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Decoherence without dissipation
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Abstract

The prototypical Schrödinger cat state, i.e., an initial state corresponding to two widely separated Gaussian wave packets, is
considered. The decoherence time is calculated solely within the framework of elementary quantum mechanics and equilibrium
statistical mechanics. This is at variance with common lore that irreversible coupling to a dissipative environment is the
mechanism of decoherence. Here, we show that, on the contrary, decoherence can in fact occur at high temperature even
for vanishingly small dissipation. 2001 Elsevier Science B.V. All rights reserved.

PACS: 03.65.Bz; 05.30.-d; 05.40.+j

Quantum teleportation [1], quantum information
and computation [2,3], entangled states [4], Schrödin-
ger cats [5], and the classical–quantum interface [6]:
topics at forefront of research embracing quantum
physics, information science and telecommunications
and all depending on an understanding of decoher-
ence [7], i.e., how a quantum interference pattern is
destroyed. In an introduction to the contents of a re-
cent book devoted wholly to this subject, Joos surveys
the current situation and, in discussing the mechanism
of decoherence, states that “. . . irreversible coupling
to (a dissipative) environment seems to have become
widely accepted. . .”. Here, while we agree that cou-
pling to the environment is necessary to establish ther-
mal equilibrium, we show that at high temperature de-
coherence occurs even for vanishingly small dissipa-
tion. The situation is like that for an ideal gas: colli-
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sions are necessary to bring the gas to equilibrium but
do not appear in the equation of state, nor in the veloc-
ity distribution.

Much of the discussion of decoherence [8–11] has
been in terms of the simple problem of a particle mov-
ing in one dimension that is placed in an initial super-
position state (Schrödinger “cat” state) corresponding
to two widely separated wave packets. The motivation
for this choice is that it can be applied, say, to de-
scribe the interference pattern arising in Young’s two-
slit experiment [8] or that arising from a quantum mea-
surement involving a pair of “Gaussian slits” [12,13].
Of primary interest is the question of the classical–
quantum interface, i.e., how the interference pattern is
destroyed with the evolution of a classical state corre-
sponding to two separately propagating packets. De-
coherence refers to this destruction of the interference
pattern and key questions are what is the origin of de-
coherence and what is the time scale for loss of co-
herence. The maintenance of coherence is an essen-
tial element in quantum teleportation, etc. Thus, an
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understanding of all physical phenomena which can
cause decoherence is essential. Our purpose here is to
give an elementary calculation showing that at high
temperature (kT � h̄γ , whereγ is the dissipative de-
cay rate) decoherence occurs in a very short time that
is, contrary to widely held belief, independent of the
strength of coupling to the environment. Our starting
point is the prototypical Schrödinger cat state, i.e., an
initial state corresponding to two separated Gaussian
wave packets. The corresponding wave function has
the form

ψ(x,0)= 1

[2(1+ e−d2/8σ 2
)]1/2

(1)

×
(

exp
{− (x−d/2)2

4σ2 + i mv
h̄
x
}

(2πσ 2)1/4

+ exp
{− (x+d/2)2

4σ2 + i mv
h̄
x
}

(2πσ 2)1/4

)
,

whereσ is the width of each packet,d is the separation
between the centers of the two packets andv is
the particle velocity. Next, we solve the free particle
Schrödinger equation,

(2)ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2 ,

with this initial state. The general solution is [14]

(3)
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Hence, using (1) we obtain

ψ(x, t)= ei(mv/h̄)x−i(mv2t/2h̄)
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Hence, the probability distribution,P(x; t) =
|ψ(x, t)|2, is

P(x; t)= 1
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This is all within the realm of conventional quantum
mechanics [14].

Next we consider the case of a particle in thermal
equilibrium, but so weakly coupled to the environment
that we can neglect dissipation. The principles of sta-
tistical mechanics then tell us that we obtain the corre-
sponding probability distribution by averaging distrib-
ution (5) over a thermal distribution of velocities. The
result is

PT(x; t)≡
√
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2πkT
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dv exp
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2
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where we have used a subscript T to emphasize that
this is the probability distribution at finite temperature
and where we have introduced

(7)w2(t)= σ 2 + kT

m
t2 + h̄2

4m2σ 2 t
2.

This probability distribution is the sum of three con-
tributions, corresponding to the three terms within the
parentheses. The first two clearly correspond to a pair
of separately expanding wave packets, withw2(t) the
width of each, while the third term, the one involv-
ing the cosine, is an interference term. The attenuation
coefficienta(t) is the ratio of the factor multiplying
the cosine to twice the geometric mean of the first two
terms. Thus

a(t)= exp

{
− kT d2

8mσ 2w2 t
2
}

(8)= exp

{
−

kT
m
t2d2

8σ 4 + 8σ 2 kT
m
t2 + 2h̄2t2

m2

}
.

At t = 0, we see thata(0) = 1 corresponding to
maximum coherence and, as mentioned above, the
goal of experimentalists is to maintain this coherence.
However, for very short times, we see thata(t) ∼=
exp{−t2/τ2

d }, where the decoherence time is

(9)τd =
√

8σ 2

v̄d
,

in which v̄ = √
kT /m is the mean thermal veloc-

ity. This decoherence time is much different from
that quoted extensively in the literature [7,11], namely
γ−1h̄2/mkT d2, which is inversely proportional toγ
(the dissipative decay rate). By contrast,τd given by
(9) is independent ofγ . The reason why existing cal-
culations fail to obtain the form (8) for the attenua-
tion coefficient at short times is that they are based on
the assumption that the initial state of the particle is a
pure state (of the form (1) withv = 0) and use a mas-
ter equation to describe the time development [7–11].
Such a pure state is effectively at zero temperature
and when the particle is suddenly coupled to a bath
at temperatureT , as described by the master equation,
it takes a time of orderγ−1 for the particle to warm up
and acquire a thermal distribution of velocities. Such
an approach therefore misses the initial thermal dis-
tribution of velocities responsible for the rapid loss of

coherence we have obtained. The result we have ob-
tained does follow from a new approach [13], which is
not based on a master equation and which incorporates
both arbitrary temperature and arbitrary dissipation. In
fact, the exact general formula for the attenuation co-
efficient, expressed in terms of the mean square dis-
placement and the nonequal-time commutator, is given
by [13]

(10)aexact(t)= exp

{
− s(t)d2

8σ 2w2
exact(t)

}
,

where now the width of a single wave packet is given
by

(11)w2
exact(t)= σ 2 − [x(t1), x(t1 + t)]2

4σ 2
+ s(t),

in which

(12)s(t)= 〈{x(t1)− x(t1 + t)}2〉
is the mean square displacement. For the special case
of a free particle without dissipation, wheres(t) =
(kT /m)t2 and [x(t1), x(t1 + t)] = ih̄t/m, this re-
duces to (8) above. However, even in the presence
of dissipation, for times short compared withγ−1,
whereγ is a typical dissipative decay rate, the mo-
tion is again that of a free particle. For such free mo-
tion, there is a rapid decay of coherence with char-
acteristic timeτd given by (9). It should be stressed
that since decoherence decay times are always much
smaller than dissipative decay times, we always have
γ τd � 1. For example, if we consider an electron at
room temperature (300 K), then̄v = 6.8 × 106 cm/s
so that if we taked = 1 cm andσ = 0.4 Å, then us-
ing (9) we obtainτd = 6.9× 10−24 s, which is orders
of magnitude smaller than typicalγ−1 values. Even
for T = 1 K (which fulfills our definition of high tem-
perature, i.e.,kT � h̄γ , for γ � 1011 s−1) we obtain
τd = 1.2× 10−22 s.

In summary, we have presented a simple deriva-
tion of the result for decoherence without dissipation,
working solely within the framework of elementary
quantum mechanics and equilibrium statistical me-
chanics.
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