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We study the effect of a finite oxide layer on the Faraday rotation and ellipticity in a metal-
oxide-semiconductor system. We find that the multiple internal reflections within the oxide layer
can give an enhancement on the order of 21% over the case where the oxide layer is considered
semi-infinite. At high magnetic fields, there is serious disagreement between theory and experiment.

Recently we calculated the Faraday rotation 6 and el-
lipticity & due to a two-dimensional electron gas 2DEG),
in the case where the directions of both the incident radia-
tion of frequency » and the external dc magnetic field
B >0 are oriented normal to the oxide-semiconductor in-
terface containing the 2DEG in a metal-oxide-
semiconductor (MOS) system and where the oxide and
semiconductor were assumed semi-infinite,! the latter be-
ing appropriate when a wedge is used to eliminate multi-
ple internal reflections within the semiconductor. The ef-
fect of a finite semiconductor substrate has been shown to
have a strong effect on both cyclotron resonance®> and on
the Faraday rotation and ellipticity.*

The effect of the metal gate has also been analyzed.’
Because it is very thin (20—50 A), it was pointed out that
it could be treated as a two-dimensional charge layer at
the interface of the vacuum and the oxide (analogous to
the treatment of the inversion layer as a two-dimensional
charge layer at the oxide-semiconductor interface).! In
essence, the metal is ignored except that (47 /c) times its
two-dimensional conductivity is added to the refractive
index of the oxide in considering the transmission of the
radiation into the oxide. With this modification the usual
Fresnel relations hold,*% as displayed, for example, in
Eqgs. (5a) and (5b) where we explicitly write down the
Fresnel transmission and reflection coefficients for a sur-
face containing a charge layer. While Egs. (5a) and (5b)
are general expressions, for the purposes of this paper the
o appearing therein refers to the inversion layer (and is
the source of the free-carrier contribution of the inversion
layer to the Faraday rotation). However, we have already
shown that—in contrast to the case of the inversion
layer—the two-dimensional conductivity (admittance) of
the metal is negligibly small.> This implies that the me-
tallic gate essentially does not contribute any free-carrier
Faraday rotation of its own. Thus, in essence, we may ig-
nore the metal altogether except for its contribution as a
reflecting surface, which is incorporated simply by taking
into account the multiple reflections at the vacuum-oxide
boundary. In other words, the reflection properties of the
thin metal film do not measurably change the transmis-
sion of light from the vacuum info the oxide.

By the same token, the oxide-inversion layer boundary
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can also be replaced by an oxide-silicon boundary, since
the contribution of the inversion layer at the oxide-silicon
interface has been taken into account separately. What we
obtain is a decomposition of the “multiple-pass” rotation
® and “multiple-pass” ellipticity A into the 6 and & of
Ref. 1 (6 and § include multiple reflections within the in-
version layer) and a correction term due purely to multiple
reflections at the oxide boundaries.

We consider the propagation of right- and left-
circularly polarized light through the vacuum-SiO,-Si sys-
tem. The electric fields in the three regions are

—i(kyz +ot)

Eii:Eiie.i(kuz~wt),éi, E,,=E,.e /éi
(z<0), (1a)
Eui— =Euiet(koz—w!),éi’ Eui =Euie —ilkgz —f—mt)ei
(0<z<d), (1b)
E =E e 5 "%, (zs4q) (1c)

so that E;,=E,, +E; , E,=E,, +E,_, etc, k is the
wave number in the corresponding medium and is given
by

k,-:—cé)—n,-, i =v,0,s or 1,2,3, (1d)

where v,0,s refers to the vacuum, oxide, or semiconductor,
respectively, n; is the index of refraction, d is the oxide
thickness, and

2L =RTIV)/V3. (1e)

The boundary conditions at z =0 and z =d are (a) con-
tinuity of the tangential component of the ac electric
fields and (b) equality of the discontinuity of the ac mag-
netic fields and (47 /c)j. =(4w/c)oE 4+, where j and o
are the surface current and conductivity of the 2DEG lo-
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cated at the interface. These conditions imply, respective-
ly, the following results (suppressing the “+” sign): for
z=0,

E,+E,=E,+E,, (2a)
k,(E;—E,)—ko(E, —E,)=0, (2b)
and for z =d,

4non,

ikod —ikod

E,e ° +E,e =E,, (20

Eje ™ _k =% op, . 24d)
c

ikyd
e ¥ — >

kO(Eu

After some algebra, we find that the solution of Eq. (2)
for the transmission coefficient ¢, =E,,/E;; is, using
Eq. (1d),

ty=

Equation (3) may be written as

‘ot eikd
12823+
te= 2ikod ° )
1—rai7ra3+e
where*®
2ni
tiiy= , 5
VET min; (4w /c)os (5a)
n,‘-—nj-_(4’77/(—')0'i (Sb)

Vij+= n; +nj +(47T/C)Ut

are the Fresnel transmission and reflection coefficients for
a surface containing a 2DEG and ¢;;4+ —r;+=1. In Egs.
(4) and (5), the pair of indices (ij) denotes propagation
from medium i in the direction of medium j. At the
vacuum-oxide interface o 4 is zero.

It is convenient to write Egs. (5) as

i+ = | b+ | ¢St , (6a)

rye=|rys | (6b)

It has been shown”? that the multiple-pass Faraday ro-
tation ® and the multiple-pass ellipticity A are related to
the transmission coefficients by

t_

1—A

—2i@
17A e . (7)

Ly

We now define 74 by

2ikgd, _ dikod | 1 ing
(I—ryrpace” )7 = 1—ryrpze e

Using Eq. (6b), we may write

1—721r23t92ik0d=1—r21 | 723+ |€i(2k0d+g23i) )
so that
Far |7 sin(2kod + )
74=tan~! 21 | 7232 | od +8231 (10)

1—ry1 | r3+ [ c0s(2kod +6p34) |

From Egs. (62) and (8) we have

(ny,+no)[no+n;+(4mw/c)oile _ik"d——(no—n,, Nno—ns—(4w/c)os]e

tkod * 3)

[
t

Ly

t

o n-TEn ) fn_ =y ) (11)

Ly
Thus, ® may be decomposed as

where
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FIG. 1. Plot of the Faraday rotation ® vs the magnetic field
B. The parameters used are N =2.3X 102 cm—2%, m*=0.19m,,
where m, is the electron rest mass, ny=1, ng=1.95, n;=3.44,
©=6.455%10'2 5=, d =2000 A, and for the 7 values indicated
on the curves. The corresponding plots of 8 are included for
comparison. The vertical line corresponds to the value o =w, or
B =6.97Xx10*G.
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0=3(Er3 4 —E23) (13)  and

. . . (n + 1o, (otw,)

is the rotation studied in Ref. 1 and Crye=—tan—! |- = ps(@ Lo, 17)
Ovr =+ (04 —n_) (14) H@L0c) + (v —ap)(v+ap)

. ) . .. . . where

is the correction term for the finite thickness of the oxide

layer and is due purely to multiple reflections (MR) _ mg—ny

within the oxide layer. n= PRI (18)

We emphasize that the results so far obtained are in-
dependent of the model used for the surface conductivity
o+. We will now choose a Drude-type model, taking the
surface conductivity® as

iNe?/m*

> (15
otTw,+iv )

O+=

where N is the electron surface concentration, m* is the
effective mass, w,=eB/m*c is the cyclotron frequency,
and v is the collision frequency (=7"1, 7 being the col-
lision time). Thus, we obtain
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FIG. 2. Plot of the Faraday rotation ® vs the photon fre-
quency o using the same parameters as in Fig. 1 and
B =6.89x10* G. The vertical line corresponds to the value
O=0,.

and in the notation of Ref. 6,
wps =4mNe*/m*c(ng+ny) . (19)

If w,; << all the other frequencies and kod <<1 (thin
oxide layer) (which is true for parameters of physical in-
terest), a considerable simplification occurs, viz.,

op(0to,)
=T 5 a2 (20)
2 (0t )*+v*
Erppmr— n+1 onlotao)
2 n (wtw.)?++v
(21)
’ 1
=y 2 §23+ »
and
= | ras | (2kod +8234 —) 22
ks 147y | 7234 | ’
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FIG. 3. Plot of the ellipticity A vs the magnetic field B using
the same parameters as in Fig. 1.
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FIG. 4. Plot of the ellipticity A vs the photon frequency
using the same parameters as in Fig. 2.

Thus, Eq. (14) gives

ng—n, no—1
Orr= | ——= |6= | —— |6, (23)
MR n, +ng J 14ng
since n, =1 (vacuum). Hence,
no+ng ‘
O=0+60yr=|— 16, 24
+OMr T4n, (24)

where 0 is given by Egs. (13) and (20) and is the rotation
studied in Ref. 1.

Using the parameters no=1.95(Si0,) and n, =3.44(Si),
Eq. (24) gives a 21% enhancement of the rotation values 6
of Ref. 1, where the oxide layer was assumed to be semi-

infinite. :
Using Eq. (12), we present, in Figs. 1 and 2, plots of ®
versus B and w, respectively. The corresponding plots of
6 are included for comparison.
Similar to the decomposition of ® in Eq. (12), we ob-
tain for the ellipticity A,

A:M =tanh(8g +8ur) » (25)
e [+ 12— ]
where
8=tanhdg 26)

is the ellipticity studied in Ref. 1 and

« 2ikyd
1——7217‘23_,3 0

Smr=7 In 27

2ik,d
1—ryrpzpe °

is the correction term for the finite thickness of the oxide
layer and is due purely to multiple reflections. In Figs. 3
and 4, we present plots of A (and &) versus B and o,
respectively, which shows the same enhancement as the
rotation curves in Figs. 1 and 2.

Finally, we turn to a discussion of the comparison be-
tween our theoretical results and the experimental results
recently reported by Piller and Wagner.” Such a compar-
ison was made in a recent publication10 (in a note added in
proof), which for the most part was concerned with
memory-function effects. In Fig. 5 of Ref. 10, we
presented two “best-fit” plots of our theoretical results to
the experimental results. The best agreement is obtained
by the use of the ® calculated in this paper (and corre-
sponds to the curve labeled 6—which would have been
better labeled as ® or 1.216, retaining 6 for the results ob-
tained in Ref. 1). However, it is clear that serious
disagreement occurs at high magnetic fields.

The other theoretical curve presented in Fig. 5 of Ref.
10 is labeled 6,, and corresponds to the incorporation of
memory effects in the theoretical analysis. However, it
will be noted that memory-function effects appear to wor-
sen the agreement between theory and experiment.

In conclusion, it is perhaps redundant to remark on the
desirability of more experimental results. In particular, a
determination of the Faraday rotation for various fre-
quencies at fixed magnetic field values would be very
valuable as would ellipticity measurements.
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