FRONT-LINE RECURRENT NOVA SCIENCE REQUIRES CENTURY-OLD DATA Bradley E. Schaefer (Louisiana State University)

Perennial problem: WHAT IS THE PROGENITOR SYSTEM FOR TYPE Ia SUPERNOVAE?

SUDDENLY A VITAL BIG-MONEY PROBLEM:

- •Must know progenitor to calculate change in SN Ia M- Δt_{15} relation
- •Evolution of metallicity in old Universe + change Hubble Diagram shape
- •SNAP cannot achieve goal without progenitor/evolution solution

PROPOSED PROGENITORS:

•Recurrent Novae

- •Symbiotic stars
- •Super-soft sources
- •Double White Dwarf Binaries

RECURRENT NOVAE ARE LIKELY SOLUTION:

To recur with $\tau_{rec} < 100$ years, RNe must have: •High WD mass $(1.2M_{\odot} < M_{WD} < M_{Chandra})$ •High accretion rate $(M \sim 10^{-7} M_{\odot}/yr)$

M_{WD} will exceed M_{Chandra} Ia any year now...

TWO PROBLEMS:

•Does the White Dwarf eject more mass each eruption than it gains between eruptions? $M_{ejecta} < \tau_{rec} \dot{M}$?

•Are there enough RNe to produce the observed Type Ia SN rate? $R_{RNdeath} = R_{SNIa}$? $R_{RNdeath} = N_{RN} / (M0.2M_{\odot})$

RN DEMOGRAPHICS REQUIRED TO ANSWER THE FRONT-LINE QUESTIONS:

τ_{rec} - recurrence time scale
N_{RN} - number of RNe in Milky Way
M - mass accretion rate onto white dwarf
M_{ejecta} - mass ejected in eruption

CAN GET THESE ONLY FROM HISTORICAL/ARCHIVAL DATA:

• τ_{rec} - can only look in archival plate collections

- $\bullet N_{RN}$ archival plates and AAVSO data only way to measure discovery efficiency
- M changes on all time scales, but we need average over the last century
- •M_{ejecta} must have pre-eruption eclipse timings

$\tau_{rec} = Average Recurrence Time Scale:$ Most RN eruptions are *not* discovered: Undirected searches: <efficiency> = 4% (0.6%-19% full range) Directed searches: <efficiency> = 60% (30%-100% full range) Missed eruptions make for errors of ~3X in τ_{rec} : Old τ_{rec} =83 years [2000-1917] But I found 1941 eruption Steady brightness 1941-2000 shows eruption ~1975 missed $\Rightarrow \tau_{rec}$ =27 years (3X error) U Sco: Old τ_{rec} =24 years [6 eruptions since 1863] Dut I found 1017_1045_% 1060 eruptions

- But I found 1917, 1945, & 1969 eruptions
 Steady eruptions every 10±2 years (lost behind Sun in 1927 and 1957)
 → τ_{rec}=10±1 years (2.4X error)
- •V2487 Oph: Naive τ_{rec} =98 years [1998-1900] -But <efficiency>=30% 1890-2008 with two eruptions found $\rightarrow \tau_{rec}$ =18 years (5.4X error)
- •RS Oph: Old τ_{rec} =23 years [5 eruptions since 1890] -But new-found eruptions in 1907 & 1945 plus new eruption in 2006 $\Rightarrow \tau_{rec}$ =14 years (1.6X error)

 $N_{RN} = 10 / (0.2/200) = 10,000$ RNe in our galaxy!

•TEST: Seek old eruptions of 'Classical Novae': Success - Nova Oph 1998 erupted in 1900

(Pagnotta, Schaefer, & Xiao; 2008)

RESULTS: [see also my Poster 491.04 on Wednesday] $\cdot R_{RNdeath} \sim R_{SNIa}$ for Milky Way, M31, & LMC

 $\label{eq:massed_ejecta} \bullet M_{ejecta} \, <\!\! < \tau_{rec} \, \Bar{M} \quad \mbox{ for CI Aql and U Sco}$

LESSONS:

Most nova events are missed → Great opportunity for observers
 → ~30% of 'Classical Novae' are RNe with multiple eruptions in the last century

•Harvard plates should be digitized [see Poster 427.07 by Tang, Grindlay, Los, & Laycock]

Front-line science is laying around in archival data
Science unique and unobtainable with modern telescopes [cf. Special Session on Monday]