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ABSTRACT

The influence of an electric field on weak localization in a semiconductor quantum wire is studied
by a recently proposed generalized quantum Langevin equation approach to the conductivity

problem. A new physical picture is presented. In our model the electronic motion is essentially
one-dimensional, and the phase coherence length 10 is much larger than the elastic mean free

path 2 of electrons. We find that when the electric field E exceeds a critical value E. =
MVF/exi , where Vp is the Fermi velocity, it will introduce a new cut-off length L = (EC/E)l/ifx0
with implications for the experimental results on semiconductor quantum wires. Our theory is in
good agreement with the experiments of Hiramoto and co-workers.
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1. INTRODUCTION

The study of the influence of an electric field on weak localization has been quite

controversial. Altshuler, Aronov and Khmel'nitsky (1981, 1982) predicted that a dc electric field
does not break time-reversal invariance and, as long as the temperature is constant, the electric
field has no influence on weak localization (Lee and Ramakrishnan, 1985), By contrast, Tsuzuki's
study (1981) showed a reduction of the gquantum correction to the conductivity in an electric

field, and Mott and Kaveh {1981) found a critical length LD(~E’1/3), which diminishes weak
Yocalization as soon as Ly < Ly, the Thouless length (Ly = (Dv¢)1/2, where D and A denotes the
diffusion constant and phase coherent time, respectively).

The purpose of this paper is to demonstrate that in a semiconductor quantum wire system, where the

electronic motion is essentially one-dimensional and the phase coherence length £, (in the low
field limit) is much larger than the mean free path £ of the electrons, there is !%rong evidence

supporting the viewpoint that the electric field does affect weak localization. We show that when
the electric field E applied to the semiconductor quantum wire exceeds a critical value E.
MVF/exz, it will introduce a new cut-off length (similar to the idea of Mott and Kaveh) L
(EC/E}&AI which is in good agreement with the experiments of Hiramoto and co-workers (1989).

¢

In Sect. II, we present a new physical picture of weak localization in the semiconductor quantum
wire. Based on the fact that the electron motion is essentially one-dimensional, we show that the
coherent back scattering process is better described by a sudden reversal picture (as distinct
from the diffusive picture). In Sect. III we implement the physical idea by a theoretical
formulation based on the recently developed generalized quantum Langevin equation approach (Hu and
0'Connell, 1987, 1988)., In Sect. IV we show that our sudden reversal picture also leads to a cut-
off length (different from that of Mott and Kaveh) and we compare our theoretical results with
experiments., Our results are summarized in Sect. V.
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II. PHYSICAL PICTURE

Weak localization is a quantum effect (Lee and Ramakrishnan, 1985) caused by coherent back
scattering (CBS), where an electron with initial momentum E is finally scattered into the opposite
state =K elastically. According to the diffusive picture, in real systems the CBS is realized
through coherent scattering sequences (fan diagram), where an electron of Fermi momentum kg moves
in a diffusive way such that its momentum gradually changes to -kg+q (with q/kg << 1). The
average distance {the phase coherent length L ) over which the electron diffuses during these
sequences, is estimated to be /Dt , where D i the diffusion constant and ¢, is the average time
for a CBS process. This diffusivd description of the electron motion served as the basis of
almost all the theoretical treatments of the quantum correction to the conductivity in the
metallic regime,

While the diffusive picture for CBS is illuminating and correct for most of the weakly localized
systems studied, it does not rule out other possible ways for electrons to achieve CBS in some
unusual systems. The strong localization of the strictly one-dimensional (1D) system is one
example, where the CBS process happens one dimensionally at a length scale of the mean free path
% = Vg <, where V¢ is the Fermi velocity and 1 the momentum relaxation time. Here we propose
another {which we shall call sudden reversal) picture for the CBS of electrons where the CBS
process basically exhibits a 1D behavior but at a length scale much larger than 2. As in the
diffusive picture, the CBS is realized by the coherent scattering sequence which has a total
momentum transfer of -2kp+q (q/kF <<1) for the electron. The difference is that instead of
diffusing elastically through many different states gradually to achieve the CBS (as in the
diffusive picture), the electrons are now assumed to be scattered by impurities only into two
kinds of states. One is a small momentum transfer forward process which essentially does not
change the velocity of electrons, the other is a large momentum transfer (~ 2kg) process which
makes the electron move essentially in the reversed direction. In addition, tﬁe assumption that
the system is weakly disordered makes the probability of the reversal scattering much less then
the forward scattering. (The opposite case, i.e., when the reversal scattering dominates,
corresponds to the strictly 1D case). In this way an electron will experience many forward
scatterings with 1ittle change in its original speed. Eventually it will experience a reversal
scattering. This is illustrated schematically in Fig. 1. Thus in our picture_an electron will

travel a distance L¢~ VFT¢ in a CBS process, as distinct from the result L¢~ ﬁT?; in the diffusive
picture. Also, the L _in our picture is much larger than g, in contrast to the 1D case (no

lateral dimension of freedom) where L®~ 2. These features of the sudden reversal picture will

play an important role when we discuss later in Sect. IV the new cut-off length (due to the
electric field).

From what we have described above, the sudden reversal picture of CBS proposed here should be
applicable to many of the semiconductor quantum wires recently available through advances in
microfabrication technology. The width of these thin wires is comparable to the Fermi wave

length (~ 103 R), which makes the motion of electrons in them basically one-dimensional in a
quantum mechanical way. On the other hand, the presence of a finite cross section also makes them
totally different from the 1D system. Physically, due to the relatively large value of the Fermi

wave length of the semiconductor, the dilute impurities in the quantum wire can not individually
block the way of the moving electrons and hence ensures that the reversal scattering has a small
probability (roughly proportional to the ratio of the size of the impurity to the width of the
wire). At the same time, the lateral quantization of the sample restricts the motion of the
electrons essentially in a 1D fashion and thus makes the other possible way of impurity
scattering, the forward scattering, the dominant process.

Wt/r

Fig. 1. Schematic picture of the velocity (V,) evolution (time in units of the
momentum relaxation time t) of an electron in a quantum wire,
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I11. FORMULATION

Next, we implement the physical idea of the sudden reversal picture of CBS into a quantitative
evaluation of the quantum corrections to the electric conductivity of the quantum wire (with a
width of the order of the Fermi wave length and containing dilute impurities). For a simple
discussion of the problem, the electron-electron interaction will be neglected in this paper.

Our calculation scheme is a generalized Langevin equation (GLE) approach, which we have developed
in a series of papers (Hu and 0'Connell, 1987, 1988, 1989). The main approximation involved is to
assume that N>>1, where N is the total number of electrons in the system, which is certainly good
for a realistic semiconductor quantum wire obtained from a two dimensional system. For instance,

N ~103 for a system of 1x0.1 umz with surface density ng ~1012 em=2.  For our present purpose of

obtaining the conductivity with high electric field and the CBS corrections for the semiconductor
quantum wire, there are two main steps in the calculations. First, we recall that the static
conductivity oV ) which includes the CBS contribution and high electric field, is (Hu and
0'Connell, 1988, especially Egqs. (2.18) and (3.8))),

2
U(Vd) =mam—;'('vqa-y s (1)

where n, e, m are the density, charge, and effective mass of electrons respectively, M is the
center of mass, V4 is the drift velocity and u(V,) is the memory function in the GLE which
contains all the information concerning the effegt of the heat bath (the relative electrons and
phonons) on the transport properties of the quantum particle (center of mass of the electrons).
Secondly, a self-consistent expression for the memory function which includes the CBS contribution
in the sudden reversal picture, is

wvy) = w0 g+ L ?-_1?} : (2)
v

where g, = mV /W, and the factor 2 in the last term takes account of the spin degeneracy of q'.
In addi%ion, vy is a factor which takes account of the lateral quantization into subbands. An
explicit form for y will be presented elsewhere since, as we shall see, it is not needed for our
present purposes. Also, the approximations used in obtaining (2) are the use of a random
distribution and a cumulant decoupling scheme for higher order scattering terms. These are
standard in treating low concentration impurity systems. We note that the sum over qg' in (2) is
carried out by the standard continuum approximation and by introducing an upper and lower cut-off
for q', 1/2 and 1/L, (1/L if L > L, where L is the length of the system) respectively.
Substituting (2) info (1), aftér some algebra, we obtain

olVy) = OV FlVg L,) (3)

¢

where c°(Vd) is conductivity in the absence of the CBS contribution, and

1- 1+q L
L) vty ]|

1.«
b 71 T MiT A T, T (4)

f(v

where a = 2y/kp W. In general, o« has a value less than one representing the reduction of the
probability of CBS events due to the finite width of the quantum wire. In the particular limit
where y=1 (which corresponds to a one-band case), we see that « is inversely proportional to the
width W of the sample, which is consistent with the Thouless weak localization theory of effective
1D systems. Eqs. (3) and (4) tell us that there are two main electric field effects on the
conductivity of the semiconductor quantum wire. One is the hot electron effect (Hu and 0'Connetl,
1989) contribution to the conductivity, o%V, ), in the absence of the CBS contribution which in
general decreases with increase of V4 in the intermediate field region. The other one is the
electric field effect on weak localization represented by f(V4, L ). In this paper, we will
concentrate on the effect of f(Vy, L¢), while keeping in mind that’ the presence of cﬂ(vd) will

adjust the net influence of f(Vg, L¢) on c(Vd) in a way to slighly decrease the value
of a(Vd) when V, increases. We note that the linear static conductivity is obtained from (3) and
(4) by taking VdaO, from which we obtain (using o° = nezrlm, and p°(o) = M/1),

o(V420) = L1 SR LT 7L A IR (RO I (5)

which is exactly the results of 1D perturbation theory (Lee and Ramakrishnan, 1985) if we take o=l
and recall that the 1D conductivity is °€D = e2 /A=,
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Finally, we note that the experimental data is often published in terms of the phase coherence
length. If we define the phase coherence length<€ (E) at finite electric field by keeping the
form of (5), then a comparison of (3), (4) and (5)%ill give

1 l-qvl 1+qv L
‘£¢(E) =2+ﬁln|m‘l—llﬁ| . (6)

The above expression will be used in evaluating the current dependence of £ (E) in the
intermediate field region of q,% qu <1, when we make comparison with expepimental results. For
future reference, we note that, for v@ry weak fields, L is essentially a constant (% say) and
also, from (6),1E°(E) > 1¢. ¢ ¢

IV. COMPARISON OF THE THEORY WITH EXPERIMENTS

In recent experiments, Hiramoto and co-workers (1989) have measured the conductivity of a n-GaAs
quantum wire as a function of current and obtained some unexplained results for the phase
coherence 1ength-£o from a fitting to the existing weak localization theory. Their results (for a

sample #16 ofn-GaAs quantum wire, effective electron mass m*/m, = 0.066, density ns=0.5x1012 cm'z,
length L=2.45 pm, width W=0.053 pum, phase coherence length at ?ow field limit
2¢=0.13 um, 2=0.017 ym) are shown in Fig. 2, where one sees a constant:£¢ = x¢ at low current

(I »0) and a fast drop of1E¢ after the current passes some critical value around IC~40'7A. Here
we show that their results can be qualitatively understood by adopting the idea of a cut-off
length due to electric field and they are quantitatively in agreement with the theory if we
incorporate Eq. (6) and the sudden reversal picture (discussed earlier) into the calculation.

According to Mott and Kaveh (1981) the electric field E effect on the conductivity is to introduce
a new cut-off length

Ly = (hozeE)}/3 = (ngewhs2/m)t/3 (7)

(where we have used D = 12/1 and E = I/0%W) which will affect the experimental results when Lp
< 10 at large enough E. In other words, for small field (hence small current), Lp of (7) is larger

than 1¢ and the conductivity is given by (3). For large enough field, Ly < 1¢ and the L¢ in (3)
should be replaced by Lp and show a field dependence. This is exactly the qualitative behavior of
the field dependence of-£¢ found in Hiramoto and co-workers' experiments. Using the sample data
for ng, W, %, & , one can estimate from (7), the critical value of current I. beyond which

the:f¢ shows a field dependence as I. =~ 1.0x10'8A, which is considerably smaller than the
experimental value of I. (see Fig. 2),

Ne_recal] that the Lp of (7) i; ob@aineq from Fhe diffusive picture, whgre one equates ﬁhe energy
gained {eElp) by the electron in diffusing a distance Lp to the broadening energy (AD/L_) caused
by diffusion. On the other hand, according to the sudden reversal picture presented eap1ier, the

broadening energy in a CBS process is WWg/Lg. Thus, the cut-off length (Ls) due to the electric
field in this case is

1 ] _
Ly = (WVp/eE)2= (n_ehhe/m¥1)72 = (IC/I)I/Z 2, = 1,/72 (8)

From (8), we calculate a critical current I = 7.5 x 10-8a for the Hiramoto et al. sample in good
agreement with the experiment. When I<I., the Lo in (6) is not affected by the electric field and

when I>I., it is replaced by the Ly of (8) and (6) reduces to {using V4 = I/ng eW)

l -—
- l1-az 1+b/.
L,(2) = 2 o an 32 —1-:;./; N ) (9)

where b=m*IC1°/nsewh and a=b(x/x®). Using (9),{¢(z) can be evaluated without any fitting
parameters. This is shown in Fig. 2 by the full line which is quite close to the experimental

data. One observes that in the high current region our theory overestimates the delocalization
effect of the electric field by giving a smaller value of £ as compared to the experimental
measurement (see Fig, 2). We think this deviation is underftandable as the experiments measure
the overall effect of the electric field on ofV ) while in our calcultion we have neglected the
hot electron effect on o%(V ) (see (3)) which, gs discussed earlier, will reduce the oV,) (i.e.,
offset the delocalization dﬂe to the increasing of field) slighly. For comparison, we hgve also
plotted in Fig.2 (dashed line), the theoretical curve of €, in the Mott-Kaveh diffusive picture
(using (6) and (7)). ¢
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Fig. 2. A comparison between the theoretical and experimental results for the current
dependence of the phase coherence length€  for a n-GaAs wire. Open circles
are experimental data from Hiramoto and codworkers (1989). The dashed line is
the theoretical curve from Mott-Kaveh theory. The full line is our
theoretical curve based on the sudden reversal picture.

V. SUMMARY

We have studied the influence of an electric field on weak localization in semiconductor quantum
wires by the generalized quantum Langevin equation approach to the conductivity problem, For the
semiconductor quantum wires, which have a width comparable to the Fermi wave length, we have
presented a new (sudden reversal) picture of the weak localization theory. The electronic motion
in our picture is essentially one dimensional and the phase coherence length of the system is much
larger than the mean free path. In this way, an electron will experience many forward scatterings
with little change in its original speed before eventually suffering a reversal scattering. Based
on the sudden reversal picture, a general formula for the memory function (2) of the non-
interacting electrons, in the presence of high order impurity scattering and an arbitrary electric
field, is presented. In the lTow field 1imit, our formalism reduces to the well known scale
dependent conductivity (5). In the high field case, we adopt a sudden reversal picture and find
that when the electric field exceeds a critical value of Wp/ef , it will introduce a new cut-off

length Ls=(MVF/eE)1/2 which affects the experimental results. Our theory gives good agreement
with the experiments of Hiramoto et al.
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