(H\), reflect-
ing the fact that \(n'(\text{max})\) increases with decreasing
\(H\). For a given \(\rho_6\), the change in the decay rate as
a function of \(H\) is essentially caused by the effect of
the magnetic field on the density of final states
of the electron \([7]\). Similar phase space effects
are relevant to the calculation of the changes pro-
duced in the cooling rate of neutron stars \([8]\) by
a magnetic field.

References
published.
3. R. F. O'Connel and J. J. Matsese, Nature, to be pub-
lished.
(1949) 828 and 77 (1950) 702.
7. D. C. Mattis, The theory of magnetism (Harper and
B1445, B1452.

DIAMAGNETIC SUSCEPTIBILITY OF SUPERCONDUCTING TIN ABOVE \(T_C\)

R. DOLL
Zentralinstitut für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften,
8046 Garching, Hochschulgelände, W.-Germany

Received 30 May 1969

In a bulk sample of pure tin a small, but strongly temperature and field dependent diamagnetic suscep-
tibility has been found, extending over a temperature range of about 30 millidegrees above the transition
temperature to superconductivity.

Recently the onset of superconductivity has
attracted much interest \([1-5]\). The increase of
the electrical conductivity above \(T_C\), due to fluc-
tuations of the order parameter has been ob-
served by Glover \([1]\) with thin films.

According to Schmidt \([5]\) these fluctuations
should cause a singularity of the diamagnetic
susceptibility proportional to the Ginzburg-Landau
correlation length in a bulk sample, whereas
Aslamazov and Larkin \([3]\) arrive at the statement,
that anomalous diamagnetism should be absent.

We have investigated the magnetic behavior
of a single crystal of tin with a residual resistiv-
ity ratio \((\rho_{24}/\rho_{295}) = 5 \times 10^{-3}\) near the transi-
tion to superconductivity.