
ELSEVIER Physica A219 (1995) 88-94 

PHYSICA 

Environmental  effects on a single electron box  

G.Y.  Hu ,  R.F.  O ' C o n n e l l  

Department of  Physics and Astronomy, Louisiana State University, Baton Rouge, 
LA 70803-4001, USA 

Received 6 March 1995 

Abstract 

Lafarge et al. (Zeitschrift fiir Physik B 85 (1991) 327) have measured the average junction 
charge in a single electron box. Their results are in agreement with theoretical predictions at 
temperatures T above 100 mK but not at lower T values. We explain the lower T experimental 
results by incorporating quantum charge fluctuations due to the environment by use of 
a quantum Langevin equation model. It is shown that, at T = 0, the sawtooth shape of the 
junction charge, as predicted by existing theories, is rounded off by the quantum fluctuation 
effects. At finite temperature, the theory is compared with the experiments of Lafarge et al., and 
a good fit is obtained at all the relevant temperatures. 

Recently, a big effort has been made toward developing single charge transfer 
devices [1, 2], where the transfer of charge through small capacitance tunnel junction 
devices is controlled at the single electron level. These devices are potentially useful in 
meteorological applications such as the accurate measurement of the fine structure 
constant e and the realization of a current standard. The simplest such device and the 
building block of more sophisticated devices [1, 2], is a tunnel junction of capacitance 
C and resistance RT, connected to a voltage source U via a capacitance Cs (see Fig. 1), 
nicknamed the 'single electron box'. Lafarge et al. [1, 2] have measured the average 
junction charge ~Q), which is simply related to the average value @) ,  in a single 
electron box. Their results demonstrate  that a single electron box allows a direct 
observation of the charge variables associated with single electron tunneling across 
a junction, based on the quantization of the island charge. In particular, their 
experimental results for the ( Q )  versus U curves at different temperatures T, ranging 
from 20 to 312 mK,  are in agreement with the theoretical predictions (which considers 
thermal effects only) above 100 mK, but not at lower temperatures. Esteve [2] has 
pointed out the importance of the quantum fluctuations of n in explaining the 
experimental data at low T. This is because no matter  how small T is, the tunneling 
probabili ty is in fact finite, as a result of which the number  of electrons in the electron 
box is not strictly conserved. However, it has also been shown that an approach based 
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on a perturbation theory [2-5] in R~/Rx (where the resistance quantum 
Ru = h/e 2 ~ 25.8 kf2) for the quantum corrections to (Q) does not settle the problem, 
and a complete non-perturbative theory is clearly needed. To date, no theoretical 
calculation of the quantum fluctuation effects on the single electron box gives results 
in agreement with the experiments. 

Our purpose here is to provide a theoretical framework which is capable of 
incorporating quantum charge fluctuations, due to the environment, in a single 
electron box, and gives good agreement with the low-T experimental results. The 
theory we adopt here is the quantum Langevin (QLE) model [6-9], which has been 
previously applied to the single [6, 7] and double [8] junction systems. It has been 
demonstrated the QLE model captures the basic physics of quantum smearing of 
Coulomb blockade (finite I at V < e/2C, where C is the junction capacitance) by 
taking into account the zero-point fluctuations of the instantaneous charge on the 
junction. Also, it has been shown [9] that in the weak coupling limit (Rk/RT < 1, 
which is certainly the case for the single electron box [1, 2]), the QLE model is 
consistent with the well known Landauer formalism. The advantage of the QLE 
model is that the quantum charge fluctuations (q2) are calculable quantities [6] once 
the set up of the experimental system is known (through the impedence of the 
environment, see discussion below). In addition, for those junctions where the envir- 
onmental setup is not exactly known, and a direct calculation of (q2) is not possible, 
the QLE theory can still be used as a one parameter ((q2)) theory to study the 
quantum charge fluctuation effects, which is mainly due to the feedback between the 
electrometer and the single electron box [1, 4]. 

We start with a brief review of the main aspects of the QLE model for the 
environmental effects on single electron tunneling. First, one solves the quantum 
Langevin equation [6, 7] for the Fourier transform q(co) of the charge fluctuation q(t). 
Then, using the fluctuation dissipation theory, one obtains the mean-square charge 
fluctuation [6, 7] 

= - -  corn - - ~  K e  

rc iogC + Z -  * (co) 
0 

(1) 

where fl = 1/k~T, and Z(co) is the impedence of the environment (including the 
contribution from the tunnel junction). We note that, as indicated in Ref. [6], the 
Ohmic model, which replaces the Z(co) in (1) by a frequency independent resistance R, 
diverges at the T = 0 limit and is not suitable for the study of the T = 0 quantum 
fluctuations. 

To calculate the effect of quantum smearing of Coulomb blockade in small 
tunnel junctions, we use the QLE model which incorporates the fact that the 
charge fluctuations q obey a Gaussian distribution (justified by our analysis in Ref. 
[9] since we are dealing with the weak coupling limit). After accommodating 
the spread in values of q, and in terms of the effective tunneling rates (F+) ,  the 
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tunneling current is [6, 7] 

I = e((r-(Q)) - ( r + ( Q ) ) )  - e 

oo 

f 
- - o 0  

dq EF-(Q + q) - F+ (Q + q)]P(q) ,  (2) 

where the distribution function for the charge fluctuation is 

1 e_q2/2 (q2) P ( q ) = ~  . (3) 

In addition, the tunneling rate in Eq. (2) is given by 

F + ( Q ) _  ½e 4- Q 1 
eCRT exp[flAE+-(Q)] -- 1'  

(4) 

where AE -+ (Q) = (1 4- 2Q/e)Ec, Ec = e2/2C, and Q = CV, with V the voltage applied 
across the tunnel junction. 

We now use the QLE model to study the single electron box, coupling to a dissi- 
pative environment being represented by an external circuit of impedance Z(eo) (see 
Fig. 1). The device is generally operated at the high tunnel resistance RT >> Rk, and at 
low temperatures where the typical thermal energy kBT is much less than the energy 
required to charge the island with one electron, e2/2(C + Cs). This is the case where 
the number of electrons n on the island is a well defined quantity with small quantum 
and thermal fluctuations and the use of the QLE theory is justified. 

When the environmental effect is neglected, the theory for the single electron box is 
well developed [1, 2]. At T = 0, there are n electrons on the island for which the 
electrostatic energy is minimal. At finite temperature, one has to evaluate the thermo- 
dynamic average (n) ,  and the average junction charge (Q)  is related to (n)  by [2] 

C 
( Q )  - CsC--+ (~ - ( n ) e ) ,  (5) 

where Q = CsU. In the low temperature region (kBT ~ e2/2(Cs + C)), Eq. (5) can be 
evaluated and the result is [10] 

eC { l e~{{x}-{)/cosh[ ({x} 2 ) ] }  (6) 
( Q )  - c + C s  {x}  - ~ ~ - , 

where 2 = CsU/e, 7 = e2/[2(Cs + C)kBT], and {x} - x - n is the fractional part ofx. 
In the limit of T --* 0 one obtains [10] 

eC 
<Q)T=O - - - -  [{x} -- 0({x} -- ½)]. (7) 

C + C s  
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Fig. 1. A single electron box consisting of a junction of capacitance C in series with a true capacitor Cs 
coupled to a voltage source U via the external impedance Z(co). The island between the junction and 
capacitor contains an integer number n of excess electrons. 

F r o m  (6), one predicts that  ( Q }  varies with x in a sawtooth  pat tern  which is 
progressively more  rounded  as the temperature  increases. It  is found that  the experi- 
mental  results are in agreement  with the theoretical predicat ions of (6) above  100 mK,  

but  not  at the lowest experimental temperature  (20 mK). Thus,  we are mot ivated  to 
extend the above  theory  by including the effects of the envi ronment  on U by the Q L E  
theory,  i.e., U is now subject to q u a n t u m  fluctuations described by (1)-(3). Corres- 
pondingly,  there are fluctuations in (~ which we designate as q, and these obey the 
Gauss ian  probabi l i ty  distr ibution P(q) as given by (3). Thus, denot ing the average 

over the fluctuations by a bar, (5) becomes 

C 
( Q }  - - -  {(~ - Q i } e } ,  (8) 

C +  Cs 

where, in particular,  

~nexp{-- y[n2--2n(x+q)]} 
(n((~)}=_oof dqP(q)-~exp{--y[n2--2n(x+ q)]} " (9) 

Also, in Eq. (8) there is no bar  over (~ since the average over (~ is the same as the case 
with no fluctuations. Similarly, using the low temperature  limit result (6), we obtain 

< Q >  - _ _  

co 

eC { E( C+Cs {x} dqP(q)exp ? { x } - - ½ +  

- - o 0  

( l o )  
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Eq. (10) is a key result of this paper• When T = 0, (10) can be evaluated analytically 
and the result is 

eC (O_.)r=O_ssI{X}_½erfc( ~ - { x }  ~ ]  (11) 
C \ x / 2 ( q  ) / e / J '  

where erfc(z) 1 (2/x//~) fo dt _,2 = - e . Eq. (11), which includes environmental effects, 
should be contrasted with (7), which is the corresponding result in the absence of 
environmental effects. It shows that in general at T -- 0, ( Q )  is a periodic oscillating 
function of x having a period of one and zero points at the values of x = n/2. In 
addition, the amplitude of ((2) strongly depends on the magnitude of the quantum 
fluctuations (q2).  This is illustrated in Fig. 2, where we plot (11) in one period 
0 < x ~< 1 at the values of (q2)/e2 = 0, 0.002, 0.004, 0.008, 0.02. The figure indicates 
that ( Q )  has a linear behavior as a function of {x} near the {x} = ½ region. In fact, 
from (11) one can obtain directly a linear relation in the {x} ~ ½ region as 

eC ( ~ )  ½. 
( Q ) ~ c + c ~ ( { x } - ½ )  1 - 2 ' for{x} ~ (12) 

Eq. (12) tells us that in the absence of quantum fluctuations ( (q2)  = 0) the ( Q )  versus 
{x} curve will have infinite slope at {x} = ½, which is the known result of previous 
theory [1, 2]. On the other hand, for finite values of (qZ)  this slope will take a finite 
value• For  example, if (q2)/e2 = 0•006 then 

(•) ~ - -  42 eC 
• c + C s  ( { x }  - ½). 

Next, we compare our theoretical result (10) for the averaged charge in a single 
electron box as a function of the gate voltage, with the experimental data of Lafarge 
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Fig. 2. The T = 0 average charge ( Q )  in a single electron box as a function of gate voltage U, at various 
values of charge fluctuations in the quan t um Langevin model. 
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et al. [1]. For  this purpose we have evaluated (10) at the temperatures T = 20, 85, 149, 
199, 312 mK,  capacitances C -- 0.6 fF, and Cs = 85 aF. The results are presented in 
Fig. 3, using the best fit value of (qE)/e2 -- 0.006, and it will be noted that the very 
good agreement is obtained between theory (dotted curves) and experiment (full 
curves). Due to lack of knowledge of the details of the environmental parameters  of 
the experiment, it is not possible to calculate (q2 )  directly but we note that the 
number  (q2) /e2 = 0.006 used in our fit is consistent with our previous calculation [7] 
for the single junction system. This suggests that the rounded shape of the averaged 
charge as measured in the experiments [1], may be explained as mainly due to the 
quantum charge fluctuations. Also, the fact that a single temperature independent 
(qZ)  can explain the data for different temperatures T follows from Eq. (1) since it is 
clear that  (q2)  is very weakly dependent on T for the very low T values (20 m K  to 
312 mK) under discussion here. This is also evident from Fig. 9b of Ref. [6]. 

In summary,  by using the quantum Langevin model (1) (4), we have obtained (10) 
for the average charge in the low temperature limit. Our  T = 0 result (11) shows that 
the sawtooth-shaped average charge in the conventional theory is rounded off by the 
quantum fluctuations through the explicit expression (12) in the sawtooth region. At 
finite temperature, our theoretical result (10) is compared with the experiments of 
Lafarge et al., and a reasonably good fit is obtained. A more accurate comparison 
cannot be made because lack of detailed information on the environmental set-up 
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Fig. 3. Average charge (Q) in a single electron box as a function of gate voltage U at several different 
temperatures. Solid lines are data taken from Fig. 9 of Ref. I-2]. Dashed lines are theoretical predictions (10) 
(supplemented by (3)) from the quantum Langevin theory at the charge fluctuation value (qZ)/e2 = 0.006. 
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used by the experiments prevents us from calculating (q2) ab initio. This points out 
the desirability of more sophisticated experiments where the environmental set-up is 
known and controllable. On the theoretical side, it would also be desirable to 
complement the present approach with a calculation based on the system Hamil- 
tonian which would include from the start both electron tunneling and charge 
fluctuation terms. 
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