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1. Indicate whether the following statements are true or false.  Do not give 

your response just by guessing because a correct answer will draw 1 
point, an incorrect one -1 point and no answer will count for zero points. 

 
 i) The WKB method was devised for rapidly varying potentials. 
 
 ii) The energy of a one-dimensional harmonic oscillator perturbed by a 

potential linear in x can be calculated exactly. 
 
 iii) The spin-orbit interaction in atoms is relativistic in origin. 
 
 iv) If the spin-orbit interaction is neglected, the z component of the 

angular momenta of individual electrons in an atom would each be a 
good quantum number but the z component of the total angular 
momentum of all the electrons would not. 

 
 v) The separation between the 

€ 

2P1/ 2  and 

€ 

2P 3 / 2  levels in the hydrogen 
atom is due to radiative effects and is called the Lamb shift. 

 
 vi) s-wave scattering is most significant for large kinetic energies of the 

incident particles. 
 
 vii) The total scattering cross-section for elastic scattering by a short-

range potential is all that one needs to know to obtain all the particle 
wave phase shifts. 

 
 viii) In a self-consistent one electron potential for an atom, the exchange 

term is attractive while the direct term is repulsive. 
 
 ix) The Bohr orbit for a µ−  bound to a proton is very much smaller than 

that of an electron bound to a proton. 
 

x) The result that most atoms do not exhibit a first order Stark affect has 
to do with the law of conservation of parity. 

 
2. Using the first Born Approximation, find the differential scattering cross 

section for the exponential potential V = −Voe−r / a .  Sketch the angular 
dependence of the scattering amplitude. 

 



   Hint:  rsin ρre−αrdr = 2αρ
α 2 + ρ2( )2o

∞

∫  

 
 
3. A and B form a complete set of commuting linear Hermitian operators, 

and X and Y are linear Hermitian operators which satisfy the following 
commutation relations with A and B: 

 

 
A,X[ ] = X + 6Y B,X[ ] = X
A,Y[ ] = 6X B,Y[ ] = Y    . 

 
 a) If α  and β  are eigenvalues of A and B, respectively, show that the only 

non-zero matrix elements of X and Y are 
 
 ′ α ′ β X αβ  and  ′ α ′ β Y αβ  with  ′ α = α − 2, ′ β = β +1( )  or  ′ α = α + 3, ′ β = β +1( )    . 
 

 b) Find the explicit relationship of the matrix elements of X to those of Y. 
 

 
 
4. Let   φ1 ,  φ2 ,  and φ3  be defined by the equations below: 
 

 

    

S2 φ1 = 22 φ1 Sz φ1 = +1φ1 ,

S2 φ2 = 22 φ2 Sz φ2 = +0 φ2 ,

S2 φ3 = 22 φ3 Sz φ3 = −1 φ3 ,

 

 
  Consider an ensemble of six quantum mechanical systems; one of 

which is in the state φ1 , two of which are in the state φ2 , and three 
of which are in the state φ3 . 

 
  a) Construct explicitly the density matrix for the ensemble. 
 
  b) By direct manipulation of the density matrix and other quantum 

mechanical operators, calculate the ensemble average for Sz . 
 
 

5. A free particle with energy “E” and spin 1/2 is traveling in the x-direction.  
The spin of the particle also points in the x-direction.  Beginning at x = 0 
there is a spin dependent potential of the form 

 
   V(x) = V0 (1 +ασ z ) ,  
 
 where V0 , and α  are constants, α < 1 , and σz  is the usual Pauli matrix. 
 



 a) Assuming that the energy “E” is smaller than either value of V(x), 
calculate an expression for the reflected wave. 

 
 b) Prove that the spin of the reflected wave lies entirely in the x-y plane. 
 
 c) Calculate expectation values for σ x  and σy  for the reflected wave.  By 

visual inspection of your answers determine when the expectation 
value for σy  will be zero.  Under these conditions what will be the 
expectation value for σ x ?  Is your answer physically plausible? 

 
6 A charged, linear harmonic oscillator is created in its ground state at time 

€ 

t = −∞ .  Immediately thereafter a weak but time dependent electric field is 
turned on.  The field is: 

 

 
  

€ 

 
E (t) = ˆ i  

N
τ

 

 
 

 

 
 

1
π

exp −t 2 /τ 2( )    , 
 
 where N and 

€ 

τ  are constants. 
 
 a) What transitions will be induced by this perturbation? 
 
 b) What is the probability that the oscillator will be found in the first 

excited state at 

€ 

t = +∞? 
 
 c) Examine your answer in the limits 

€ 

τ → 0 and 

€ 

τ →∞ 
 
 

 

  

€ 

a =
mω
2

x +
ip
mω

 

 
 

 

 
 a n = n  n −1

a† =
mω
2

x − ip
mω

 

 
 

 

 
 a† n = n +1  n +1

 

 

 

€ 

dx  e−ax
2

cos(bx) =
1
2

π
a

 

 
 

 

 
  exp(−b2 /4a)

0

+∞

∫  
7. a) Write down the 

€ 

3× 3 matrices that represent the operators 

€ 

Lx , 

€ 

Ly  and 

€ 

Lz  of angular momentum for a value of   

€ 

 =1 in a basis which has 

€ 

Lz  
diagonal. 

 
 b) An arbitrary rotation of the state of such a system can be described by 

the operator 
 
   

€ 

U = exp(−iαLz /)exp(−iβLy /)exp(−iγLz /) , 
 
  where 

€ 

(α,β,γ)  are the Euler angles describing the rotation.  Using a), 
construct a 

€ 

3× 3 matrix representation of 

€ 

U . 



 
 c) Find the expectation value, 

  

€ 

 
L , in the state which results from 

applying 

€ 

U  to an initial   

€ 

 =1, m =1 state. 
 

 
8. The quantum mechanical physical system “facetium” is known to have 

exactly two stationary states.  The states are represented in Hilbert space 
by the orthonormal kets 1  and 2 .  First, suppose that the Hamiltonian 
for “facetium” were known to be: 

 
 H0 = a 1 1 + b 2 2  .  
 a) What sort of numbers are “a” and “b”?  Why? 
 
 b) What are the energy eigenvalues associated with the kets 1  and 2 ?  

Now suppose that the Hamiltonian for facetium were changed by the 
addition of the term: 

 
 ′ H = c 1 2 + d 2 1  
 
  to H0 .  That is, suppose that the full Hamiltonian for facetium were 

now: 
 
 H = H0 + ′ H  .   
 c) Derive a relation between c and d. 
 
 d) Calculate the eigenkets and energy eigenvalues of the full Hamiltonian 

H. 
 
9. Consider a particle confined in a two dimensional box 
 
 V(x,y) = 0 0<x<L, and 0<y<L   
 
 V(x,y) = ∞ otherwise 
 
 The eigenstates and eigenenergies are given by 
 

 ϕnp(x, y) = 2
L sin

nπx
L( )sin pπy

L( )  
 Enp = E1(n2 + p2)  
 
 Consider a perturbation      
 
 H’(x,y) = Vo for L2 −

a
2 < y <

L
2 +

a
2  

 
 a) Find the first order correction to the energy of the ground state. 



 
 b) Find the first order correction to the eigenfunction of the ground state. 
 
 c) The first excited energy level has a two fold degeneracy.  Find the 

splitting of the energy level due to the perturbation in first order. 
 
 Note:  Use the approximation a<<L when evaluating integrals 
 
 
10. Consider two identical spin-1/2 particles of mass m in a one-dimensional 

box where 
 

 V(x) =

0  for  0 < x < L

∞  x < 0
∞  x > L

 

 
 

  
 

 
 The possible energy levels are 
 

 
  
E = n1

2 + n2
2( )E1  where  E1 =

2π 2

2mL2    .  
 
 Write down the properly symmetrized and normalized eigenfunctions for  
 
 a) E = 2E1  
 
 b) E = 5E1 . 
 
11. A particle of mass m and energy E > 0  is incident from the left on a 

potential barrier given by  
 

V x( ) = 0   x < 0  
V x( ) = Vo 1 − x /a( )  x ≥ 0  

 
where Vo  is an energy and a is a length. 
In the limit that E <<Vo , determine the energy dependence of the 
transmission probability.   

 Hint:  You may use the semiclassical approximation in this limit.  To get 
the energy dependence you do not have to evaluate any integrals. 

 
12. In a certain triangular molecule, an electron is free to hop from site to site.  

The resulting eigentstates and eigenergies for the electron are: 
E1 = −2e  |ψ 1 =

1
3
|1 + | 2 + | 3( )  

 

E2 = +e  |ψ 2 =
1
3
| 1 + ei2π / 3 | 2 + ei 4π / 3 | 3( )  



 

E3 = +e  |ψ 3 =
1
3
| 1 + e−i2π / 3 | 2 + e− i4π / 3 | 3( )  

 
a) At t = 0 , the state vector is  

 

|ψ 0( ) =
1
6
2 | 1 + | 2 + | 3( ) . 

 
The energy is measured.  What values can be found and with what 

probabilities? 
 
 b) Determine |ψ t( )   given |ψ 0( )  above. 
 
13. All parts of this question call for quick, short answers. 
 

a) Estimate the lowest energy possible when an electron is confined to a 
distance of 10-8 cm. 

 
b) The 589 nm yellow line of sodium arises from an excited state with a 

lifetime for optical emission of 10-8 seconds.  Estimate the natural 
width of the line. 

 
c) Evaluate 

€ 

< jm |Jx
2| jm > . 

 

 d) Find the eigenvalues of 

€ 

0 2 0 0 0
2 0 0 0 0
0 0 1 0 0
0 0 0 0 −i
0 0 0 i 0

 

 

 
 
 
 
  

 

 

 
 
 
 
  

 . 

 
 Hint:  Think of the matrix as an operator in five-dimensional space, 

and think in terms of subspaces. 
 
 e) What are the possible values of the total angular momentum j for a d-

electron?  In each these states, evaluate   

€ 

 
 ⋅
 
s | j > . 

 
14. A particle is moving in the x-y plane subject to a uniform magnetic field in 

the x-direction, expressed by a vector potential   

€ 

 
A  =  (0,Bx,0). 

 
 a) What is the Hamiltonian of this system? 
 
 b) Show that the operator 

€ 

ˆ p y  is a constant of the motion. 
 
 c) Find the allowed energies and eigenfunctions. 
 



 d) Explain why the energies are degenerate. 
 
 
15. Two identical spin –1/2 particles of mass m moving in one dimension 

have the Hamiltonian. 
 

  

€ 

H  =  p1
2

2m
 +  p2

2

2m
 +  λ

m
 δ( r 1 −   r 2)

 
s 1⋅
 
s 2  

 
 where   

€ 

(pi ,  
 
r i,  
 
s i ) are the momentum, position and spin operators for 

the i-th particle. 
 
 a) What operators, besides the Hamiltonian, are constants of the motion 

and provide good quantum numbers for the stationary states? 
 
 b) What are the symmetry requirements for the spin and spatial wave 

functions? 
 
 c) If λ > 0, find the energy and quantum numbers for the bound state. 
 
16. A particle of mass m moves in a one-dimensional potential of the form 
 

€ 

V (x)  =  
Fx      x ≥  0         
∞       x  <  0          
 
 
 

 

 
 a) Write down the Schrödinger equation for this problem and state the 

boundary conditions on the wave function. 
 
 b) Estimate the ground state energy using a variational wave function 

ψ(x) = x exp(-ax). 
 
 c) Estimate the ground state energy using Bohr-Sommerfeld/WKB 

quantization.  Pay attention to the behavior near each turning point. 
 
17. All parts of this question call for quick and brief answers 
 

 a) The Hα  line of the Balmer series in hydrogen has wavelength 656.3 
nm.  By how much is it shifted in a similar series in deuterium?  
Neglect relativistic effects. 

 
 b) The muons µ+  and µ–  bind together through the Coulomb 

interaction to form bound states analogous to those of the hydrogen 
atom.  Estimate the radius of the ground state of this system.  
mµ ≅ 200me( )  

 



 c) The wave function of a particle is x2 − y2( ) f x2 + y2 + z2( ) .  If a 
measurement of   z  were made in such a state, what values will 
obtain and with what probabilities? 

 
 d) What kind of multipole decay governs the transition 3d2 → 1s0  

(notation:    nm ) in the hydrogen atom? 
 
 e) What is the physical basis of the selection rule that a single photon 

transition cannot proceed between two j = 0 states? 
 
 f) Can the reaction π− + π+ → π 0 +π 0  take place if the π±  come 

together with mutual orbital angular momentum    = 1 .  (Spin of the 
pion is zero.) 

 
18. Two particles of masses m1 and m2 are restricted to move in one-

dimension and have coordinates and momenta xi , pi ,i = 1,2 .  The 
Hamiltonian of the system is given by 

 

  H =
p1
2

2m1
+

p2
2

2m2
+
1
2
m1ω 2x12 +

1
2
m2ω 2x22 +

1
2
k(x1 − x2 )2    , 

 
 
 where k > 0, and k and ω  are constants. 
 
 a) In a couple of lines, state what, physically, this Hamiltonian describes. 
 
 b) Obtain the energy eigenvalues of this Hamiltonian. 
 

 c) Draw an energy level diagram for the case k >>
m1m2
m1 + m2

ω 2 . 

 
19. a) Write down the Hamiltonian for a charged particle (e,m)  in a constant 

magnetic field   
 
B .  (Hint:  minimal coupling) 

 
 b) Taking the field direction as the z-axis and adopting any convenient 

gauge, solve for the eigenvalues of this system. 
 
 c) What are the degeneracies of each eigenvalue E? 
 
 d)  Suppose an additional electric field   

 
F  is applied, parallel to   

 
B .  What 

is the new Hamiltonian and how are the eigenvalues modified? 
 

20. A quantum-mechanical physical system of spin   


2  is described by a 
wavefunction   ψ (

 
r )  for which 

 
     Jzψ (

 
r ) = + 2ψ (

 
r ) 

 



     L
2ψ ( r ) = +22ψ ( r )  

 
   

  
ψ ( r ) 2  is independent of θ  and φ . 

 
     J

2ψ ( r ) = (constant ) ψ ( r )  
 
 
 a) Derive an expression for   ψ (

 
r ) , denoting the normalized radial wave 

function by R(r) . 
 
 b)  Evaluate ψ J 2ψ . 
 
21. Use the WKB quantization condition to estimate the energy eigenvalues of 

the potential 
 

 
V(x) =∞  ,  x ≤ 0
V(x) = kx 4  ,  x > 0  

 
Explain, in a sentence or two, what is the physical assumption inherent in 
the WKB approximation. 

 

 Note:  

€ 

1− x 4  dx  ≈  
0

1

∫ 0.874  

 
22. a) Let ˆ C  denote the operator that changes a function into its complex 

conjugate. 
 

 
ˆ C ψ =ψ *   

  i. Calculate the eigenvalues of ˆ C . 
 
  ii. Is ˆ C  Hermitian?  Prove your answer. 
 
 
 b) Prove that the expectation value of the square of a Hermitian operator 

is real and non-negative. 
 
 
 c)  If ˆ Ω  and ˆ λ  are both Hermitian operators, what can be said about the 

expectation value of their commutator?  Prove your answer. 
 
23. Using Ψ x( ) = Ne−λx

2

  as a trial wavefunction, use the variational principle 
to estimate the energy of the ground state of a one-dimensional harmonic 
oscillator.  Write down the properly normalized wave function for the 
ground state. 

 



 Note: 
−∞

+∞

∫ e−x
2

dx = π  
−∞

+∞

∫ x 2e− x
2

dx =
π
2

 

 
24. a) Write down the Pauli spin matrices σ i . 
 
 b) Starting with the commutation relations obeyed by all angular 

momentum operators, prove that  
 

σ iσ j = i

€ 

εijkσ k + δij I . 
 
 c) Let A  and B  be operators that commute with the Pauli spin matrices.  

Prove that  
 

σ • A( ) σ • B( ) = A • B + iσ • A× B( ) . 
 

25. None of the questions below involves extensive computation, and most 
may be answered in a few words.  In particular questions 1-4 are either 
true or false.  If you should respond to any of these four questions with 
"true", then no explanation is necessary.  If you should respond with 
"false", then support your answer with a mathematical proof or a 
counterexample.  

 
 (1) All hermitian operators representing physical observables have 

inverses. 
 
 (2) Unitary operators constitute a subset of Hermitian operators; that is all 

unitary operators are Hermitian, but not all hermitian operators are 
unitary. 

 
 (3) The product of two unitary operators is unitary. 
 
 (4) Let Ω

^
 and Λ

^
 be commuting hermitian operators.  Then all 

eigenfunctions of Ω
^

 are simultaneously eigenfunctions of Λ
^

. 
 
 (5) Do the operations of inversion and conjugation commute?  That is, 

assuming that the operator Λ
^

 possesses an inverse, does Λ−1
^ 

 
 

 

 
 = Λ+

^ 

 
 

 

 
 
−1

? 

 
28. The ground state wave function of the hydrogen atom, with potential 

energy 
 

V =
−e 2

r
 

  has the functional form 
 

ψ = Ne− r / a0 , 
 



  with the Bohr radius a0, and N a normalization factor. 
 
 a)  Using the s wave radial Schrödinger equation, find a0 and the energy 

E in terms of the mass m, charge e, and . 
 
 b)  Normalize the wave function to represent one particle, determining N.  

Calculate the electric current density. 
 
 c)  Given that the proton radius is a factor 10-5 smaller than the Bohr 

radius, calculate the probability of finding the electron in the nucleus.  
Give your result to one significant figure.  

 
27.  A spin − 1

2
 charged particle is in the sz = 

  
−


2
 state at t = 0 in a constant 

magnetic field 
  

 
B o = (0, 0,Bo ).   A weak, rotating magnetic field 

  

 
B 1= (B1 cosωt ,B1 sinωt,0)  is switched on, with B1 << Bo. 

 
 
  a) Calculate the probability that the spin state is 

  
s z=


2
 at time t. 

 
  b) When would you expect perturbation theory to break down? 
 
  HINT:  It will be useful to work with the operators s± when evaluating 

matrix elements. 
 
28. a) Evaluate the elastic differential scattering cross-section in the first Born 

approximation for the scattering of particles of mass m from a Yukawa 
potential A

r
e−α r .   Express your results in terms of the momentum 

transfer   
 
q .  

 
  b) Also compute the total cross-section. 
 
 c) What happens to these results as α → 0? 

 
 
29. All parts of this question call for quick and short answers. 
 
 a) Identify the state of the hydrogen atom whose radial function is  
 
 
 
 
 
 
 
 
 

r 



 b) Identify which of the operators 

€ 

L2,LZ , parity{ } have sharp eigenvalues in 

the state described by 
  

€ 

1
6
Y1
1+

1
6
Y 3
1+

2
3
Y 5
1,whereY



m  is a standard 

spherical harmonic. 
 
 c) Estimate the radius of the n=100 state of the hydrogen atom. 
 
 d) If the natural width of an atomic state is 1µeV, estimate its lifetime. 
 
 e) Which of the following operators is Hermitian: 
 

  

€ 

i
∂ 3

∂x 3
, x p2 + x 2( )x , x

∂
∂x
−
∂
∂x

x 
 

 
 
,  x ×

 
p  

 
 f) Which of the following are possible variational trial functions for the 

ground state of a one-dimensional potential well: 
 

€ 

e−ax , 1
x 2 +α 2 , e−αx

2

. 

 
g) A one-dimensional potential well is perturbed as 

indicated by the dashed lines.  In each case, is the 
ground state lowered or raised and at what order of 
perturbation? 

 
 

 
 

 
      
 

 
 h) An excited nuclear state of 

€ 

4
8Be has spin 1 and sufficient energy to decay 

into two α-particles (spin of α=0).  Is such a decay allowed? 
 
30. a) A spin-1/2 electron is in a uniform magnetic field   

€ 

 
B o =Bo ˆ z .  At time t = 0 

the spin is pointing in the x-direction, i.e., 
  

€ 

Sx(t=0) =


2
.  The 

gyromagnetic ratio is γ, and a reference frequency is defined by 

€ 

ω o≡γBo.  
Calculate the expectation value 

€ 

Sx t( )  at time t. 
 
 b) An additional magnetic field 

  

€ 

 
B 1 =B

1
cos ω ot( ) ˆ x + sin ω ot( ) ˆ y [ ]  is now applied.  

If an electron in the combined field   

€ 

 
B o +
 
B 1 has spin pointing along 

€ 

+ ˆ z  at 
time t=0, what is the probability that it will have flipped to 

€ 

− ˆ z  at time t? 
 
 



31. Consider scattering from a spherical hard core potential,  
 
 
 
 
 
 
 
 
 
 
 a) Derive an expression for the phase shift, δ(k). 
 
 b) Find the leading behavior of δ(k) as a function of k for small k. 
 
 c) Consider =0.  Find the scattering length, a, and, assuming =0 

dominates, the total cross-section, σtot. 
 

32. Consider the elastic scattering of a particle with energy 
  

€ 

E =

2k 2

2m
 from the 

soft sphere potential: 
 

€ 

V (r) = V o r≤a  
 

€ 

V (r) = 0 r> a  . 
 

 We want to calculate the scattering amplitude using the first Born 
approximation: 

 

  

€ 

ƒ k
B (θ)=− 2m


2

 

 
 

 

 
 
1
4π

∫ d3 ′ r ei
 
q ⋅
 
′ r V
 
′ r ( ) , 

 
 where the momentum transfer   

€ 

 
q =
 
′ k −
 
k ,
 
′ k  is the final momentum, and 

€ 

k( )2 = ′ k ( )2.  
 
 a) In terms of Vo, a and k, when can we expect the Born approximation to 

give accurate results?  There are at least two such conditions. 
 
 b) Calculate the scattering amplitude ƒk(θ) for the soft sphere potential 

using the first Born approximation. 
 
 c) Show that the total cross section in the low energy limit is: 
 

  

€ 

σ ˜ − πa2 4
3
ma2V o


2

 

 
 

 

 
 

2

. 

 
  

V 

Vo 

r R 

(V0 -> ∞) 



33. A non-relativistic electron of mass m is confined to move in one dimension.  
Its wave function ψ(x) obeys the time-independent Schrödinger equation 

 

  

€ 

−

2

2m
d2ψ(x)
dx 2

+V (x)ψ(x)=Eψ(x) . 

 
 a) Consider a delta function barrier at x = 0, described by 

€ 

V (x)=V oδ(x).  
Show that the equations which relate the wave function and its first 
derivative on the left (L) and right (R) sides of the potential barrier have 
the following form: 

 

€ 

ψR(0)=ψ L(0) = ψ(0)  
 

€ 

dψR

dx
 

  
 

  x= 0

−
dψ L

dx
 

  
 

  x= 0

= Aψ(0)  

 
 b) Give an expression for A in the last equation of part (a). 
 
 c) A beam of electrons of mass m is incident on the delta function potential 

of part (a).  The wave function on the left and right sides is written as 
 

€ 

ψ L(x)=e
ikx + ae−ikx  
 

€ 

ψR(x)=be
ikx  

 
  Which way is the beam traveling?  What is the speed of the electrons? 
 
 d) Give an expression for the transmission coefficient T = |b|2 as a function 

of A and k. 
 
 
34. a) A monochromatic beam of electrons of energy 13.6 eV is defined by the 

wave function 

€ 

ψ=(10cm−3 / 2)exp(ikz), where k is the wave number.  
Compute the current in the beam in the form of a number of electrons 
per unit area per unit time. 

 
 b) The scattering amplitude in the first Born approximation for scattering 

from a potential   

€ 

V ( r )  is given by 
 

  

€ 

ƒ(θ)=− 2m
4π2

∫ei
 
q ⋅
 
r V ( r )d r , 

 
  where   

€ 


 
q  is the momentum transfer. 

 
  Evaluate the cross-section in this approximation for elastic scattering 

from a delta-function potential   

€ 

Bδ( r ).  How much of this scattering is 
due to the s-wave? 

 



 
36. Given 

  

€ 

J i,J j[ ]=i k ε ijkJ k ,∑  
 

  

€ 

Jz|α =m |α , 
 

  

€ 

J 2|α =2 j( j +1) |α , 
 

€ 

α |α =1 , 
 

 a) Calculate 

€ 

α | J i|α  
 
 b) Calculate 

€ 

ΔJ i ≡ α | J i
2|α − α | J i|α

2 . 
 
 c) If measurements of L2 and Lz are made on a state whose wave function is 

€ 

Ae−br sinθ cosϕ, what are the possible values found? 
 
 
37. A lithium atom in its ground s state is placed in a small static electric field ε.  

By spectroscopic measurement, the ground state energy is found to shift in 
energy according to  

 

€ 

ΔE =−
1
2
αε2  , 

 
 where α is a constant, the atomic polarizability. From the experiment it is 

found that α = 24 Å3, where Å is an Angstrom. 
 
 a) Assuming an electric dipole interaction 

€ 

′ H =− ˆ µ ε , use the following 
information to derive a simple formula for α: 

 
  - The nearest excited state to the ground state is a p state with an 

energy separation of ω. 
 
  - The only relevant non-vanishing dipole matrix element is 

€ 

p | ˆ µ | s =µ0. 
 
 b) The spontaneous lifetime of the p state, τ = 27 ns, is related to the dipole 

transition moment by the Einstein A coefficient, 
 

  

€ 

A=
1
τ

=
4
3

µ0
2k 3


, 

 
  where  

€ 

k=2π /λandλ=670nm.  Use this information to write a formula 
for α in terms of λ, τ, and the speed of light c.  Evaluate the result, either 



with a calculator or by estimate, to show that it agrees almost exactly 
with the measured value of α. 

 
38. All parts of this question call for quick and short answers. 
 

a) Give to within a factor of 2 the radius of the n = 100 Bohr orbit in the 
hydrogen atom. 

 
b) Give to within a factor of 2 the binding energy of the ground state when a 

proton and anti-proton are bound by their Coulomb interaction.   
 

c) Identify which of the operators {L2, Lz, parity} have definite values in the 

state described by 

€ 

1
6
Y11+

1
6
Y31+

2
3
Y51,  where the Ym are standard 

spherical harmonics. 
 

d) If the natural width of an atomic state is 1µeV, estimate its lifetime. 
 

e) Which of the following operators is Hermitian: 
 

  

€ 

i ∂
3

∂x3 , x(p2 + x2)x ,  r x  p .  
 

f) A one-dimensional potential well is perturbed as 
indicated by the dashed line.  What order and sign  

 of the perturbation correction do you expect for the 
ground state energy? 

 
39. Consider the electromagnetic transition between the hyperfine components of 

the ground state of atomic hydrogen. 
 
 a) What kind of transition is it (electric or magnetic, multipolarity)? 
 
 b) The hyperfine interaction responsible can be described by 

  

€ 

- 8π/3( )
 
µ p⋅
 
µ e |ψ(0)|

2 , where 
  

€ 

 
µ p and

 
µ e are the magnetic moments of the 

particles and |ψ(0)|2 the probability of finding the electron at the nucleus.  
Estimate the energy of the hyperfine transition. 

 
 c) What is the wavelength and frequency of this radiation and comment 

briefly on its importance. 
 

40. a) An electron 

€ 

spin=1
2

 

 
 

 

 
  is prepared in an eigenstate of Sx with eigenvalue + 

/2 and subjected to a uniform magnetic field   

€ 

 
B =(0, 0,B)  for a time T.  At 

that point, the field is suddenly rotated through 90° to   

€ 

 
B =(0, B,0).  After 

another time interval T, the electron’s spin in the x-direction is measured.  
What is the probability of obtaining the value -/2?  Hint:  It will be useful 

 



to consider Sz eigenstates for the first time interval and Sy eigenstates for 
the second. 

 
 b) For B = 200 G, at what earliest value of T will this probability be a 

maximum? 
 
41. a) An electron is constrained to move on a circle of radius R.  The dynamical 

variable is θ.  Write down the wave functions of the eigenstates |n> of 
energy.  What are the eigenvalues? 

 
  b) A perturbing static electric field is applied (as shown)  

along a diameter of the circle.  Find the first non-
vanishing corrections to the energy of any state |n> 

 
  Hint: What are the matrix elements of cosθ? 
 
Caution: The first excited states need special and careful 
     treatment.  Why? 
 
 
42. All parts of this question call for quick and brief  

answers.  You do not need to show any lengthy derivations: 
 
 a) Radio recombination lines are due to transitions 

€ 

n→ n ±1 in highly 
excited states of hydrogen.  For an observed line of 6 GHz, estimate the 
principal quantum numbers of the states involved. 

 
 b) What kind of radiation (electric or magnetic, and order of the 

multipole) is observed from a transition 

€ 

4 f 3→ 2p1, where these are 
the familiar   

€ 

nm  quantum numbers of atomic states? 
 
 c) Find the eigenvalues of the matrix: 
 

   

€ 

0 0 2 0
0 0 0 1
2 0 0 0
0 1 0 0

 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
  Hint:  Think in terms of subspaces. 
 
 d) Can a neutral particle with spin 1 and even intrinsic parity decay into 

two 

€ 

π 0, given that its mass exceeds twice the pion mass?  (Spin of 

€ 

π o = 0) 
 
 e) What are the possible values of the total angular momentum of a 

nucleon in a d-state?  If subjected to the Hamiltonian 

 

 
 
 
 



  

€ 

H = A + B
 
L ⋅
 
S + C

 
L ⋅
 
L , which of the quantities 

€ 

Si,Li,Ji,S
2,L2  and  J 2{ } 

are conserved in a stationary state? 
 
 
43. At time 

€ 

t = 0, a hydrogen atom is in the state 
 

 

€ 

t = 0 =
1
2
1s0 −

i
3 2

2p1 +
1
3 2

2p −1 +
7

3 2
2p0  

 
 where the kets represent normalized   

€ 

nm  states of the atom. 
 
 a) What values of angular momentum 

€ 

L2 will be found upon 
measurement in this state? 

 
 b) What is the expectation value 

€ 

L2  in this state? 
 
 c) If no measurements are made, what is the state 

€ 

t  at a later time 

€ 

t? 
 
 d) If a measurement of 

€ 

Lz  at 

€ 

t = 0 yields   

€ 

 , what is the subsequent time 
evolution of the state? 

 
 e) If a weak electric field were applied at 

€ 

t = 0, will the state exhibit a 
linear Stark effect?  Explain. 

 
 
44. All parts of this question call for quick and short answers. 
 
  a) What kind of electromagnetic transition occurs between the 4f0 and 1s0 

states (notation: nm) of the hydrogen atom? 
 
  b) The 589 nm yellow line of sodium arises from an excited state with a 

lifetime for optical emission of 10-8s.  Estimate the natural width of the 
line. 

 
  c) If you are told that in a certain reaction, the electron comes out with its 

spin always parallel to its momentum, argue that parity conservation 
is violated. 

 
   d) Consider three identical particles in a system which has only three 

states a,b and c.  How many distinct allowed configurations are there if 
the particles are (i) bosons, (ii) fermions? 

 
  e) Electron capture by the nucleus involves the absorption by the nucleus 

(Z, A) of one of the atomic electrons.  Which electrons (s, p, d, f, etc) 
would you expect to be dominantly involved?  How does the capture 
probability scale with Z? 

 
 



45.  Consider a particle of mass m in a potential well 
  
    

€ 

V (x) = 0  

€ 

−a ≤ x ≤a  
 
              

€ 

=∞     

€ 

x >a 
  a) Using the simplest even polynomial that vanishes at  
   

€ 

x=± a, namely  

€ 

ψ t =N(a
2 − x 2)   

€ 

−a≤ x≤a  
       

€ 

=0                    

€ 

x >a     , 
   where N is a constant, calculate variationally the ground state energy 

of the particle. 
 
  b) What is the exact energy for the ground state?  Compare with the 

estimate in (a). 
 
  c) To get the first excited state in the well, what is the simplest 

polynomial which you would use as a trial function? 
 
 
46.  Each part of this question calls for brief answers. 
 
  a) Estimate the shift in the wavelength (6563 Å) of the Hα line of the 

Balmer series in hydrogen when you go to the corresponding line in 
the spectrum of deuterium.  Neglect relativistic effects. 

 
  b) Express the radius of the first Bohr orbit in the p-

€ 

p  system in terms of 
the Bohr radius of the hydrogen atom. 

 
  c) What order of magnitude do you expect for the elastic scattering of  
   i)  electrons from atoms  ii)  neutrons from protons 
 
  d) In a partial wave analysis of the scattering of 10 MeV neutrons from 

deuterons, what is the highest  that need be considered?  Show briefly 
how you arrive at your estimate. 

 
 
47.  Give a particle of mass m in a one-dimensional square well potential with 

a small perturbing potential as shown in the drawing, 
 
  a) Obtain the normalized unperturbed  
   wave functions and their energies. 
 
  b) Find the first order correction to the 
   energy of the ground state. 
 
  c) Find the first order correction to the  
   wave function of the ground state. 
 

 



48.  a) Work out the wavelength of the resonance transition (between the first 
excited and ground state) in the hydrogen atom.  What is the common 
name given to this spectral line? 

 
  b) If you consider spin-orbit interactions, into how many lines does the 

above transition split?  Without detailed or accurate calculations, what 
is the order of magnitude of this “fine-structure” splitting? 

 
  c) Consider next the hyperfine structure of the same transition.  Into how 

many lines does it split? 
 
  d) How will your answers to the above parts change if you consider the 

deuterium atom rather than ordinary hydrogen? 
 
 
49. a) The Nitrogen atom has seven electrons.  Write down the electronic 

configuration in the ground state, and the values of parity (Π), spin (S), 
orbital (L) and total (J) angular momentum of the atom.  (Hint: Hund’s 
rules). 

 
 b) If an extra electron is attached to form the N- negative ion, what are its 

electron configuration and values of 

€ 

2S+1L J
π ?  

 
 c) If now, upon photoabsorption, the extra electron is detached to leave 

the nitrogen atom behind in its ground state, what are the possible 
partial waves for the outgoing photoelectron? 

 
 
50. The energy levels of the hydrogen atom from the Schrödinger equation 

with Coulomb potential are highly degenerate.  They depend only on the 
radial quantum number n, but are independent of the other quantum 
numbers such as the orbital angular momentum L, the spin S and the total 
angular momentum J.  However, the observed levels show small splittings 
between the degenerate levels.  These splittings are known as fine 
structure, hyperfine structure and the Lamb shift. 

 
 a) Explain the physical origin of these splittings.  What interactions in 

addition to the Coulomb interation if any are responsible for these 
splittings? 

 
 b) Why are these splittings small?  Order these splittings in terms of the 

order of magnitude of their contributions. 
 
 c) Draw an energy level diagram displaying these splittings.  Label each 

energy level with the appropriate quantum numbers, such as n, L, S, J.  the 
ordering of the levels should be taken into account. 

 
 
 
 



51. A system is in an eigenstate of the operator   with eigenvalue  . 
a.) By measuring   additionally the pure state   is prepared. Discuss 

without computing explicit numbers the possible values   of a 
measurement of   that is performed after   has been measured. 

b.) What is the probability of the values discussed in a.) 
(Hint: Use the j=1 matrix representation for   given by  
 

 ) 

 
c.) After the measurement of   the angular momentum component   is      

measured again. What is the probability of measuring the former values 
 again? 

     
      
52 The Hamiltonian of the harmonic oscillator can be written in the following 

form  
 

 
 
where   and   denote the corresponding momentum and position operators. 
The result obtained from perturbation theory can be easily compared to the 
exact result of the harmonic oscillator. 
 
a.) Compute the energy correction  for the system in first order 

perturbation theory. 
 

b.) What is the value of the energy correction   in second order 
perturbation theory? 

 
c.) Compare the energy corrections obtained in a.) and b.) with the exact 

energy eigenvalues of the harmonic oscillator associated with the  
       Hamiltonian . 

 
 

53 Consider a one dimesional square well potential of width  and depth .  We 
intend to study the properties of the bound state of a particle in this well when its 
width  approaches zero.  

 
a)  Show that there indeed exists only one bound state and calculate its energy . 

Check that  varies with the square of the area  of the well. 
 
b)  How can the preceding considerations be applied to a particle placed in the 

potential  . 



54. Consider an electron of a linear triatomic molecule formed by three equidistant 
atoms. We use  to denote three orthonormal states of this electron, 
corresponding respectively to three wave functions localized about the nuclei of 
atoms . We shall confine ourselves to the subspace of the state space 
spanned by . 

 
When we neglect the possibility of the electron jumping from one nucleus to 
another, its energy is described by the Hamiltonian  whose eigenstates are the 
three states  with the same eigenvalue .  The coupling between the 
states is described by an additional Hamiltonian  defined by: 

 
 

 
 

 
where  is a real positive constant. 

 
a) Calculate the energies and eigenstates of the Hamiltonian .  
 
b)  Let  be the observable whose eigenstates are  with respective 

eigenvalues . Do the operators  and  commute? 
 

 



 

55. 

For a simple harmonic oscillator, consider the operator 

 

2

ˆˆˆˆˆ xppx
O


 . 

 

(a) Express this operator using raising and lowering operators and show that it is 

Hermitian. 

 

(b) Show that the expectation value of Q̂  in a number state is 0ˆ nQn . 

 

 

 

 

 

 

 

 

56. 

A spin-1/2 particle is subject to a static magnetic field B


 along the x-direction.  This give 

rise to a Hamiltonian  

xS
m

eB
H ˆˆ 








 . 

 

 Assume the initial state is zt  )0(  

 

(a) Calculate )(t  

(b) Calculate zŜ as a function of time.  What is the precession frequency? 

(c) Calculate the time-dependent uncertainty in zŜ ,  
2

22 ˆˆ
zzz SSS  . 
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55.

For a simple harmonic oscillator, consider the operator





.



(a) Express this operator using raising and lowering operators and show that it is Hermitian.



(b) 



Show that the expectation value of  in a number state is.

















56.



A spin-1/2 particle is subject to a static magnetic field  along the x-direction.  This give rise to a Hamiltonian 



.





	Assume the initial state is 



(a) 

Calculate 

(b) 

Calculate as a function of time.  What is the precession frequency?

(c) 



Calculate the time-dependent uncertainty in, .
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