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ABSTRACT 

The inf luence of an e lec t r i c  f i e l d  on weak loca l i za t ion  in a semiconductor quantum wire is studied 
by a recently proposed generalized quantum Langevin equation approach to the conduct iv i ty  
problem. A new physical p icture is presented. In our model the e lect ronic  motion is essent ia l ly  
one-dimensional, and the phase coherence length I¢ is much larger than the e las t i c  mean free 

path % of e lectrons.  We f ind that when the e lec t r i c  f i e l d  E exceeds a c r i t i c a l  value E c = 
2 where is HVF/e~ $ , V F the Fermi velocity,  introduce a new cut-off length L s = (Ec/EJ~x $ i t  wi l l  

with implications for the experimental results on semiconductor quantum wires. Our theory is in 

good agreement with the experiments of Hiramoto and co-workers. 
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I .  INTRODUCTION 

The study of the inf luence of an e lec t r i c  f i e l d  on weak loca l i za t ion  has been quite 
cont rovers ia l .  A l tshu ler ,  Aronov and Khmel'nitsky (1981, 1982) predicted that  a d c e lec t r t c  f i e l d  
does not break t ime-reversal  invariance and, as long as the temperature is constant, the e lec t r i c  
f i e l d  has no inf luence on weak loca l i za t ion  (Lee and Ramakrlshnan, 1985). By contrast ,  Tsuzuki's 
study (1981) showed a reduction of the quantum correct ion to the conduct iv i ty  in an e lec t r i c  

f i e l d ,  and Mott and Kaveh (1981) found a c r i t i c a l  length LD(~E'I/3) , which diminishes weak 

loca l i za t i on  as soon as L 0 < LT, the Thouless length (L T = (Dx$) 1/2, where D and x$ denotes the 

d i f fus ion  constant and phase coherent t ime, respect ive ly) ,  

The purpose of th is  paper is to demonstrate that in a semiconductor quantum wire system, where the 
e lec t ron ic  motion is essent ia l ly  one-dimensional and the phase coherence length l ~ ( i n  the low 
f i e l d  l i m i t )  is much larger than the mean free path I of the electrons, there is ~trong evidence 

supporting the viewpoint that the e lec t r i c  f l e l d  does af fect  weak loca l i za t i on .  We show that when 

the e lec t r t c  f i e l d  E applied to the semiconductor quantum wire exceeds a c r i t i c a l  value E c = 

~VF/el ~, i t  w i l l  introduce a new cut -o f f  length (s im i la r  to the idea of Mott and Kaveh) L s = 
1 

(Ec/E~2 15 which is in good agreement with the experiments of Hlramoto and co-workers (1989). 

In Sect. I I ,  we present a new physical p icture of weak loca l i za t ion  in the semiconductor quantum 
wire.  Based on the fact  that  the electron motion Is essent ia l ly  one-dimensional, we show that the 
coherent back scat ter ing process is bet ter  described by a sudden reversal p icture (as d i s t i n c t  
from the d i f fus ive  p ic tu re) .  In Sect. I I I  we implement the physical idea by a theoret ica l  
formulat ion based on the recently developed generalized quantum Langevin equation approach (Hu and 
O'Connell, 1987, 1988). In Sect, IV we show that our sudden reversal p icture also leads to a cut- 
o f f  length (d i f f e ren t  from that of Nott and Kaveh) and we compare our theoret ica l  results with 
experiments. Our resul ts are summarized in Sect. V. 
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I I .  PHYSICAL PICTURE 

Weak local izat ion is a quantum effect (Lee and Ramakrishna~, 1985) caused by coherent back 
scattering (CBS), where an electron with i n i t i a l  momentum R is f i na l l y  scattered into the opposite 
state -~ e las t i ca l l y .  According to the diffusive picture, in real systems the CBS is realized 
through coherent scattering sequences (fan diagram), where an electron of Fermi momentum k F moves 
in a dif fusive way such that i ts momentum gradually changes to -kF+ q (with q/k F << 1). The 
average distance (the phase coherent length L~) over which the electron diffuses during these 
sequences, is estimated to be ~-~ ,  where D iC the diffusion constant and ~ is the average time 
for a CBS process. This dif fusiv~ description of the electron motion serveg as the basis of 
almost al l  the theoretical treatments of the quantum correction to the conductivity in the 
metal l ic regime. 

While the dif fusive picture for CBS is i l luminating and correct for most of the weakly localized 
systems studied, i t  does not rule out other possible ways for electrons to achieve CBS in some 
unusual systems. The strong local izat ion of the s t r i c t l y  one-dimensional (ID) system is one 
example, where the CBS process happens one dimensionally at a length scale of the mean free path 

= V F ~, where V F is the Fermi velocity and ~ the momentum relaxation time. Here we propose 
another (which we shall call sudden reversal) picture for the CBS of electrons where the CBS 
process basically exhibits a ID behavior but at a length scale much larger than Z. As in the 
di f fusive picture, the CBS is realized by the coherent scattering sequence which has a total 
momentum transfer of -2kF+ q (q/k F <<1) for the electron. The difference is that instead of 
diffusing e las t ica l ly  through many dif ferent states gradually to achieve the CBS (as in the 
dif fusive picture), the electrons are now assumed to be scattered by impurities only into two 
kinds of states. One is a small momentum transfer forward process which essentially does not 
change the velocity of electrons, the other is a large momentum transfer (~2kF) process which 
makes the electron move essentially in the reversed direction. In addition, the assumption that 
the system is weakly disordered makes the probabil i ty of the reversal scattering much less then 
the forward scattering. (The opposite case, i . e . ,  when the reversal scattering dominates, 
corresponds to the s t r i c t l y  1D case). In this way an electron wi l l  experience many forward 
scatterings with l i t t l e  change in i ts original speed. Eventually i t  w i l l  experience a reversal 
scattering. This is i l lust rated schematically in Fig. I. Thus in our picture an electron wi l l  
travel a distance L¢~ VF~ ¢ in a CBS process, as dist inct  from the result L¢~ Vl)~¢ in the diffusive 

picture. Also, the L¢ in our picture is much larger than ~, in contrast to the ID case (no 

lateral  dimension of freedom) where L¢~ ~. These features of the sudden reversal picture wi l l  

play an important role when we discuss later in Sect. IV the new cut-off length (due to the 
electr ic  f i e ld ) .  

From what we have described above, the sudden reversal picture of CBS proposed here should be 
applicable to many of the semiconductor quantum wires recently available through advances in 
microfabrication technology. The width of these thin wires is comparable to the Fermi wave 

length (~ 103 A), which makes the motion of electrons in them basically one-dimensional in a 
quantum mechanical way. On the other hand, the presence of a f i n i t e  cross section also makes them 
to ta l l y  dif ferent from the 1D system. Physically, due to the re la t ive ly  large value of the Fermi 

wave length of the semiconductor, the di lute impurities in the quantum wire can not indiv idual ly 
block the way of the moving electrons and hence ensures that the reversal scattering has a small 
probabi l i ty (roughly proportional to the rat io of the size of the impurity to the width of the 
wire). At the same time, the lateral  quantization of the sample restr icts the motion of the 
electrons essential ly in a 1D fashion and thus makes the other possible way of impurity 
scattering, the forward scattering, the dominant process. 
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Fig. 1. Schematic picture of the velocity (V x) evolution (time in units of the 
momentum relaxation time ~) of an electron in a quantum wire. 
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I I I ,  FORMULATION 

Next, we implement the physical idea of the sudden reversal picture of CBS into a quantitative 
evaluation of the quantum corrections to the electr ic conductivity of the quantum wire (with a 
width of the order of the Fermi wave length and containing di lute impurities). For a simple 
discussion of the problem, the electron-electron interaction wi l l  be neglected in this paper. 

Our calculation scheme is a generalized Langevin equation (GLE) approach, which we have developed 
in a series of papers (Hu and O'Connell, 1987, 1988, 1989). The maln approximation involved is to 
assume that N>>I, where N is the total number of electrons in the system, which is certainly good 
for a real ist ic  semiconductor quantum wire obtained from a two dimensional system. For instance, 

N ~103 for a system of lx0.1 ~m 2 with surface density n s ~1012 cm -2. For our present purpose of 

obtaining the conductivity with high electric f ield and the CBS corrections for the semiconductor 
quantum wire, there are two main steps in the calculations. First, we recall that the static 
conductivity ~(V d) which includes the CBS contribution and high electric f ie ld,  is (Hu an-an-d~ 
O'Connell, 1988, especially Eqs. (2.18) and (3.8))), 

~(Vd ) _ ne 2 M (I)  
- --~- ~-TT~T ' 

where n, e, m are the density, charge, and effective mass of electrons respectively, M is the 
center of mass, V d is the d r i f t  velocity and p(VH) is the memory function in the GLE which 
contains all the Information concerning the effect of the heat bath (the relative electrons and 
phonons) on the transport properties of the quantum particle (center of mass of the electrons). 
Secondly, a self-consistent expression for the memory function which includes the CBS contribution 
in the sudden reversal picture, is 

1 } , (2) P(Vd) = p(°)(Vd)/{1 + ~  ~, 

where q. .= mVd/M,, and the factor 2 in the last term takes account of the spin degeneracy of q ' .  
In addition, y Is a factor which takes account of the lateral quantization Into subbands. An 
expl ic i t  form for y wi l l  be presented elsewhere since, as we shall see, i t  is not needed for our 
present purposes. Also, the approximations used in obtaining (2) are the use of a random 
distr ibution and a cumulant decoupling scheme for higher order scattering terms. These are 
standard in treating low concentration impurity systems. We note that the sum over q' in (2) is 
carried out by the standard continuum approximation and by introducing an upper and lower cut-off 
for q ' ,  I /4 and I/L~ (1/L i f  L~ > L, where L is the length of the system) respectively. 
Substituting (2) into (1), aft@r some algebra, we obtain 

~(Vd) = ~0(Vd) f(Vd, L¢) , (3) 

where a°(V d) is conductivity in the absence of the CBS contribution, and 

1-qvZ 
f(Vd, L¢) ~ ~nl +q.~v ~ I v  (4) = I - ~ _¢I • 

where = = 2y/k F W. In general, ~ has a value less than one representing the reduction of the 
probabil ity of CBS events due to the f in i te  width of the quantum wire. In the particular l imi t  
where y=1 (which corresponds to a one-band case), we see that = is inversely proportional to the 
width W of the sample, which is consistent with the Thouless weak localization theory of effective 
ID systems. Eqs. (3) and (4) te l l  us that there are two main electric f ie ld effects on the 
conductivity of the semiconductor quantum wire. One is the hot electron effect (Hu and O'Connell, 
1989) contribution to the conductivity, a°(Vd), in the absence of the CBS contribution which in 
general decreases with increase of V d in the intermediate f ield region. The other one is the 
electr ic f ie ld effect on weak localization represented by f(Vd, LA). In this paper, we wi l l  
concentrate on the effect of f(Vd, L ), while keeping in mind-tha~ the presence of ao(v d) wi l l  

adjust the net influence of f(V d, L~) on a(V d) in a way to slighly decrease the value 

of ~V d) when V d increases. We note that the linear static conductivity is obtained from (3) and 

(4) by taking Vd+O, from which we obtain (using o 0 = ne2~/m, and p°(o) = M/~), 

a(Vd+O ) : ° [ i  - ~ (L~- ~)/Jt] , (L¢ < L) , (s) 

which is exactly the results of 1D perturbation theory (Lee and Ramakrishnan, 1985) i f  we take a=1 

and recall that the 1D conductivity is a~D = e 2 Jt/~x. 
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Finally, we note that the experimental data is often published in terms of the phase coherence 
length. I f  we define the phase coherence lengthen(E) at f in i te  electric f ie ld by keeping the 
form of (5), then a comparison of (3), (4) and (5)~will give 

1 1-qv~ l+qv L 
• "~.%(E) ~ ~ +q-~2"-~ v ~ n l + q - i T ~ v ~  I . (6) 

The above expression wi l l  be used in evaluating the current dependence of~A(E ) in the 
intermediate f ield region of qv ~, q L <1, when we make comparison with experimental results. For 
future reference, we note that, forVv~ry weak f ields, L is essentially a constant (~¢ say) and 
also, from (6),-~¢(E) ÷ ~¢. ¢ 

IV. COMPARISON OF THE THEORY WITH EXPERIMENTS 

In recent experiments, Hiramoto and co-workers (1989) have measured the conductivity of a n-GaAs 
quantum wire as a function of current and obtained some unexplained results for the phase 
coherence length:E¢ from a f i t t i ng  to the existing weak localization theory. Their results (for a 

sample #16 ofn-GaAs quantum wire, effective electron mass m*/mB = 0.066, density ns=O.5x1012 cm -2, 
length L=2.45 ~m, width W=0.053 ~m, phase coherence length at Tow f ie ld l imi t  
~¢=0.13 ~m, ~=0.017 ~m) are shown in Fig. 2, where one sees a constant:~¢ = ~¢ at low current 

(I ÷ O) and a fast drop of~¢ after the current passes some cr i t ica l  value around Ic~10-7A. Here 

we show that their results can be qual i tat ively understood by adopting the idea of a cut-off 

length due to electr ic f ie ld and they are quantitatively in agreement with the theory i f  we 
incorporate Eq. (6) and the sudden reversal picture (discussed earl ier) into the calculation. 

According to Mott and Kaveh (1981) the electr ic f ie ld E effect on the conductivity is to introduce 
a new cut-off length 

L D = (~D/eE) 1/3 = (nseW~2/m*I)l/3 , (7) 

(where we have used D = ~2/~ and E = I/o°W) which wi l l  affect the experimental results when L D 
< ~¢ at large enough E. In other words, for small f ie ld (hence small current), L D of (7) is larger 

than ~¢ and the conductivity is given by (3). For large enough f ie ld ,  L D < Z¢ and the L¢ in (3) 

should be replaced by L D and show a f ield dependence. This is exactly the qualitative behavior of 

the f ie ld dependence of~¢ found in Hiramoto and co-workers' experiments. Using the sample data 

for ns, W, ~, ~¢, one can estimate from (7), the cr i t ica l  value of current I c beyond which 

the~@ shows a f ie ld dependence as I c - 1.0x10-8A, which is considerably smaller than the 

experimental value of I c (see Fig. 2). 

We recall that the L D of (7) is obtained from the diffusive picture, where one equates ~he energy 
gained (eELD) by the electron in diffusing a distance L n to the broadening energy (~D/Ln) caused 
by diffusion. On the other hand, according to the sudden reversal picture presented eaFlier, the 
broadening energy in a CBS process is ~VF/L s. Thus, the cut-off length (Ls) due to the electric 
f ie ld in this case is 

L s : (MVFIeE) I/2 : (nseWB~/m*l)~/2 ~ ( Ic l I )  1/2 Z¢ ~ Z¢/¢-i (8) 

From (8), we calculate a cr i t ica l  current I c = 7.5 x 10"8A for the Hiramoto et al. sample in good 
agreement with the experiment. When I<Ic, the L¢ in (6) is not affected by the electr ic f ie ld and 

when I>I c, i t  is replaced by the L s of (8) and (6) reduces to (using V d = I/n seW) 

1-az l+b~-z , ( i>ic) (9) 
~,¢(z) = ~+ ~ z  ~n ~ z  l - b ~  

where b=m*Ic~¢/nseW~ and a=b(~/~¢). Using (9),~¢(z) can be evaluated without any f i t t i ng  

parameters. This is shown in Fig. 2 by the fu l l  l ine which is quite close to the experimental 

data. One observes that in the high current region our theory overestimates the delocalization 
effect of the electric f ie ld by giving a smaller value o f ~  as compared to the experimental 
measurement (see Fig. 2). We think this deviation is understandable as the experiments measure 
the overall effect of the electr ic f ie ld on e(V~) while in our calcultion we have neglected the 
hot electron effect on eO(Va) (see (3)) which, ~s discussed ear l ier ,  wi l l  reduce the ~V~) ( i . e . ,  
offset the delocalization doe to the increasing of f ie ld)  sl ighly. For comparison, we h~ve also 
plotted in Fig.2 (dashed l ine), the theoretical curve o f ~  in the Mott-Kaveh diffusive picture 
(using (6) and (7)). 



Electric field effect on weak localization 1257 

E 
::L 

e- 

. J  

0J 
t -  
O 

o 

.c: 
o .  

0.1 

T =  0 . 3 K  

0 0 

n-GaAs wire 

0 . 0 1  , , , , , , 1 , ,  , , , , , , . , ,  , , , , , , , ,  
1 0 "  I 0 " *  10" I 0 - *  

C u r r e n t  ( A )  

Fig. 2. A comparison between the theoretical and 2xperimental results for the current 
dependence of the phase coherence l e n g t h ~ f o r  a n-GaAs wire. Open circles 
are experimental data from Hiramoto and co~workers (1989). The dashed line is 
the theoretical curve from Mott-Kaveh theory. The ful l  l ine is our 
theoretical curve based on the sudden reversal picture. 

V. SUMMARY 

We have studied the influence of an electric f ield on weak localization in semiconductor quantum 
wires by the generalized quantum Langevin equation approach to the conductivity problem. For the 
semiconductor quantum wires, which have a width comparable to the Fermi wave length, we have 
presented a new (sudden reversal) picture of the weak localization theory. The electronic motion 
in our picture is essentially one dlmensional and the phase coherence length of the system is much 
larger than the mean free path. In this way, an electron wi l l  experience many forward scatterings 
with l i t t l e  change in i ts original speed before eventually suffering a reversal scattering. Based 
on the sudden reversal picture, a general formula for the memory function (2) of the non- 
interacting electrons, in the presence of high order impurity scattering and an arbitrary electr ic 
f ie ld ,  is presented. In the low f ie ld l im i t ,  our formalism reduces to the well known scale 
dependent conductivity (5). In the high f ield case, we adopt a2sudden reversal picture and find 
that when the electric f ie ld exceeds a cr i t ica l  value of WVF/e~ ¢, i t  wi l l  introduce a new cut-off 

length Ls=(~VF/eE) 1/2 which affects the experimental results. Our theory gives good agreement 
with the experiments of Hiramoto et al. 
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