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The Wigner Distribution
Function—50th Birthday
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Revelved June 1, 1952

We discuss the profound igfuence which the Wigner distethation function fas
Ao in many areas of phsicy daring s G0 veres af @xdsience,

I. INTRODLUCTION

Among the many great achievements in lheoretical physics associated with
the name of Eugene Paul Wigner, one must surely include his seminal work
on distribution functions. His initial paper an this subject'’ appeared in
1832 when he was thirty vears old and thus perhaps il is appropriate that we
celebrate the 30th anniversary of this paper in conjunction with Eugene
Wigner's own 80th birthday,

This paper was writlen shortly after Wigner arrived in the LLS, in 1930
and, to my knowledge,"*" it is the first paper which he published in English
and also his [irst paper in the American Physical Review. I bears the rather
innocuous  title *On the Quantum  Correction  for  Thermodynamic
Eguilibrium,” which belies the profound influence it has had on many
aspects of physics. The notable feature is the range of its impact; from the
insizht it has provided to investigators of fundamental problems in
theoretical physics to its usefulness as a caleulatonal toal in such diverse
arcas  as  statislical  mechanics,  condensed-matter, pravitational save
detection, optics, noclear physics, and communication theory. Since the
present author is currently participating in the preparation of a detailed
review"™ on the Wigner distribution function (WDF) and the many
ramifications associated with it, our present approach will simply be
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confined to a “broad-brush” attempt to identify seme of he major
benchmarks associated with progress in this arca over the last fifty years.
Thus, in particular, we will so¢ discuss the plethora of applications nor the
fascinating connection between the WDF and  distribution functions in
guantum optics, which-—among other things—will be discussed at length in
our forthcoming review,

In Section 2, we will discuss the Wigner distribution function and its
propertics as well as mentioning extensions which treal spin, statistics, and
relativity.  Section 3 will be concerned with some of the many other
distribution functions which the WDF has essentially spawned. In Section 4
we consider the relevance of the WDF (o some fundamental questions in
quantum mechanics, such as the relationship between classical and quantum
mechanics, and whether or not the “correct™ relativistic equation for
glementary particles should be inherently nonlocal. Finally we point out that
some basic guestions which have been considercd by other techniques are
more naturally treated—and with a concomitant inerease in physical
insight—by WDF technigues. By way of example, we consider the so-called
two-photon coherent states. Another example is concerned with a new inter-
pretation which was proposed for the scalar product in Hilberl space, with
an attendant sugpestion of a generalized notion of measurement.

2. THE WIGNER DISTRIBUTION FUNCTION (WD)

It is widely accepted that one of the most powerful and elegant
approaches Lo classical mechanics is via the concept of phase-space. Thus,
for example, a particle may be deseribed by a classical phase-space
distribution function Pig. p) where g and p denote its position and
momentum, respectively (restricting our discussion to one dimension since
generalization o three dimensions is straightforward ). Since £ g, p) is the
probability that a particle simultaneously has position g and a momentum g,
it follows that the average of any function of ¢ and p, A{g. p) say, may be
wrillen

Ay =| dq| dpAa p)Pufa ) (1)

In quantum mechanics, by contrast, the uncertainty principle states that
we cannot simultaneously know the position and momentum of a particle,
Instead, one deals with a wave-function yw{g), and its Fourier transform ¢ p).
where |w(g)|® gives the probability of finding the particle at position g and
|¢{p}* gives the probability that the particle has momentum p. In 1927, soon
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alter Lthe introduction of quantum mechanics, it was realized by both Landau
and von MNeumann that an even more fundamental quantity than the wave
function is the density matrix § (we will designate all operators by ). By use
of # one can write the average of a function of the position and momentum
operators, A(d, P} say, as

(A = Tr(dp) (2)

Part of Wigner's great contribution was to shown that {A"} could dlso be
written in a form analogous to the classical expression given in Eqg. (1)
Specifically

(y=| da| dpAlgp)Plap) 3)

where £ is the Wigner distribution function (WD) and is given by

Plg. p)=h) ' |  dvlg—riplg + vy e 4)

e (=8
if the system is in a mixed state represented by a densily matrix i, and by

el

Plg,py=(nt)"" | dyw¥lg+ phwlg —)e™? (5)

it the systemn is in a pure state wig). Also, A(g. p) is a classical function
which is derived from the operator A(g, §) by a preciscly defined correspon-
dence rule,

Thus we have the remarkable result, given by Eq. (3}, that the guantum
{ensemble} expectation wvalue can be replaced by a classical phase space
integration. In the classical limit, P{g, p) is the phasespace distribution
function which gives the probability that the coordinates and momenta have
the values g and p. In general. Plg, ¢} depends on & and may assume
negative wvalues,'""" which accounts for the frequent description of this
quantity as a quasi-classical distribution function. Its usefulness stems from
the Fact that it provides a framework for an exact reformation af
nonrelativistic guanivm mechanics in terms of classical concepts.

Among the many appealing features of the Wigner distribution function
(WDF) is thal, as distinct from the Schridinger equation, the limil fi—0
leads to classical mechanics and the development of various results in
powers of A is a relatively straightforward procedure. In the words of
Baleseu, ™., the identity of structure between classical and quantum
mechanics, when expressed in terms of Wigner functions, is an extremely
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remarkable feature. It will help us, particularly in nonequilibrium theary, in
constructing a quite general and unified formalism, which can be translated
al will into classical or gquantum mechanics by simply inserting  the
corresponding definitions of the symbols.”

For example, if one wishes to consider the statistical mechanics of a gas
of particles the basic starting point 1s the calculation of the partition
function. In the case of quantum statistics this involves a complicated sum
aver all the states. However, if one makes use of the WDF then the sum of
states may bhe transformed into an integral in phasespace. which
considerably simplifies the problem. However, this integral is more difficult
to evaluate than the corresponding classical one (=0}, so one usually
proceeds by carrying out an expansion in powers of A the so-called
Wigner''' Kirkwood '™ expansion.

Wigner!'**! presented a specific form for P(p, ), while recognizing that
other possibilities exist, depending on the conditions which are impesed on
P. The P chosen by Wigner has the following properties:™ ™'

(a) il is a Hermitian, that is bilinear. form of the wave-function .
Hence it is real for all ¢ and p. The Hermitian operator is, of course a
function of ¢ and p,

{h) il integrated over p, it gives the proper probabilities for the
different values of g, and similarly with p+ g,

{c} that the correspondence between P and the wave funclion  is a
Calilei  invariant, ie. invariant  with  respect (o displacements and
nonrelativistic transitions, to moving coordinate systems,

(d) it is invariant with respect ta time reflections,

{e) the transition probability belween two states and ¢ is given, in
terms of the corresponding distribution functions, £, and P say, as follows:

2

| ) plx) dx

=2nh || Pyla, p) Polas p)dg dp (6)

(f} in the force-free case the equation of motion is the classical one,
Also it is clear from Eq. (6) that # has to be able to assume negative values.

We turn now o a consideration of the manifestations of Bose and
Fermi statistics on the WDF. The initial work in this area was carried out by
Uhlenbeck and Gropper,'” who calculated the partition function. and then
the equation of state. of a nonideal Bose—FEinstein or Fermi—Dirac gas, Their
results were later verified by Kirkwood.'" A very clear treatment of
exchange effects has recently been presented by Alastuey and Jancovici,""™

with special emphasis on two-dimensional condensed-matler systems.
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Perhaps the most elegant method of taking statistics into account is
with the wse of second guantization. This approach was piongered by
Stratonovich and Klimontovich,''" and an explicit expression for the WDF
in second quantized form was written down by Brittin and Chappell,"'*'"

Stratonovich'" alse considered distribution functions in the space of
arientations of the spin, dealing first with spin{ and then the case of
arbitrary spin.

~ For a relativistic generalization of the WDF we refer to the work of
Cooper and Sharp'™' in their discussion of the determination of the
hydrodynamic and transport properties of a pion [ield produced in a high
energy collison, Carruthers and Zachariasen!"" in their relativistic quantum
transport approach o multiparticle production, and also the work of
Balesew.""™ Van Weert,"'" and Hakim,""® It has been considercd anew by
de Groot ef al,""" in their extensive exposition of relativistic kinetic theory.

3. OTHER DISTRIBUTION FUNCTIONS

Mayal™ has shown that Wigner's method of going from quantum to
classical concepts is the inverse of Weyl's rule™" for obtaining operators
from classical quantities viz,

E,I.'.-'-’J.lir-'\'] +rel ll_:,l:f."ﬁ:ll'rrrﬁ tgEh {?:I

Since the lalter association is only one of many such assoclations™ i
became clear that corresponding to each is a distribution function, Some
investigators were and are particularly interested in distribution functions
which are everywhere nonnegative'™ on the premise that such functions are
more closely parallel to their clagsical counterparts. However, there are
others who feel that such nonnegative characteristics should not be Lhe
primary goal, particularly as other desirable properties are lost in the
Process,

Perhaps the most widely known of such so-called positive distribution
functions {more strictly, nonegative functions) are introduced by Husimi*"
and recently considered anew by Cartwright.*"' Husimi obtained 2
nonnegative distribution function, P, say, by smoothing the WDF with a
Gaussian, for which Ag Ap is no smaller than the #/2 of the minimum uncer-
tainty wave-packet. However, it has been shown'™*' that P, does not
possess property (f) referred to in Section 2. In other words, the time depen-
dence of P, in contrast to that of £, contains a correction term of A7 which
as we remarked in Refl 8—would also appear in the time derivative of the
classical distribution function if this were “smoothed.”
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As we already remarked, Wigner in his initial paper recopnized that
there are a virtual infinity ol choices for a distribution function but he made
a4 choice which was guided by the desired properties ouilined above. For
various reasons—some ol which will be discussed below—other investigators
prefer some alternative properties and thus other distribution Tunetions.
However, all viable choices lead Lo the same observational resules and from
the point of view of computational simplicity the WDF is clearly Lo be
preferred, except for some problems in quantum oplics for which a more
natural choice is the # distribution, ™7

4. RELATION TO SOME FUNDAMENTAL QUESTIONS IN
QUANTUM MECHANICS

Since the WDF formalism is equivalenl to quantum mechanics one
expeets that it should throw additional light on the relationship between
classical and guantum mechanics. This is in fact turning oot 0 be Lthe case,

For example. Berry™ has demonstrated that the WDF provides an
attractive way 1o link the classical and guantum deseriptions of inteprahle
states. His work on one-dimensional tori was extended o two dimensions by
Ozorio de Almeida and Hannay,”™ who also pointed out that the local
behavior of the semiclassical Wigner funclion s poverned by Thom's
catastrophe theory, -3

Furthermore, Berry and Balazs™ have considered the evolution of
semiclassical quantum states in phase-space by using the WKB expression
for the wave-function to construel an approximation for Wigner’s function in
phase-space. Their approach is similar to that of Heller""" who developed a
new approach to semiclassical dynamics.

The question ol the semiclassical approximation of the WDF was laken
up again by Balazs.'™ who pointed out that, whereas Wigner's pg space
{which he refers Lo as W space) hecomes the classical phase space when
fr —+ 0, in general the W space has a different invariance structure than phase
space. In particolar, it admits an affine metric so that linear combinations of
g oand g are constant under linear transformations in the W space. In the
fi — 0 limit these transformations are replaced by canonical transformations,

In o different wvein, Wigner's work has motivaled others to study
the—"'very sugpestive connection belween quantum mechanics and some
kind of phase-space similar to that of classical physics.”™"™ For example.
Bohm and Wiley"™ were anxious to avoid the possibility of negative
probabilities in phase-space, and they proceeded by expressing the laws of
classical and quantum mechanics in terms of different algebras operating on
the same phase space hut, as they stress, “this phase-space is not derived

Lt |
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[rom classical physics.™ As a result, they deduced that i this phase-space
the quantum mechanical motion is inherently nonfocal. They also remark
that there is a close relationship between their viewpoint and the Prigogine
group,”" the difference being that the latter group proceed by extending
from the classical to the guantum domain whereas Bolim and Wiley starl
from quantum theory and then develop classical theory as a limiting case.

Another generalization of classical phase-space has been proposed by
Prugovecki®™ and developed in detail by him and his coworkers.”™" This is
the so-called fuzzy or stochastic phase-space, which consists of stochastic
points, i.e., points which are not sharp but instead are spread oul to an extent
that is in keeping with the uncertainty principle. As a result one can obtain a
positive distribution funetion, a particular example™ being the Husimi
function.'*"! 1

In addition, Prugovecki'™™ extended the concept of stochastic phase-
space 1o the realm of relativistic quantum mechanics in a manner that is in
conformity with the results of Newton and Wigner'"' concerning the
localizability of relativistic particles, viz. that even free relativistic particles
cannot be localized in arbitrarily small regions. He also showed that a
nomlocal Lype of dynamics could be formulated and covariant models of
extended spin 0 and ] parlicles were constructed which were free of some
well-known problems associated with the relativistic quantum mechanics of
point particles.

However, it should be emphasized that the use of stochastic phase-space
has not led to any new observable results. This is not allogether surprising
sinee the WDT is the essential starting point. Another unsatisfactory aspects
is the arbitrariness associated with smoothing. Thus, a5 we've already noted,
one cun ohlain a positive distribution function by smoothing with a Gaussian
with an infinity of possibly variances,”"' the only restriction being that
Vg ¥p = h/2, The smoothing function associated with the choice of the
equality sign is identical to the Glauber coherent state,'”” whereas. if the
inequality sign is used, then the operative function is the two-photon
coherent  states (TCP) introduced by Stoler™ and Yuen™"™ and
considered in detail by them and many others,*""""?

Yuen originadly referred to these states as “generalized coberent states” (Ref, 43} bul later
(Feels 44 ) adepled the name “two-photon coherent states,” when he realized that the Tormer
nomenclature was associated with the generalized states introduced by Ticulaer and Cilacber
Plvs. Ree. 145, 1041 (198630 The later satisty the full coherence conditions of Cilauber
hnt are nol minimmom—unceriainly states. Yuen's states are not ceherent and, in peneral, are
nat minimom uncertainly siates. Actually Stoler (Rell 427 appears (o have been the first o
consider such states and he neticed that the unitary transformation which genercates thess
states Trom the eoherent states also effects & scale ranstormation of ¢ and @ by reciprocal
seale factors, This seeounts for the name “squeere stanes” which has been used 1o describe
these states by “gquentum nendemolition™ investigators (Rel. 470,
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Finally, before leaving the realm of basic guestions, we would like Lo
point out that that many investigations using other techniques can often he
treated more naturally, and with more physical insight, by the use of WDF
technigues. In others cases it is often a useful complementary tool. For
example, let us consider the TCP. The starting point is Glauber’s coherent
state |ek, which are eigenstates of the annihilation operator &. Yuen then
carried out a Bogalivbov—Valatin transformation:

bh=pd+vi* )

with [#]* — |v[?=1 to ensure that |5, %] = I. The eigenstates of § are the
two-pholon coherent states, Making use of a theorem of von Neumann,'*#
led Yuen to remark that the linear canonical transformation given by Eq. (8)
can be represented as a unitary transformation viz, 5= Ugt’t . What we
wish to remark here is that the same results may be obtaimed in Wigner
phase-space  language by simply carrying out phase-space cancnical
transformations. "™ Thus, for example, the WDF for the TCP can be
immediately obtained from the WD for the Glauber coherent states [Eg. (4)
of Ref. 8| by letting

g i, =dAgq" | Bp'

(9a)
prpy=Cgt + Dp! (9b}
with the coefficients chosen so that AD — BC = | and also so that g,, p, are

related to the complex eigenvalues of & in the same way that g'. p° are
related Lo the complex eigenvalues of 4.

As a final example, we refer to some recent work which we carried
oul."™™ in which we demonstrated that the new interpretation given by
Aharonov, Albert, and Au'™" to the scalar product of two states in Hilbert
space—with an  attendant  suggestion of a  generalized noton  of
measurement-—is essentially eguivalent to Wigner's phase-space represen
lation of quantum mechanics.

To summarize, we have presented a smérgdshord of topics dealing with
the WDF which should give a flavor of its pervasive influence in the realm
of theoretical physics. Since 1 feel that its greatest impact is probably in the
future, I hope that 1 will be able to write about this subject twenly years
hence and join with BEugene Wigner in the celebration of his hundredth
birthday. For now. T would like to acknowledge my debt to him for teaching
me about distribution functions, among other topics, and conclude by
saying: Happy Eightieth Birthday, Fugene.
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